Philips sa7025 DATASHEETS

INTEGRATED CIRCUITS
SA7025
Low-voltage 1GHz fractional-N synthesizer
Product specification 1996 Aug 6 IC17 Data Handbook
 
SA70251GHz low-voltage Fractional-N synthesizer

DESCRIPTION

The SA7025 is a monolithic low power, high performance dual frequency synthesizer fabricated in QUBiC BiCMOS technology. Featuring Fractional-N division with selectable modulo 5 or 8 implemented in the Main synthesizer to allow the phase detector comparison frequency to be five or eight times the channel spacing. This feature reduces the overall division ratio yielding a lower noise floor and faster channel switching. The phase detectors and charge pumps are designed to achieve phase detector comparison frequencies up to 5MHz. A triple modulus prescaler (divide by 64/65/72) is integrated on chip with a maximum input frequency of
1.04GHz. Programming and channel selection are realized by a high speed 3-wire serial interface.

FEA TURES

Operation up to 1.04GHz
Fast locking by “Fractional-N” divider
Auxiliary synthesizer
Digital phase comparator with proportional and integral charge
pump output
High speed serial input
Low power consumption
Programmable charge pump currents
Supply voltage range 2.7 to 5.5V
Excellent input sensitivity: V
RF_IN
= –20dBm

PIN CONFIGURATION

CLOCK
STROBE
1
DATA
2
3
V
4
SS
RF
5
IN
RF
6
IN
7
V
CCP
8
REF
IN
9
RA
AUX
10
IN
Figure 1. Pin Configuration
DK Package
V
20
DD
TEST
19
LOCK
18
17
RF
16
RN
15
V
DDA
PHP
14
PHI
13
12
V
SSA
PHA
11
SR00600

APPLICATIONS

NADC (North American Digital Cellular)
PDC (Personal Digital Cellular)
Cellular radio
Spread-spectrum receivers

ORDERING INFORMATION

DESCRIPTION TEMPERATURE RANGE ORDER CODE DWG #
20-Pin Plastic Shrink Small Outline Package (SSOP) –40 to +85°C SA7025DK SOT266-1

ABSOLUTE MAXIMUM RATINGS

SYMBOL PARAMETER RATING UNITS
V Supply voltage, VDD, V
T
V
STG
T
IN
A
Voltage applied to any other pin -0.3 to (VDD + 0.3) V Storage temperature range -65 to +150 °C Operating ambient temperature range -40 to +85 °C
NOTE: Thermal impedance (θJA) = 117°C/W. This device is ESD sensitive.
DDA
, V
CCP
-0.3 to +6.0 V
1996 Aug 6 853-1786 17157
2
Philips Semiconductors Product specification
SA70251GHz low-voltage Fractional-N synthesizer

PIN DESCRIPTIONS

Symbol Pin Description
CLOCK 1 Serial clock input
DATA 2 Serial data input
STROBE 3 Serial strobe input
V
SS
RF
IN
RF
IN
V
CCP
REF
RA 9 Auxiliary current setting; resistor to V
AUX
PHA 11 Auxiliary phase detector output
V
SSA
PHI 13 Integral phase detector output
PHP 14 Proportional phase detector output
V
DDA
RN 16 Main current setting; resistor to V RF 17 Fractional compensation current setting; resistor to V
LOCK 18 Lock detector output
TEST 19 Test pin; connect to V
V
DD
4 Digital ground 5 Prescaler positive input
6 Prescaler negative input 7 Prescaler positive supply voltage. This pin supplies power to the prescaler and RF input buffer 8 Reference divider input
IN
SSA
10 Auxiliary divider input
IN
12 Analog ground
15 Analog supply voltage. This pin supplies power to the charge pumps, Auxiliary prescaler, Auxiliary and Reference
buffers.
SSA
SSA
DD
20 Digital supply voltage. This pin supplies power to the CMOS digital part of the device
1996 Aug 6
3
Philips Semiconductors Product specification
SA70251GHz low-voltage Fractional-N synthesizer

BLOCK DIAGRAM

CLOCK
DATA
STROBE
V
SS
RF
RF
TEST
V
CCP
REF
AUX
V
SERIAL INPUT + PROGRAM LATCHES
EM
IN
IN
EM+EA
FB
64/65/72
PRESCALER
NR
IN
EA
IN
PA NA
1/4
PRESCALER
PR NM1
2
12
REFERENCE DIVIDER ÷2 ÷2 ÷2
2
MAIN DIVIDERS
EM
SM
2
SA
2
EA
12
AUXILIARY DIVIDER
NM2 NM3
12 8
MAIN
PHASE
DETECTOR
MAIN
REFERENCE
SELECT
AUXILIARY
REFERENCE
SELECT
AUXILIARY
PHASE
DETECTOR
FMOD
FRACTIONAL
ACCUMULATOR
3
NF
FRD
CN
8
2
CL
2
CK
4
2
FB
PRESCALER
MODULUS CONTROL
NORMAL OUTPUT
CHARGE
PUMP
SPEED-UP
OUTPUT CHARGE
PUMP
INTEGRAL
OUTPUT CHARGE
PUMP
AUXILIARY
OUTPUT CHARGE
PUMP
DD
RF RN
PHP
PHI
RA
PHA
LOCK
1996 Aug 6
V
DDA
Figure 2. Block Diagram
4
V
SSA
SR00601
Philips Semiconductors Product specification
SYMBOL
PARAMETER
TEST CONDITIONS
UNITS
|IRX|
ggyg
A
|I
|
Output current PHA
A
I
Output current matching PHA pump
A
|I
|
Output current PHP
A
I
g
A
|I
|
Output current PHP
mA
I
g
A
|I
|
Output current PHI
mA
I
Output current matching PHI pump
A
I
nA
SA70251GHz low-voltage Fractional-N synthesizer

DC ELECTRICAL CHARACTERISTICS

VDD = V
V
I
STANDBY
Operational supply currents: I = IDD + I
Digital inputs CLK, DATA, STROBE
Digital outputs LOCK
Charge pumps: V
V
Charge pump PHA
I
|I
Charge pump PHP, normal mode
PHP_N_M
Charge pump PHP, speed-up mode
I
PHP_S_M
Charge pump PHI, speed-up mode
Fractional compensation PHP, normal mode
PHP_F_N
DDA
SUPPLY
I
AUX
I
MAIN
I
TOTAL
V
IH
V
IL
V
OL
V
OH
PHOUT
PHA
PHP_A
PHP_A
PHA_M
PHP_N
I
PHP_N
I
PHP_N
PHP_S
PHP_S
I
PHP_S
PHI
I
PHI
I
PHI
PHI_M
= V
= 3V; TA = 25°C, unless otherwise specified.
CCP
LIMITS
MIN TYP MAX
Recommended operating conditions V
CCP
= VDD, V
DDA
V
DD
2.7 5.5 V
Total standby supply currents EM = EA = 0, IRN = IRF = IRA = 0 50 500 µA
+ I
CCP
; IRN = 25µA, IRA = 25µA, (see Note 5)
DDA
Operational supply currents EM = 0, EA = 1 3.5 mA Operational supply currents EM = 1, EA = 0 5.5 mA Operational supply currents EM = EA = 1 7.5 mA
High level input voltage range 0.7xV
DD
Low level input voltage range 0 0.3xV
V
DD
DD
Output voltage LOW IO = 2mA 0.4 V Output voltage HIGH IO = –2mA VDD–0.4 V
= 3V / IRX = 25µA or V
DDA
Setting current range for any setting re­sistor
Output voltage range 0.7 V
p
Relative output current variation PHA IRA = –62.5µA
|
p
1, 4, 6
VRF = V
p
Relative output current variation PHP IRN = –62.5µA
Output current matching PHP normal mode
1, 4, 7
p
Relative output current variation PHP IRN = –62.5µA
Output current matching PHP speed-up mode
1, 4, 8
p
Relative output current variation PHI IRN = –62.5µA
p
Fractional compensation output current PHP vs F
RD
3
= 5V / IRX = 62.5µA, V
DDA
p
p
DDA
VRF = V
VRF = V
p
p
1, 9
DDA
DDA
VRN = V
in range, unless otherwise specified. (See Note 16)
PHX
2.7V < V
4.5V < V
IRA = –62.5µA; V
IRA = –25µA; V
V
= 3V, IRA = 25µA ±50
DDA
V
= 5V, IRA = 62.5µA ±65
DDA
IRN = –62.5µA; V
IRN = –25µA; V
V
= 3V, IRA = 25µA ±50
DDA
V
= 5V, IRA = 62.5µA ±65
DDA
IRN = –62.5µA; V
IRN = –25µA; V
V
= 3V, IRA = 25µA ±250
DDA
V
= 5V, IRA = 62.5µA ±300
DDA
IRN = –62.5µA; V
IRN = –25µA; V
V
= 3V, IRA = 25µA ±500
DDA
V
= 5V, IRA = 62.5µA ±600
DDA
, V
DDA
PHP
IRF = –62.5µA;FRD = 1 to 7
< 5.5V 25
DDA
< 5.5V 62.5
DDA
13
/2
DDA
/2 160 200 240
DDA
13
/2
DDA
/2 175 220 265
DDA
13
/2
DDA
/2 0.85 1.1 1.35
DDA
13
/2
DDA
/2 1.75 2.2 2.65
DDA
13
400 500 600
440 550 660
2.20 2.75 3.30
–625 –400 –250
= V
PHA PHA
PHP PHP
PHP PHP
PHI PHI
DDA
= V = V
2, 13
= V = V
2, 13
= V = V
2, 13
= V = V
2, 13
/2
2 6 %
2 6 %
2 6 %
4.4 5.5 6.6
2 8 %
IRF = –25µA;FRD = 1 to 7 –250 –180 –100
–0.8 V
DDA
V V
µ
µ
µ
µ
µ
µ
µ
1996 Aug 6
5
Philips Semiconductors Product specification
SYMBOL
PARAMETER
TEST CONDITIONS
UNITS
I
A
I
A
SYMBOL
PARAMETER
TEST CONDITIONS
UNITS
f
Input signal frequenc
GH
f
Input signal frequenc
MH
V
Input signal range, AC coupled
mV
Z
Reference divider input impedance
15
f
MH
Z
Auxiliary divider input impedance
t
ns
SA70251GHz low-voltage Fractional-N synthesizer
DC ELECTRICAL CHARACTERISTICS (Continued)
LIMITS
MIN TYP MAX
Fractional compensation PHP, speed up mode
PHP_F_S
Fractional compensation output current PHP vs F
RD
3
Pump leakage –20 20 nA
Fractional compensation PHI, speed up mode
PHI_F
Fractional compensation output current PHI vs F
RD
3
Charge pump leakage currents, charge pump not active
I
PHP_L
I
PHI_L
I
PHA_L
Output leakage current PHP; normal
1
mode Output leakage current PHI; normal
1
mode Output leakage current PHA V
1, 10
1, 11
V
= V
DDA
, VRN = V
PHP
IRF = –62.5µA;FRD = 1 to 7
IRF = –25µA;FRD = 1 to 7 –1.35 –1.0 –0.5
V
= V
PHP
/2, VRN = V
DDA
IRF = –62.5µA;FRD = 1 to 7
IRF = –25µA;FRD = 1 to 7 –2.15 –1.6 –1.05
V
= 0.7 to V
PHP
V
= 0.7 to V
PHI
= 0.7 to V
PHA
DDA
DDA
DDA
DDA
13
DDA
13
–3.35 –2.0 –1.1
–5.4 –4.0 –2.6
– 0.8 0.1 10 nA
– 0.8 0.1 10 nA
– 0.8 0.1 10 nA
µ
µ

AC ELECTRICAL CHARACTERISTICS

VDD = V listed below are tested using automatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.
Main divider
V
Reference divider (VDD = V
Auxiliary divider
V
Serial interface
f
In-Loop Performance17 V
RF_IN
RF_IN
REF_IN
REF_IN
REF_IN
AUX_IN
AUX_IN
AUX_IN
CLOCK
t
SU
t
H
W
R
MM
= V
DDA
= 3V; TA = 25°C; f
CCP
= 1GHz, input level = –20dBm; unless otherwise specified. Test Circuit, Figure 4. The parameters
RF_IN
LIMITS
MIN TYP MAX
p
y
Direct coupled input
1000pF input coupling 1.04
14
Input sensitivity 1040MHz –20 0 dBm
= 3V or VDD = 3V / V
DDA
p
p
y
p
p
p
DDA
= 5V)
2.7 < VDD and V
2.7 < VDD and V
2.7 < VDD and V
2.7 < VDD and V
< 5.5V 25
DDA
< 4.5V 30
DDA
< 5.5V 500
DDA
< 4.5V 300
DDA
100 k
3 pF
Input signal frequency 0 50 PA = “0”, prescaler enabled 4.5V V
5.5V 0 150
DDA
Input signal frequency 0 30 PA = “1”, prescaler disabled 4.5V V
5.5V 0 40
DDA
Input signal range, AC coupled 200 mV
p
p
15
100 k
3 pF
Clock frequency 10 MHz Set-up time: DATA to CLOCK,
CLOCK to STROBE
30 ns
Hold time; CLOCK to DATA 30 ns Pulse width; CLOCK 30 Pulse width; STROBE B, C, D, E words 30
= 5V, VDD = 2.7V
DDA
Main loop residual FM FVCO = 1030MHz 300 600 Hz
1.04 z
z
P-P
z
P-P
1996 Aug 6
6
Philips Semiconductors Product specification
SYMBOL
PARAMETER
TEST CONDITIONS
UNITS
tSWPulse width STROBE
ns
SA70251GHz low-voltage Fractional-N synthesizer
AC ELECTRICAL CHARACTERISTICS (continued)
LIMITS
MIN TYP MAX
;
A word, PR = ‘01’
A word, PR = ‘10’
NOTES:
1. When a serial input “A” word is programmed, the main charge pumps on PHP and PHI are in the “speed up mode” as long as STROBE = H. When this is not the case, the main charge pumps are in the “normal mode”.
2. The relative output current variation is defined thus:
I
OUT
2
I
3. F
is the value of the 3 bit fractional accumulator.
RD
4. Monotonicity is guaranteed with C
OUT
5. Power supply current measured with V Main comp frequency = 240kHz, Auxiliary comp frequency = 120kHz, CN = 160, CL = 0, CK = 0. Internal registers NM1 = 52, NM2 = 0,
|(I
(I
I1)
2
I1)|
2
N
; with V1 = 0.7V, V2 = V
= 0 to 255.
= V
CCP
= 3V, V
DD
DDA
– 0.8V (see Figure 3).
DDA
= 5V, f
= 915.99MHz, XTAL at 21.36MHz, AUX at 85.92MHz (PA = ‘0’),
RF IN
NM3 = 4, PR = ‘10’, SM = ‘00’, SA = ‘01’, NA = 179, NF = 5, FMOD = 8, NR = 89, PA = 0, IRN = IRA = IRF = 25µA, lock condition, normal mode. Operational supply current = I
6. Specification condition: CN = 255
DDA
+ IDD + I
CCP
.
7. Specification conditions:
1) CN = 255; CL = 1, or
8. Typical output current | I
2) CN = 75; CL = 3
1) CN = 160; CL = 3; CK = 1, or
| = –IRN x CN x 2
PHI
(CL+1)
x CK/32:
2) CN = 160; CL = 2; CK = 2, or
3) CN = 160; CL = 1; CK = 4, or
4) CN = 160; CL = 0; CK = 8
9. Any RFD, CL = 1 for speed-up pump. The integral pump is intended for switching only and the fractional compensation is not guaranteed.
10.Specification conditions: F
11.Specification conditions:
1) F
2) F
12.The matching is defined by the sum of the P and the N pump for a given output voltage.
= 1 to 7; CL = 1.
RD
= 1 to 7; CL = 1; CK = 2, or
RD
= 1 to 7; CL = 2; CK = 1.
RD
13.Limited analog supply voltage range 4.5 to 5.5V.
14.For f
15.Guaranteed by design.
< 50MHz, low frequency operation requires DC-coupling and a minimum input slew rate of 32V/µs.
IN
16.Close in noise for the charge pumps is tested on a sample basis in a typical application in order to eliminate parts outside the normal distribution.
17.F
= 14.4MHz, V
XTAL
XTAL
= 500mV
, comparison frequency = 200kHz, Loop bandwidth = 5kHz, Audio filter = 300Hz to 15kHz.
P-P
1
(NM2 65) t
f
VCO
1
[(NM2 65)(NM31) 72] t
f
VCO
W
W
1996 Aug 6
7
Loading...
+ 15 hidden pages