Copyright 2009 Koninklijke Philips Electronics N.V.
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise without the prior permission of Philips.
Published by ER/WS 0964 BU TV Consumer Care Printed in the NetherlandsSubject to modificationEN 3122 785 18490
2009-Apr-10
EN 2LC9.1A LA1.
Revision List
1.Revision List
Manual xxxx xxx xxxx.0
•First release.
2.Technical Specifications and Connections
Index of this chapter:
2.1 Technical Specifications
2.2 Directions for Use
2.3 Connections
2.4 Chassis Overview
Notes:
•Figures can deviate due to the different set executions.
•Specifications are indicative (subject to change).
2.1Technical Specifications
For on-line product support please use the links in Table 2-1.
Here is product information available, as well as getting started,
user manuals, frequently asked questions and software &
drivers.
Table 2-1 Described Model numbers
CTNStylingPublished in:
42PFL9509/93
47PFL9509/93
52PFL9509/93
Frame3122 785 18490
3122 785 18490
3122 785 18490
2.2Directions for Use
You can download this information from the following websites:
Gn - Video Y 1 V
Bu - Video Pb 0.7 V
Rd - Video Pr 0.7 V
Rd - Audio - R 0.5 V
Wh - Audio - L 0.5 V
/ 75 Ω jq
PP
/ 75 Ω jq
PP
/ 75 Ω jq
PP
/ 10 kΩ jq
RMS
/ 10 kΩ jq
RMS
Cinch: Video CVBS - Out, Audio - Out
Ye - Video CVBS 1 V
Wh - Audio L 0.5 V
Rd - Audio R 0.5 V
/ 75 ohm kq
PP
/10 kohm kq
RMS
/ 10 kohm kq
RMS
Cinch: Video CVBS - In, Audio - In
Ye - Video CVBS 1 V
Wh - Audio L 0.5 V
Rd - Audio R 0.5 V
/ 75 ohm jq
PP
/ 10 kohm jq
RMS
/ 10 kohm jq
RMS
HDMI 1, 2 & 3: Digital Video, Digital Audio - In
Figure 2-4 HDMI (type A) connector
1 - D2+ Data channel j
2 - Shield Gnd H
3 - D2- Data channel j
4 - D1+ Data channel j
5 - Shield Gnd H
6 - D1- Data channel j
7 - D0+ Data channel j
8 - Shield Gnd H
9 - D0- Data channel j
10 - CLK+ Data channel j
11 - Shield Gnd H
12 - CLK- Data channel j
13 - Easylink Control channel jk
14 - n.c.
15 - DDC_SCL DDC clock j
16 - DDC_SDA DDC data jk
17 - Ground Gnd H
18 - +5V j
19 - HPD Hot Plug Detect j
20 - Ground Gnd H
2.4Chassis Overview
Refer to chapter 9. Block Diagrams for PWB/CBA locations.
2009-Apr-10
Precautions, Notes, and Abbreviation List
3.Precautions, Notes, and Abbreviation List
EN 5LC9.1A LA3.
Index of this chapter:
3.1 Safety Instructions
3.2 Warnings
3.3 Notes
3.4 Abbreviation List
3.1Safety Instructions
Safety regulations require the following during a repair:
•Connect the set to the Mains/AC Power via an isolation
transformer (> 800 VA).
•Replace safety components, indicated by the symbol h,
only by components identical to the original ones. Any
other component substitution (other than original type) may
increase risk of fire or electrical shock hazard. Of de set
ontploft!
Safety regulations require that after a repair, the set must be
returned in its original condition. Pay in particular attention to
the following points:
•Route the wire trees correctly and fix them with the
mounted cable clamps.
•Check the insulation of the Mains/AC Power lead for
external damage.
•Check the strain relief of the Mains/AC Power cord for
proper function.
•Check the electrical DC resistance between the Mains/AC
Power plug and the secondary side (only for sets that have
a Mains/AC Power isolated power supply):
1. Unplug the Mains/AC Power cord and connect a wire
between the two pins of the Mains/AC Power plug.
2. Set the Mains/AC Power switch to the “on” position
(keep the Mains/AC Power cord unplugged!).
3. Measure the resistance value between the pins of the
Mains/AC Power plug and the metal shielding of the
tuner or the aerial connection on the set. The reading
should be between 4.5 MΩ and 12 MΩ.
4. Switch “off” the set, and remove the wire between the
two pins of the Mains/AC Power plug.
•Check the cabinet for defects, to prevent touching of any
inner parts by the customer.
picture carrier at 475.25 MHz for PAL, or 61.25 MHz for
NTSC (channel 3).
•Where necessary, measure the waveforms and voltages
with (D) and without (E) aerial signal. Measure the
voltages in the power supply section both in normal
operation (G) and in stand-by (F). These values are
indicated by means of the appropriate symbols.
3.3.2Schematic Notes
•All resistor values are in ohms, and the value multiplier is
often used to indicate the decimal point location (e.g. 2K2
indicates 2.2 kΩ).
•Resistor values with no multiplier may be indicated with
either an “E” or an “R” (e.g. 220E or 220R indicates 220 Ω).
•All capacitor values are given in micro-farads (μ=× 10
nano-farads (n =× 10
•Capacitor values may also use the value multiplier as the
decimal point indication (e.g. 2p2 indicates 2.2 pF).
•An “asterisk” (*) indicates component usage varies. Refer
to the diversity tables for the correct values.
•The correct component values are listed on the Philips
Spare Parts Web Portal.
3.3.3Spare Parts
For the latest spare part overview, consult your Philips Spare
Part web portal.
3.3.4BGA (Ball Grid Array) ICs
Introduction
For more information on how to handle BGA devices, visit this
URL: http://www.atyourservice-magazine.com
“Magazine”, then go to “Repair downloads”. Here you will find
Information on how to deal with BGA-ICs.
BGA Temperature Profiles
For BGA-ICs, you must use the correct temperature-profile.
Where applicable and available, this profile is added to the IC
Data Sheet information section in this manual.
-9
), or pico-farads (p =× 10
. Select
-12
-6
),
).
3.2Warnings
•All ICs and many other semiconductors are susceptible to
electrostatic discharges (ESD w). Careless handling
during repair can reduce life drastically. Make sure that,
during repair, you are connected with the same potential as
the mass of the set by a wristband with resistance. Keep
components and tools also at this same potential.
•Be careful during measurements in the high voltage
section.
•Never replace modules or other components while the unit
is switched “on”.
•When you align the set, use plastic rather than metal tools.
This will prevent any short circuits and the danger of a
circuit becoming unstable.
3.3Notes
3.3.1General
•Measure the voltages and waveforms with regard to the
chassis (= tuner) ground (H), or hot ground (I), depending
on the tested area of circuitry. The voltages and waveforms
shown in the diagrams are indicative. Measure them in the
Service Default Mode with a colour bar signal and stereo
sound (L: 3 kHz, R: 1 kHz unless stated otherwise) and
3.3.5Lead-free Soldering
Due to lead-free technology some rules have to be respected
by the workshop during a repair:
•Use only lead-free soldering tin. If lead-free solder paste is
required, please contact the manufacturer of your soldering
equipment. In general, use of solder paste within
workshops should be avoided because paste is not easy to
store and to handle.
•Use only adequate solder tools applicable for lead-free
soldering tin. The solder tool must be able:
– To reach a solder-tip temperature of at least 400°C.
– To stabilize the adjusted temperature at the solder-tip.
– To exchange solder-tips for different applications.
•Adjust your solder tool so that a temperature of around
360°C - 380°C is reached and stabilized at the solder joint.
Heating time of the solder-joint should not exceed ~ 4 sec.
Avoid temperatures above 400°C, otherwise wear-out of
tips will increase drastically and flux-fluid will be destroyed.
To avoid wear-out of tips, switch “off” unused equipment or
reduce heat.
•Mix of lead-free soldering tin/parts with leaded soldering
tin/parts is possible but PHILIPS recommends strongly to avoid mixed regimes. If this cannot be avoided, carefully
clear the solder-joint from old tin and re-solder with new tin.
2009-Apr-10
EN 6LC9.1A LA3.
10000_024_090121.eps
090121
MODEL :
PROD.NO:
~
S
32PF9968/10
MADE IN BELGIUM
220-240V 50/60Hz
128W
AG 1A0617 000001
VHF+S+H+UHF
BJ3.0E LA
Precautions, Notes, and Abbreviation List
3.3.6Alternative BOM identification
It should be noted that on the European Service website,
“Alternative BOM” is referred to as “Design variant”.
The third digit in the serial number (example:
AG2B0335000001) indicates the number of the alternative
B.O.M. (Bill Of Materials) that has been used for producing the
specific TV set. In general, it is possible that the same TV
model on the market is produced with e.g. two different types
of displays, coming from two different suppliers. This will then
result in sets which have the same CTN (Commercial Type
Number; e.g. 28PW9515/12) but which have a different B.O.M.
number.
By looking at the third digit of the serial number, one can
identify which B.O.M. is used for the TV set he is working with.
If the third digit of the serial number contains the number “1”
(example: AG1B033500001), then the TV set has been
manufactured according to B.O.M. number 1. If the third digit is
a “2” (example: AG2B0335000001), then the set has been
produced according to B.O.M. no. 2. This is important for
ordering the correct spare parts!
For the third digit, the numbers 1...9 and the characters A...Z
can be used, so in total: 9 plus 26= 35 different B.O.M.s can be
indicated by the third digit of the serial number.
Identification: The bottom line of a type plate gives a 14-digit
serial number. Digits 1 and 2 refer to the production centre (e.g.
AG is Bruges), digit 3 refers to the B.O.M. code, digit 4 refers
to the Service version change code, digits 5 and 6 refer to the
production year, and digits 7 and 8 refer to production week (in
example below it is 2006 week 17). The 6 last digits contain the
serial number.
Figure 3-1 Serial number (example)
3.3.7Board Level Repair (BLR) or Component Level Repair
(CLR)
If a board is defective, consult your repair procedure to decide
if the board has to be exchanged or if it should be repaired on
component level.
If your repair procedure says the board should be exchanged
completely, do not solder on the defective board. Otherwise, it
cannot be returned to the O.E.M. supplier for back charging!
3.3.8Practical Service Precautions
•It makes sense to avoid exposure to electrical shock.
While some sources are expected to have a possible
dangerous impact, others of quite high potential are of
limited current and are sometimes held in less regard.
•Always respect voltages. While some may not be
dangerous in themselves, they can cause unexpected
reactions that are best avoided. Before reaching into a
powered TV set, it is best to test the high voltage insulation.
It is easy to do, and is a good service precaution.
2009-Apr-10
3.4Abbreviation List
0/6/12SCART switch control signal on A/V
board. 0 = loop through (AUX to TV),
6 = play 16 : 9 format, 12 = play 4 : 3
format
AARAAutomatic Aspect Ratio Adaptation:
algorithm that adapts aspect ratio to
remove horizontal black bars; keeps
the original aspect ratio
ACIAutomatic Channel Installation:
algorithm that installs TV channels
directly from a cable network by
means of a predefined TXT page
ADCAnalogue to Digital Converter
AFCAutomatic Frequency Control: control
signal used to tune to the correct
frequency
AGCAutomatic Gain Control: algorithm that
controls the video input of the feature
box
AMAmplitude Modulation
APAsia Pacific
ARAspect Ratio: 4 by 3 or 16 by 9
ASFAuto Screen Fit: algorithm that adapts
aspect ratio to remove horizontal black
bars without discarding video
information
ATSCAdvanced Television Systems
Committee, the digital TV standard in
the USA
ATVSee Auto TV
Auto TVA hardware and software control
system that measures picture content,
and adapts image parameters in a
dynamic way
AVExternal Audio Video
AVCAudio Video Controller
AVIPAudio Video Input Processor
B/GMonochrome TV system. Sound
carrier distance is 5.5 MHz
BLRBoard-Level Repair
BTSCBroadcast Television Standard
Committee. Multiplex FM stereo sound
system, originating from the USA and
used e.g. in LATAM and AP-NTSC
countries
B-TXTBlue TeleteXT
CCentre channel (audio)
CECConsumer Electronics Control bus:
remote control bus on HDMI
connections
CLConstant Level: audio output to
connect with an external amplifier
CLRComponent Level Repair
ComPairComputer aided rePair
CPConnected Planet / Copy Protection
CSMCustomer Service Mode
CTIColor Transient Improvement:
manipulates steepness of chroma
transients
CVBSComposite Video Blanking and
Synchronization
DACDigital to Analogue Converter
DBEDynamic Bass Enhancement: extra
low frequency amplification
DDCSee “E-DDC”
D/KMonochrome TV system. Sound
carrier distance is 6.5 MHz
DFIDynamic Frame Insertion
DFUDirections For Use: owner's manual
DMRDigital Media Reader: card reader
DMSDDigital Multi Standard Decoding
DNMDigital Natural Motion
Precautions, Notes, and Abbreviation List
EN 7LC9.1A LA3.
DNRDigital Noise Reduction: noise
reduction feature of the set
DRAMDynamic RAM
DRMDigital Rights Management
DSPDigital Signal Processing
DSTDealer Service Tool: special remote
control designed for service
technicians
DTCPDigital Transmission Content
Protection; A protocol for protecting
digital audio/video content that is
traversing a high speed serial bus,
such as IEEE-1394
DVB-CDigital Video Broadcast - Cable
DVB-TDigital Video Broadcast - Terrestrial
DVDDigital Versatile Disc
DVI(-d)Digital Visual Interface (d= digital only)
E-DDCEnhanced Display Data Channel
(VESA standard for communication
channel and display). Using E-DDC,
the video source can read the EDID
information form the display.
EDIDExtended Display Identification Data
(VESA standard)
EEPROMElectrically Erasable and
Programmable Read Only Memory
EMIElectro Magnetic Interference
EPLDErasable Programmable Logic Device
EUEurope
EXTEXTernal (source), entering the set by
SCART or by cinches (jacks)
FDSFull Dual Screen (same as FDW)
FDWFull Dual Window (same as FDS)
FLASHFLASH memory
FMField Memory or Frequency
Modulation
FPGAField-Programmable Gate Array
FTVFlat TeleVision
Gb/sGiga bits per second
G-TXTGreen TeleteXT
HH_sync to the module
HDHigh Definition
HDDHard Disk Drive
HDCPHigh-bandwidth Digital Content
Protection: A “key” encoded into the
HDMI/DVI signal that prevents video
data piracy. If a source is HDCP coded
and connected via HDMI/DVI without
the proper HDCP decoding, the
picture is put into a “snow vision” mode
or changed to a low resolution. For
normal content distribution the source
and the display device must be
enabled for HDCP “software key”
decoding.
HDMIHigh Definition Multimedia Interface
HPHeadPhone
IMonochrome TV system. Sound
2
I
CInter IC bus
2
I
DInter IC Data bus
2
I
SInter IC Sound bus
carrier distance is 6.0 MHz
IFIntermediate Frequency
IRInfra Red
IRQInterrupt Request
ITU-656The ITU Radio communication Sector
(ITU-R) is a standards body
subcommittee of the International
Telecommunication Union relating to
radio communication. ITU-656 (a.k.a.
SDI), is a digitized video format used
for broadcast grade video.
Uncompressed digital component or
digital composite signals can be used.
The SDI signal is self-synchronizing,
uses 8 bit or 10 bit data words, and has
a maximum data rate of 270 Mbit/s,
with a minimum bandwidth of 135
MHz.
ITVInstitutional TeleVision; TV sets for
hotels, hospitals etc.
LSLast Status; The settings last chosen
by the customer and read and stored
in RAM or in the NVM. They are called
at start-up of the set to configure it
according to the customer's
preferences
LATAMLatin America
LCDLiquid Crystal Display
LEDLight Emitting Diode
L/L'Monochrome TV system. Sound
carrier distance is 6.5 MHz. L' is Band
I, L is all bands except for Band I
LPLLG.Philips LCD (supplier)
LSLoudspeaker
LVDSLow Voltage Differential Signalling
MbpsMega bits per second
M/NMonochrome TV system. Sound
carrier distance is 4.5 MHz
MIPSMicroprocessor without Interlocked
Pipeline-Stages; A RISC-based
microprocessor
MOPMatrix Output Processor
MOSFETMetal Oxide Silicon Field Effect
Transistor, switching device
MPEGMotion Pictures Experts Group
MPIFMulti Platform InterFace
MUTEMUTE Line
NCNot Connected
NICAMNear Instantaneous Compounded
Audio Multiplexing. This is a digital
sound system, mainly used in Europe.
NTCNegative Temperature Coefficient,
non-linear resistor
NTSCNational Television Standard
Committee. Color system mainly used
in North America and Japan. Color
carrier NTSC M/N= 3.579545 MHz,
NTSC 4.43= 4.433619 MHz (this is a
VCR norm, it is not transmitted off-air)
NVMNon-Volatile Memory: IC containing
TV related data such as alignments
O/COpen Circuit
OSDOn Screen Display
OTCOn screen display Teletext and
Control; also called Artistic (SAA5800)
P50Project 50: communication protocol
between TV and peripherals
PALPhase Alternating Line. Color system
conditioner)
PIPPicture In Picture
PLLPhase Locked Loop. Used for e.g.
FST tuning systems. The customer
can give directly the desired frequency
PODPoint Of Deployment: a removable
CAM module, implementing the CA
system for a host (e.g. a TV-set)
PORPower On Reset, signal to reset the uP
PTCPositive Temperature Coefficient,
non-linear resistor
PWBPrinted Wiring Board (same as “PCB”)
2009-Apr-10
EN 8LC9.1A LA3.
Precautions, Notes, and Abbreviation List
PWMPulse Width Modulation
QRCQuasi Resonant Converter
QTNRQuality Temporal Noise Reduction
QVCPQuality Video Composition Processor
RAMRandom Access Memory
RGBRed, Green, and Blue. The primary
color signals for TV. By mixing levels
of R, G, and B, all colors (Y/C) are
reproduced.
RCRemote Control
RC5 / RC6Signal protocol from the remote
control receiver
RESETRESET signal
ROMRead Only Memory
RSDSReduced Swing Differential Signalling
data interface
R-TXTRed TeleteXT
SAMService Alignment Mode
S/CShort Circuit
SCARTSyndicat des Constructeurs
d'Appareils Radiorécepteurs et
Téléviseurs
SCLSerial Clock I
SCL-FCLock Signal on Fast I
SDStandard Definition
SDASerial Data I
SDA-FDAta Signal on Fast I
2
C
2
C bus
2
C
2
C bus
SDISerial Digital Interface, see “ITU-656”
SDRAMSynchronous DRAM
SECAMSEequence Couleur Avec Mémoire.
Color system mainly used in France
and East Europe. Color carriers=
4.406250 MHz and 4.250000 MHz
SIFSound Intermediate Frequency
SMPSSwitched Mode Power Supply
SoCSystem on Chip
SOGSync On Green
SOPSSelf Oscillating Power Supply
SPISerial Peripheral Interface bus; a 4-
wire synchronous serial data link
standard
S/PDIFSony Philips Digital InterFace
SRAMStatic RAM
SRPService Reference Protocol
SSBSmall Signal Board
STBYSTand-BY
SVGA800x600 (4:3)
SVHSSuper Video Home System
SWSoftware
SWANSpatial temporal Weighted Averaging
Signalling
TXTTeleteXT
TXT-DWDual Window with TeleteXT
UIUser Interface
uPMicroprocessor
UXGA1600x1200 (4:3)
VV-sync to the module
VESAVideo Electronics Standards
Association
VGA640x480 (4:3)
VLVariable Level out: processed audio
output toward external amplifier
VSBVestigial Side Band; modulation
method
WYSIWYRWhat You See Is What You Record:
record selection that follows main
picture and sound
WXGA1280x768 (15:9)
XTALQuartz crystal
XGA1024x768 (4:3)
YLuminance signal
Y/CLuminance (Y) and Chrominance (C)
signal
YPbPrComponent video. Luminance and
scaled color difference signals (B-Y
and R-Y)
YUVComponent video
2009-Apr-10
4.Mechanical Instructions
18490_100_090409.eps
090409
18490_101_090409.eps
090409
Index of this chapter:
4.1 Cable Dressing
4.2 Service Positions
4.3 Assy/Panel Removal
4.4 Set Re-assembly
4.1Cable Dressing
Mechanical Instructions
Notes:
•Figures below can deviate slightly from the actual situation,
due to the different set executions.
EN 9LC9.1A LA4.
Figure 4-1 Cable dressing 42" (Frame styling)
Figure 4-2 Cable dressing 47" (Frame styling)
2009-Apr-10
EN 10LC9.1A LA4.
18490_102_090409.eps
090409
E_06532_018.eps
171106
1
Required for sets
42"
1
Mechanical Instructions
4.2Service Positions
For easy servicing of this set, there are a few possibilities
created:
•The buffers from the packaging.
•Foam bars (created for Service).
4.2.1Foam Bars
Figure 4-3 Cable dressing 52" (Frame styling)
Caution: Failure to follow these guidelines can seriously
damage the display!
By laying the TV face down on the (ESD protective) foam bars,
a stable situation is created to perform measurements and
alignments. By placing a mirror under the TV, you can monitor
the screen.
4.3Assy/Panel Removal
The instructions apply to the Roadrunner styling - with
AmbiLight.
4.3.1Rear Cover
Warning: Disconnect the mains power cord before you remove
the rear cover.
Note: it is not necessary to remove the stand while removing
the rear cover.
1. Remove all screws of the rear cover.
2. Lift the rear cover from the TV. Make sure that wires and
flat coils are not damaged while lifting the rear cover from
the set.
4.3.2Speakers
2009-Apr-10
Figure 4-4 Foam bars
The foam bars (order code 3122 785 90580 for two pieces) can
be used for all types and sizes of Flat TVs. See Figure 4-4
for
details. Sets with a display of 42" and larger, require four foam
bars [1]. Ensure that the foam bars are always supporting the
cabinet and never only the display.
Each speaker unit is mounted with two screws.
When defective, replace the whole unit.
4.3.3Ambi Light
Each Ambi Light unit is mounted on a subframe. Refer to Figure
4-5 for details.
Mechanical Instructions
18560_408_090401.eps
090402
3
1
2
1
1
3
1
2
2
4.3.5IR & LED Board / Stand Support
For removing the IR & LED board, the stand including support
has to be removed
When defective, replace the whole unit.
4.3.6Small Signal Board (SSB)
Caution: It is mandatory to remount screws at their original
position during re-assembly. Failure to do so may result in
damaging the SSB.
1. Unplug all connectors.
2. Remove the screws that secure the board.
3. The SSB can now be taken out of the set.
4.3.7Keyboard Control Panel
1. Remove the right AmbiLight unit.
2. Remove the connector on the IR/LED board.
3. Release the cable.
4. Release the clip on top of the unit and take the unit out.
When defective, replace the whole unit.
4.3.8LCD Panel
EN 11LC9.1A LA4.
Figure 4-5 Ambi Light unit
1. Remove the Ambi Light cover [1].
2. Unplug the connector(s) [2].
3. Remove the subframe [3].
4. The PWB can now be taken from the subframe.
When defective, replace the whole unit.
4.3.4Main Supply Panel
1. Unplug all connectors.
2. Remove the fixation screws.
3. Take the board out.
When defective, replace the whole unit.
2
Refer to Figure 4-6
for details.
1. Remove the AmbiLight units as earlier described.
2. Remove the Top Support.
3. Release the LVDS - and other connectors from the SSB.
4. Remove the subframe of the SSB with the SSB still
mounted on it.
5. Release all connectors from the PSU.
6. Remove the subframe of the PSU with the PSU still
mounted on it.
7. Remove the stand + stand support as earlier described.
8. Release the connectors [1] on the IR & LED Panel.
9. Remove the clips that secure the flare [2].
10. Remove the flare.
11. Now the LCD Panel can be lifted from the front cabinet.
2
2
2
2
2
1
2
Figure 4-6 LCD Panel - panel removal
2
18490_103_090410.eps
090410
2009-Apr-10
EN 12LC9.1A LA4.
4.4Set Re-assembly
To re-assemble the whole set, execute all processes in reverse
order.
Notes:
•While re-assembling, make sure that all cables are placed
and connected in their original position. See figure Figure
4-1, Figure 4-2 or Figure 4-3.
•Pay special attention not to damage the EMC foams on the
SSB shields. Ensure that EMC foams are mounted
correctly.
Mechanical Instructions
2009-Apr-10
Service Modes, Error Codes, and Fault Finding
PHILIPS
MODEL:
32PF9968/10
PROD.SERIAL NO:
AG 1A0620 000001
040
39mm
27mm
(CTN Sticker)
Display Option
Code
E_06532_038.eps
240108
5.Service Modes, Error Codes, and Fault Finding
EN 13LC9.1A LA5.
Index of this chapter:
5.1 Test Points
5.2 Service Modes
5.3 Service Tools
5.4 Error Codes
5.5 The Blinking LED Procedure
5.6 Fault Finding and Repair Tips
5.7 Software Upgrading
5.1Test Points
In the chassis schematics and layout overviews, the test points
are mentioned. In the schematics, test points are indicated with
“Fxxx” or “Ixxx”, in the layout overviews with a “half-moon” sign.
As most signals are digital, it will be difficult to measure
waveforms with a standard oscilloscope. Several key ICs are
capable of generating test patterns, which can be controlled via
ComPair. In this way it is possible to determine which part is
defective.
Perform measurements under the following conditions:
•Service Default Mode.
•Video: Colour bar signal.
•Audio: 3 kHz left, 1 kHz right.
5.2Service Modes
The Service Mode feature is split into four parts:
•Service Default Mode (SDM).
•Service Alignment Mode (SAM).
•Customer Service Mode (CSM).
•Computer Aided Repair Mode (ComPair).
SDM and SAM offer features, which can be used by the Service
engineer to repair/align a TV set. Some features are:
•A pre-defined situation to ensure measurements can be
•Activates the blinking LED procedure for error identification
•The possibility to overrule software protections when SDM
•Make alignments (e.g. White Tone), (de)select options,
•Display information (“SDM” or “SAM” indication in upper
The CSM is a Service Mode that can be enabled by the
consumer. The CSM displays diagnosis information, which the
customer can forward to the dealer or call centre. In CSM
mode, “CSM”, is displayed in the top right corner of the screen.
The information provided in CSM and the purpose of CSM is to:
•Increase the home repair hit rate.
•Decrease the number of nuisance calls.
•Solved customers' problem without home visit.
ComPair Mode is used for communication between a computer
and a TV on I2C /UART level and can be used by a Service
engineer to quickly diagnose the TV set by reading out error
codes, read and write in NVMs, communicate with ICs and the
uP (PWM, registers, etc.), and by making use of a fault finding
database. It will also be possible to up and download the
software of the TV set via I2C with help of ComPair. To do this,
ComPair has to be connected to the TV set via the ComPair
connector, which will be accessible through the rear of the set
(without removing the rear cover).
made under uniform conditions (SDM).
when no picture is available (SDM).
is entered via the Service pins.
enter options codes, reset the error buffer (SAM).
right corner of screen, error buffer, software version,
operating hours, options and option codes, sub menus).
5.2.1General
Some items are applicable to all Service Modes or are general.
These are listed below.
Life Timer
During the life time cycle of the TV set, a timer is kept (called
“Op. Hour”). It counts the normal operation hours (not the
Stand-by hours). The actual value of the timer is displayed in
SDM and SAM in a decimal value. Every two soft-resets
increase the hour by +1. Standby hours are not counted.
Software Identification, Version, and Cluster
The software ID, version, and cluster will be shown in the main
menu display of SDM, SAM, and CSM.
The screen will show: “AAAABCD X.YY”, where:
•AAAA is the chassis name: LC91.
•B is the region indication: E= Europe, A= AP/China, U=
NAFTA, L= LATAM.
•C is the display indication: L= LCD, P= Plasma.
•D is the language/feature indication: 1= Standard, H= Full
HD.
•X is the main version number: this is updated with a major
change of specification (incompatible with the previous
software version). Numbering will go from 1 - 9 and A - Z.
– If the main version number changes, the new version
number is written in the NVM.
– If the main version number changes, the default
settings are loaded.
•YY is the sub version number: this is updated with a minor
change (backwards compatible with the previous versions)
Numbering will go from 00 - 99.
– If the sub version number changes, the new version
number is written in the NVM.
– If the NVM is fresh, the software identification, version,
and cluster will be written to NVM.
Display Option Code Selection
When after an SSB or display exchange, the display option
code is not set properly, it will result in a TV with “no display”.
Therefore, it is required to set this display option code after
such a repair.
To do so, press the following key sequence on a standard RC
transmitter: “062598” directly followed by MENU and “xxx”,
where “xxx” is a 3 digit decimal value of the panel type: see
column “Display Code” in Table 6-5
, or see sticker on the side/
bottom of the cabinet. When the value is accepted and stored
in NVM, the set will switch to Stand-by, to indicate that the
process has been completed.
Figure 5-1 Location of Display Option Code sticker
During this algorithm, the NVM-content must be filtered,
because several items in the NVM are TV-related and not SSBrelated (e.g. Model and Prod. S/N). Therefore, “Model” and
“Prod. S/N” data is changed into “See Type Plate”.
In case a call centre or consumer reads “See Type Plate” in
CSM mode, he needs to look to the side/bottom sticker to
identify the set, for further actions.
2009-Apr-10
EN 14LC9.1A LA5.
18490_201_090409.eps
090409
1
SDM1SDM
H_17740_030.eps
230108
5.2.2Service Default Mode (SDM)
Purpose
Set the TV in SDM mode in order to be able to create a predefined setting for measurements to be made. In this platform,
a simplified SDM is introduced (without protection override and
without tuning to a frequency of 475.25 MHz).
Specifications
•Set linear video and audio settings to 50%, but volume to
25%. Stored user settings are not affected.
•All service-unfriendly modes (if present) are disabled, since
they interfere with diagnosing/repairing a set. These
service unfriendly modes are:
– (Sleep) timer.
– Blue mute/Wall paper.
– Auto switch “off” (when there is no “ident” signal).
– Hotel or hospital mode.
– Child lock or parental lock (manual or via V-chip).
– Skipping, blanking of “Not favourite”, “Skipped” or
“Locked” presets/channels.
– Automatic storing of Personal Preset or Last Status
settings.
– Automatic user menu time-out (menu switches back/
OFF automatically.
– Auto Volume levelling (AVL).
How to Activate
To activate SDM, use one of the following methods:
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the MENU button
(do not allow the display to time out between entries while
keying the sequence).
•Short one of the “Service” jumpers on the TV board during
cold start (see Figure 5-2
(remove the short after start-up).
Caution: Activating SDM by shorting “Service” jumpers will
override the DC speaker protection (error 1), the General
I2C error (error 4), and the Trident video processor error
(error 5). When doing this, the service-technician must
know exactly what he is doing, as it could damage the
television set.
). Then press the mains button
Service Modes, Error Codes, and Fault Finding
Figure 5-3 SDM menu
Menu explanation:
•HHHHH: Are the operating hours (in decimal).
•AAAABCD-X.YY: See paragraph Software Identification,
Version, and Cluster for the SW name definition.
•ERR: Shows all errors detected since the last time the
buffer was erased in format <xxx> <xxx> <xxx> <xxx>
<xxx> (five errors possible).
•OP: Used to read-out the option bytes. See “Options” in the
Alignments section for a detailed description. Ten codes (in
two rows) are possible.
How to Navigate
As this mode is read only, there is not much to navigate. To
switch to other modes, use one of the following methods:
•Command MENU from the user remote will enter the
normal user menu (brightness, contrast, colour, etc...) with
“SDM” OSD remaining, and pressing MENU key again will
return to the last status of SDM again.
•To prevent the OSD from interfering with measurements in
SDM, command “OSD” or “i+” (“STATUS” or “INFO” for
NAFTA and LATAM) from the user remote will toggle the
OSD “on/off” with “SDM” OSD remaining always “on”.
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the OSD/STATUS/INFO/i+ button to switch to SAM (do not allow the
display to time out between entries while keying the
sequence).
Figure 5-2 Service jumper (SSB component side)
On Screen Menu
After activating SDM, the following screen is visible, with SDM
in the upper right corner of the screen to indicate that the
television is in Service Default Mode.
2009-Apr-10
How to Exit
Switch the set to STANDBY by pressing the mains button on
the remote control transmitter or on the television set.
If you switch the television set “off” by removing the mains (i.e.,
unplugging the television), the television set will remain in SDM
when mains is re-applied, and the error buffer is not cleared.
The error buffer will only be cleared when the “clear” command
is used in the SAM menu.
Note:
•If the TV is switched “off” by a power interrupt while in SDM,
the TV will show up in the last status of SDM menu as soon
as the power is supplied again. The error buffer will not be
cleared.
•In case the set is in Factory mode by accident (with “F”
displayed on screen), by pressing and hold “VOL-“ and
“CH-” together should leave Factory mode.
Service Modes, Error Codes, and Fault Finding
H_17740_025.eps
230108
EN 15LC9.1A LA5.
5.2.3Service Alignment Mode (SAM)
Purpose
•To change option settings.
•To display / clear the error code buffer.
•To perform alignments.
Specifications
•Operation hours counter (maximum five digits displayed).
•Software version, error codes, and option settings display.
•Error buffer clearing.
•Option settings.
•Software alignments (White Tone).
•NVM Editor.
•Set screen mode to full screen (all content is visible).
How to Activate
To activate SAM, use one of the following methods:
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the OSD/STATUS/INFO/i+ button (it depends on region which
button is present on the RC). Do not allow the display to
time out between entries while keying the sequence.
•Or via ComPair.
After entering SAM, the following screen is visible, with SAM in
the upper right corner of the screen to indicate that the
television is in Service Alignment Mode.
How to Navigate
•In the SAM menu, select menu items with the UP/DOWN
keys on the remote control transmitter. The selected item
will be indicated. When not all menu items fit on the screen,
use the UP/DOWN keys to display the next / previous
menu items.
•With the LEFT/RIGHT keys, it is possible to:
– Activate the selected menu item.
– Change the value of the selected menu item.
– Activate the selected sub menu.
•When you press the MENU button twice while in top level
SAM, the set will switch to the normal user menu (with the
SAM mode still active in the background). To return to the
SAM menu press the MENU button.
•The “OSD/STATUS/INFO/i+” key from the user remote will
toggle the OSD “on/off” with “SAM” OSD remaining always
“on”.
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the MENU button
to switch to SDM (do not allow the display to time out
between entries while keying the sequence).
How to Store SAM Settings
To store the settings changed in SAM mode (except the
OPTIONS and RGB ALIGN settings), leave the top level SAM
menu by using the POWER button on the remote control
transmitter or the television set. The mentioned exceptions
must be stored separately via the STORE button.
Figure 5-4 SAM menu
Menu explanation:
1. System Information:
•Op. Hour. This represents the life timer. The timer
counts normal operation hours, but does not count
Stand-by hours.
•MAIN SW ID. See paragraph Software Identification,
Version, and Cluster for the SW name definition.
•ERROR CODES. Shows all errors detected since the
last time the buffer was erased. Five errors possible.
•OP1 / OP2. Used to read-out the option bytes. See
paragraph 6.4 Option Settings in the Alignments
section for a detailed description. Ten codes are
possible.
2. Clear. Erases the contents of the error buffer. Select the
CLEAR menu item and press the MENU RIGHT key. The
content of the error buffer is cleared.
3. Options. To set the option bits. See paragraph 6.4 Option
Settings
in the “Alignments” chapter for a detailed
description.
4. RGB Align. To align the White Tone. See White Tone
Alignment:
for a detailed description.
5. NVM Editor. To change the NVM data in the television set.
See also paragraph 5.6 Fault Finding and Repair Tips.
6. NVM Copy. Gives the possibility to copy/load the NVM file
to/from an USB stick. NVM data copied to a USB memory
device is named “NVM_COPY.BIN”. When copied back to
a TV, the file first must have the same name.
How to Exit
Switch the set to STANDBY by pressing the mains button on
the remote control transmitter or the television set.
Note:
•When the TV is switched “off” by a power interrupt while in
SAM, the TV will show up in “normal operation mode” as
soon as the power is supplied again. The error buffer will
not be cleared.
•In case the set is in Factory mode by accident (with “F”
displayed on screen), by pressing and hold “VOL-“ and
“CH-” together should leave Factory mode.
2009-Apr-10
EN 16LC9.1A LA5.
18490_202_090409.eps
090409
18490_203_090409.eps
090409
Service Modes, Error Codes, and Fault Finding
5.2.4Customer Service Mode (CSM)
Purpose
The Customer Service Mode shows error codes and
information on the TV’s operation settings. A call centre can
instruct the customer (by telephone) to enter CSM in order to
identify the status of the set. This helps them to diagnose
problems and failures in the TV before making a service call.
The CSM is a read-only mode; therefore, modifications are not
possible in this mode.
Specifications
•Ignore “Service unfriendly modes”.
•Line number for every line (to make CSM language
independent).
•Set the screen mode to full screen (all contents on screen
is visible).
•After leaving the Customer Service Mode, the original
settings are restored.
•Possibility to use “CH+” or “CH-” for channel surfing, or
enter the specific channel number on the RC.
How to Activate
To activate CSM, press the following key sequence on a
standard remote control transmitter: “123654” (do not allow the
display to time out between entries while keying the sequence).
Upon entering the Customer Service Mode, the following
screen will appear:
Menu Explanation
1. Model Number. Type number, e.g. 42PFL9509/93. (*)
2. Production Serial Number. Product serial no., e.g.
SV1A0908123456 (*). SV= Production centre, 1= BOM
code, A= Service version change code, 09= Production
year, 08= Production week, 123456= Serial number.
3. Software Version. Main software cluster and version is
displayed.
4. Option Code 1. Option code information (group 1).
5. Option Code 2. Option code information (group 2).
6. PSU. Indication of the PSU factory ID (= 12nc).
7. SSB. Indication of the SSB factory ID (= 12nc). (*)
8. Display. Indication of the display ID (=12 nc). (*)
9. NVM Version. The NVM software version no.
10. PQ Version. PQ (picture quality) data version. This is a
subset of the main SW.
11. Key (HDCP). Indicates if the HDMI keys (or HDCP keys)
are valid or not.
12. Audio System. Gives information about the audio system
of the selected transmitter.
13. Blank.
14. Video Format. Gives information about the video format of
the selected transmitter (480p30/720p60/1080i50/1080i60,
etc...). Is applicable to both HDMI and CVI sources.
15. Standby uP SW ID. Shows the Standby Processor
software version.
16. Bootloader ID. Shows the Bootloader software ID.
17. Panel code. Gives the number of the panel as stored in
NVM.
18. AP uP SW ID.Shows the AL uP software version.
(*) If an NVM IC is replaced or initialized, these items must be
re-written to the NVM. ComPair will foresee in a possibility to
do this.
Figure 5-5 CSM menu -1- (example)
Figure 5-6 CSM menu -2- (example)
How to Exit
To exit CSM, use one of the following methods:
•Press the MENU button twice on the remote control
transmitter.
•Press the POWER button on the remote control
transmitter.
•Press the POWER button on the television set.
2009-Apr-10
Service Modes, Error Codes, and Fault Finding
E_06532_036.eps
150208
TO
UART SERVICE
CONNECTOR
TO
UART SERVICE
CONNECTOR
TO
I2C SERVICE
CONNECTOR
TO TV
PC
HDMI
I2C only
Optional power
5V DC
ComPair II Developed by Philips Brugge
RC out
RC in
Optional
Switch
PowerModeLink/
Activity
I
2
C
ComPair II
Multi
function
RS232 /UART
EN 17LC9.1A LA5.
5.3Service Tools
5.3.1ComPair
Introduction
ComPair (Computer Aided Repair) is a Service tool for Philips
Consumer Electronics products. and offers the following:
1. ComPair helps you to quickly get an understanding on how
to repair the chassis in a short and effective way.
2. ComPair allows very detailed diagnostics and is therefore
capable of accurately indicating problem areas. You do not
have to know anything about I2C or UART commands
yourself, because ComPair takes care of this.
3. ComPair speeds up the repair time since it can
automatically communicate with the chassis (when the uP
is working) and all repair information is directly available.
4. ComPair features TV software up possibilities.
Specifications
ComPair consists of a Windows based fault finding program
and an interface box between PC and the (defective) product.
The (new) ComPair II interface box is connected to the PC via
an USB cable. For the TV chassis, the ComPair interface box
and the TV communicate via a bi-directional cable via the
service connector(s).
How to Connect
This is described in the ComPair chassis fault finding database.
5.4Error Codes
5.4.1Introduction
Error codes are required to indicate failures in the TV set. In
principle a unique error code is available for every:
•Activated (SW) protection.
•Failing I
•General I
The last five errors, stored in the NVM, are shown in the
Service menu’s. This is called the error buffer.
The error code buffer contains all errors detected since the last
time the buffer was erased. The buffer is written from left to
right. When an error occurs that is not yet in the error code
buffer, it is displayed at the left side and all other errors shift one
position to the right.
An error will be added to the buffer if this error differs from any
error in the buffer. The last found error is displayed on the left.
An error with a designated error code may never lead to a
deadlock situation. This means that it must always be
diagnosable (e.g. error buffer via OSD or blinking LED
procedure, ComPair to read from the NVM).
In case a failure identified by an error code automatically
results in other error codes (cause and effect), only the error
code of the MAIN failure is displayed.
Example: In case of a failure of the I2C bus (CAUSE), the error
code for a “General I2C failure” and “Protection errors” is
displayed. The error codes for the single devices (EFFECT) is
not displayed. All error codes are stored in the same error
buffer (TV’s NVM) except when the NVM itself is defective.
2
C device.
2
C error.
5.3.2LVDS Tool
Figure 5-7 ComPair II interface connection
Caution: It is compulsory to connect the TV to the PC as
shown in the picture above (with the ComPair interface in
between), as the ComPair interface acts as a level shifter. If
one connects the TV directly to the PC (via UART), ICs will be
blown!
How to Order
ComPair II order codes:
•ComPair II interface: 3122 785 91020.
•ComPair UART interface cable: 3138 188 75051.
•Program software can be downloaded from the Philips
Service website.
Note: If you encounter any problems, contact your local
support desk.
Support of the LVDS Tool has been discontinued.
5.4.2How to Read the Error Buffer
You can read the error buffer in 3 ways:
•On screen via the SAM/SDM/CSM (if you have a picture).
Example:
– ERROR: 0 0 0 0 0 : No errors detected
– ERROR: 6 0 0 0 0 : Error code 6 is the last and only
detected error
– ERROR: 9 6 0 0 0 : Error code 6 was detected first and
error code 9 is the last detected (newest) error
•Via the blinking LED procedure (when you have no
picture). See paragraph 5.5 The Blinking LED Procedure.
•Via ComPair.
5.4.3Error codes
The layer 1 error codes are pointing to the defective board.
They are triggered by LED blinking when CSM is activated. In
the LC09M platform, only two boards are present: the SSB and
the PSU, meaning only two layer 1 errors are defined (or three
in case an additional bolt-on module is added):
•2: SSB
•4: PSU
•6: Bolt-on.
The following layer 2 errors have been assigned:
•00: no error
•11: DC protection of speakers, detected by MT539x
•12: +12V protection error (or 12V failure), detected by
standby processor during start-up
•13: POK line error
•14: General I
on the same bus had no response
2
•15: I
2
•16: I
tuner
2
•17: I
2
C bus error when all the devices I2C devices
C error while communicating with the main EEPROM
C error while communicating with the PLL/hybrid
C error while communicating with the HDMI Mux IC
ADV3002
•18: IF demodulator TDA9886
•19: Reserved
2009-Apr-10
EN 18LC9.1A LA5.
Service Modes, Error Codes, and Fault Finding
•21: Digital Bolt-on module communication error (where
applicable).
5.4.4How to Clear the Error Buffer
The error code buffer is cleared in the following cases:
•By using the CLEAR command in the SAM menu:
•If the contents of the error buffer have not changed for 50
hours, the error buffer resets automatically.
Note: If you exit SAM by disconnecting the mains from the
television set, the error buffer is not reset.
5.5The Blinking LED Procedure
5.5.1Introduction
The software is capable of identifying different kinds of errors.
Because it is possible that more than one error can occur over
time, an error buffer is available, which is capable of storing the
last five errors that occurred. This is useful if the OSD is not
working properly.
Errors can also be displayed by the blinking LED procedure.
The method is to repeatedly let the front LED pulse with as
many pulses as the error code number, followed by a period of
1.5 seconds in which the LED is “off”. Then this sequence is
repeated.
Example (1): error code 4 will result in four times the sequence
LED “on” for 0.25 seconds / LED “off” for 0.25 seconds. After
this sequence, the LED will be “off” for 1.5 seconds. Any RC5
command terminates the sequence. Error code LED blinking is
in red colour.
Example (2): the content of the error buffer is “129600”
After entering SDM, the following occurs:
•1 long blink of 5 seconds to start the sequence,
•12 short blinks followed by a pause of 1.5 seconds,
•9 short blinks followed by a pause of 1.5 seconds,
•6 short blinks followed by a pause of 1.5 seconds,
•1 long blink of 1.5 seconds to finish the sequence,
•The sequence starts again with 12 short blinks.
5.5.2Displaying the Entire Error Buffer
Additionally, the entire error buffer is displayed when Service
Mode “SDM” is entered. In case the TV set is in protection or
Stand-by: The blinking LED procedure sequence (as in SDMmode in normal operation) must be triggered by the following
RC sequence: “MUTE” “062500” “OK”.
In order to avoid confusion with RC5 signal reception blinking,
this blinking procedure is terminated when a RC5 command is
received.
5.6Fault Finding and Repair Tips
Notes:
•It is assumed that the components are mounted correctly
with correct values and no bad solder joints.
•Before any fault finding actions, check if the correct
options are set.
5.6.1Software Protections
Most of the protections and errors use either the stand-by or the
micro processor as detection device. Since in these cases,
checking of observers, polling of ADCs, and filtering of input
values are all heavily software based, these protections are
referred to as software protections.
There are several types of software related protections, solving
a variety of fault conditions:
•Protections related to supplies: check of the 12V.
•Protections related to breakdown of the safety check mechanism. E.g. since the protection detections are done
by means of software, failing of the software will have to
initiate a protection mode since safety cannot be
guaranteed any more.
Remark on the Supply Errors
The detection of a supply dip or supply loss during the normal
playing of the set does not lead to a protection, but to a cold
reboot of the set. If the supply is still missing after the reboot,
the TV will go to protection.
Protections during Start-up
During TV start-up, some voltages and IC observers are
actively monitored to be able to optimize the start-up speed,
and to assure good operation of all components. If these
monitors do not respond in a defined way, this indicates a
malfunction of the system and leads to a protection.
5.6.2Hardware Protections
The only real hardware protection in this chassis is (in case of
an audio problem) the audio protection circuit that will trigger
the uP to switch “off” the TV.
Repair Tip
•It is also possible that you have an audio DC protection
because of an interruption in one or both speakers (the DC
voltage that is still on the circuit cannot disappear through
the speakers).
Caution: (dis)connecting the speaker wires during the ON
state of the TV at high volume can damage the audio
amplifier.
5.6.3NVM Editor
In some cases, it can be convenient if one directly can change
the NVM contents. This can be done with the “NVM Editor” in
SAM mode. With this option, single bytes can be changed.
2009-Apr-10
Caution:
•Do not change these, without understanding the
function of each setting, because incorrect NVM
settings may seriously hamper the correct functioning
of the TV set!
•Always write down the existing NVM settings, before
changing the settings. This will enable you to return to the
original settings, if the new settings turn out to be incorrect.
Service Modes, Error Codes, and Fault Finding
18490_209_090409.eps
090409
EN 19LC9.1A LA5.
Table 5-1 NVM editor overview
HexDecDescription
Address0x000A10Existing value
Value0x00000New value
StoreStore?
5.6.4Load Default NVM Values
It is possible to download default values automatically into the
NVM in case a blank NVM is placed or when the NVM first 20
address contents are “FF”. After the default values are
downloaded, it is possible to start-up and to start aligning the
TV set. To initiate a forced default download the following
action has to be performed:
1. Switch “off” the TV set with the mains cord disconnected
from the wall outlet (it does not matter if this is from “Standby” or “Off” situation).
2. Short-circuit the SDM jumpers on the SSB (keep short
circuited).
3. Press “P+” or “CH+” on the local keyboard (and keep it
pressed).
4. Reconnect the mains supply to the wall outlet.
5. Release the “P+” or “CH+” when the set is started up and
has entered SDM.
When the downloading has completed successfully, the set
should be into Stand-by, i.e. red LED on.
After replacing an EEPROM (or with a defective/no EEPROM),
default settings should be used to enable the set to start-up and
allow the Service Default Mode and Service Alignment Mode to
be accessed.
5.6.5Display option code
Caution: In case you have replaced the SSB, always check the
display option code in SAM, even if you have picture. With a
wrong display option code it is possible that you have picture,
but that in certain conditions you have unwanted side-effects.
5.6.6Trouble Shooting Tuner section
When there is no picture in analog RF mode:
1. Check whether picture is present in AV mode. If not, tuner
section is okay. Check video processing section.
2. Check if option settings are correct. Tuner profile in OP10:
OPA7..OPA5=000 (China region), 010 (AP region).
3. Check if 5 V supply is available at test points F256, F228,
F229 and F219, and if 33 V is available at test point F257.
4. Check if the I
2
C lines are working correctly (3.3 V).
5. Manually store a known channel and check if there is IF
output at tuner pin 11. If not, tuner is faulty.
6. Feed in 105 dBuV at tuner pin 11 and check whether there
is CVBS output from IF demodulator IC. If not, IF
demodulator might be faulty. Check components in this
area.
Alternative method:
It is also possible to upload the default values to the NVM with
ComPair in case the SW is changed, the NVM is replaced with
a new (empty) one, or when the NVM content is corrupted.
5.6.7Trouble Shooting Sound section
Figure 5-8 Fault finding tree sound section
2009-Apr-10
EN 20LC9.1A LA5.
No Video and Audio
for any HDMI input
(permanently)
Check TMDS signal at pin 1,
3, 4, 6, 7, 9, 10, 12 of
connector 1 (if HDMI 1)
Yes
No
Check TMDS signal at pin
37,38,41,42,44,45,47,48 of
ADV3002 (if HDMI 1)
Malfuntion of HDMI
connector, ensure
solderbility of Connector
Check TMDS signal at pin
25,26,28,29,31,32,34,35 of
ADV3002
Yes
No
Malfuntion of PCB trace,
ensure no broken trace of
these signals between
connector and ADV3002
Yes
No
The video and audio path is
intact, no video & audio is
cause by MTK 5392
malfunction
Malfuntion of ADV3002
No Video and Audio for any
HDMI input
(Intermittent and differ
within various DVD player)
Go to CSM mode using RC
key "123654",
check item 11: Key(HDCP)
Valid
Invalid
check item 19:
EDID Version / Check sum
As per latest?
Reload HDCP key
Check the following possible hardware failure:
1) Supply of EEPROM IC (pin 8 of 7B02). Should be +5V.
2) Connectivity of I2C between EEPROM (7B02) and ADV3002
(7B05). Between pin 5, 6 of 7B02 and pin 61 , 62 of 7B05.
Should be +3.8V.
3) Connectivity of DDC line between HDMI connector and
ADV3002. (ex: pin 15, 16 of connector HDMI 1 to pin 69 , 70 of
ADV3002.)
4) Connectivity of DDC line between ADV3002 and MTK5392.
(pin 67, 68 of ADV3002 to test point F836 & F837)
No
Update EDID
Yes
18490_211_090409.eps
090409
5.6.8Trouble Shooting HDMI section
Service Modes, Error Codes, and Fault Finding
2009-Apr-10
Figure 5-9 Fault finding tree HDMI section
Service Modes, Error Codes, and Fault Finding
18490_204_090409.eps
090409
EN 21LC9.1A LA5.
5.6.9Start-up/Shut-down Flowcharts
On the next pages you will find start-up and shut-down
flowcharts, which might be helpful during fault finding.
POWER STATES
In this chassis, there are six possible power states as follows:
•Power OFF
•Power ON
•STANDBY
•SEMI-STANDBY
•Special Panel Mode
•PROTECTION
Figure 5-10 Power States
POWER OFF
In “Power OFF” mode, the system is completely switched “off”
from AC mains. When AC power is applied, the system checks
for last status. Depending on the last standby status stored in
the system EEPROM, this mode can then transit to “ON” or
“STANDBY” mode.
ON
This is the normal operating mode, indicated by the “on” LED.
All the power supply lines are available and depending on the
sub-mode, all the circuits in the system may be active. From
this mode it shall be possible to transit to “STANDBY” and
“PROTECTION” mode, or to “Power OFF” mode if AC mains
are switched “off”. The sub-modes are:
•Active Mode (Normal Consumer Mode)
•Service Modes
•Panel Modes
•Factory Modes
SPECIAL PANEL MODE
The Special Panel Mode is only used during manufacturing
process to program the system EEPROM. In this mode, the
SDA0 and SCL0 ports of MT5392 are set to high impedance
after SDM and PANEL pins are both detected as “low” during
start-up. This mode can be exited using a power recycle.
PROTECTION
This state is entered when an error has been detected at startup or in the “ACTIVE” mode. All switched power supply lines
are turned “off” with only +3V3stby remaining “on”; similar to
“STANDBY” mode. This state is indicated by the blinking red
front LED with the blinking sequence denoting the type of error
detected.
When the system enters the protection mode due to a critical
error, it should be turned “off” and the failure cause needs to be
resolved. The system will function normally again after
performing a power recycling once all protection causing
failures have been resolved.
START-UP SEQUENCE
There are two cases of start-up sequences, namely:
•AC On and
•Standby Wake-up.
See also Figure 5-11
.
AC ON
In the case of start-up from AC mains, all PSU voltages start to
turn “on” as the hardware default of the active “low” STANDBY
(controlled by Standby Controller STANDBY signal) signal to
the PSU is pulled “low” with respect to ground.
The MT5392 starts running boot loader once the hardware
reset circuit is released. The system will then check the last
standby status from the system EEPROM to determine
whether to complete the system start-up (load image, turn on
the audio, display etc) or proceed to standby and wait for wakeup command from user. The Standby Controller then proceeds
to verify the power status of the +12V and sends the system to
protection in case of any failures. Special Panel, SDM, and
PANEL modes are detected as well.
STANDBY WAKEUP
When the system receives a command to wake-up from
standby, the Standby Controller sets the STANDBY signal
“low” to turn “on” the switched power, and similarly detects for
the presence of +12V. The MT5392 waits for +3V3_SW to be
available before loading its image. The significance of this
voltage detection is due to the flash is also being powered by
the same mentioned voltage.
The following figure shows the start-up flowchart for both “AC
On” and “Standby Wake-up”:
STANDBY
The total power consumption of the system in this mode shall
be equal or less than 150 mW. This state is indicated by white
LED when AC mains is switched “on”. Only the standby
controller is operational in this state, where only +3V3stby
power supply is available. From this mode it shall be possible
to transit to the “ACTIVE” or “Power OFF” mode if AC mains are
switched “off”.
SEMI-STANDBY
The semi-standby state is required to perform the following
tasks:
•AmbiLight wakeup control
•PBS SemiStandby.
2009-Apr-10
EN 22LC9.1A LA5.
START
HW Default PSU is ON, and
MT5392 POR
MT5392 POR and config
DRAM decompress
bootloader into DRAM
(preLoader)
MT5392 Bootloader
decompressed and running
from DRAM
Special Panel mode
Detection
SDM
& PANEL =
LOW?
All IIC Port set to High
Impedance
Yes
END
Check T8032 Status
T8032 in reset State?
(Cold Boot?)
Yes
Download T8032 Code
And kick uP to start to run.
Check T8032/ARM
communication ready?
1. Version cmd ok.
2. Setup CEC parameters.
T8032/ARM
Communicate ok?
Communicate
Failed Count <= 3
Communicate
Failed Count > 3
Error #, failed into Protection
mode, Record error in NVM.
Yes
Cold Start?
No
Yes
Check Last Status and Boot
Ctrl Bits from NVM
Enter Standby?
Yes
Setup Wakeup Scenarios on
PDWNC module of 5392
Standby
(HW)
NVM Error
[ Protection ]
Enable T8032 receive IR key
No
5392 checks
POWER_DOWN =
HIGH ?
Wakeup
Events
(RC/LKB/CEC/Ambilight)
No
No
No
Wait 100ms
No
12V Error
[ Protection ]
No
To Reboot
SDM and PANEL Mode Detection
1. Check SDM Port and Set SDM Mode Flag
If SDM Pin = LOW and System EEPROM Firs t 20
bytes = 0xFF or CH+ on LKB pressed, Load
Software Default System EEPRO M Data (only
when cold start)
2. Check Panel Port
If Panel Pin = LoW, Set Panel Mode Flag
Enable POWER_DOWN INT
Enable DC_PROT INT
MT5392 begins initializing the
System
Initialize Tuner
Initialize HDMI Switch
Initialize Middleware Layer
Initialize Philips
drivers/Application
Initialize Application Layer
Switch RC/OPCTRL control
from T8032 to MT5392 and
Enable RC Key
Switch to Video Path
Blank Picture and Switch to Last
Source
Picture Mode Setup & Detecti on
UnBlank Picture and UnMute
Audio MUTEn = HIGH
SW_MUTE = HIGH
Set Last Status = ON
Start PWM_DIMMING and
BACKLIGHT_BOOST
Note: Startup time from image
decompression long enough to
satisfy 1sec high time after
LAMP ON for proper panel
startup
Initialize CEC driver
Check T8032 CEC buffer
T8032 with
CEC data
Copy CEC data from T8032 to
MT5392 CEC driver buffer
Switch CEC h/w control from
T8032 to MT5392
Initialize NVM
Yes
No
NVM Error
[ Protection ]
Tuner
HDMI Switch
Watchdog timeout
Reboot
Panel turn on Sequence
Turn on LED1
Retrieve/Display Startup
Logo
PWM_DIMMING keep at 100%
BACKLIGHT_BOOST at
nominal
Turn on LVDS Power
LCD_PWR_ON = LOW
Retrieve Panel ID from NVM
Retrieve Panel Info from Flash
data
Wait for Panel_On_Time_1
based on Panel ID in ms (from
Panel Info on Flash)
Switch on LVDS Signal
Wait for Panel_On_Time_2
based on Panel ID in ms (from
Panel Info on Flash)
BACKLIGHT_ON_OFF = HIGH
MT5392 Decompress Image
from Flash into DRAM
Successful?
Set Program Counter to
DRAM Image to boot into
TV Image
Yes
Notify T8032 that
MT5392 start up is OK
T8032 reset state
T8032
T8032 booting
T8032 main loop
T8032 main loop in standby
mode
Control PDWNC
module to
wakeup ARM11
Send error code info to
T8032 & CEC on/off status
Receive ARM info
(Error code etc)
Wakeup event
If not watchdog reboot,
Enable 20 seconds watchdog
Check Wakeup Reason from
PDWNC module (IR/Keypad
HW and CEC) and confirm
from T8032
Any of Upgrade
bits at NVM is on?
USB Upgrade
Upgrade
Failed
Upgrade success
AP: TV Navigator
Is it Ambilight wakeup?
No
Yes
1. If Boot Ctrl Bits to set always enter
standby, then go to standby directly.
2. If Boot Ctrl Bits to set always boot
directly, then continue booting.
3. If Boot Ctrl Bits to follow Last Status,
then check the Last status go decide to
enter standby or continue booting.
Drop All RC key received before
this block
NVM
Error
[ Protecti
on ]
AP: Reload UI param eter into
program
Timeout
= 6 Sec ?
yes
No
2.568 second
3.774 second
Turn off Philips
logo
Video Ready
Initialize OSD
3.776 second
Enable 5392 Self-Watchdog thread
Thread action:
1. If watchdog reboot, delay 500
seconds to work.
2. Enable Self-watc hdog and initial 15
seconds counter
3. Refresh watchdog counter / 0.5 sec
4. Alive check T8032 / 15 seconds
Check Boot Bank Flag in
EEPROM
Calculate Boot Bank addr ess
Is it Ambilight wakeup?
Panel Initialization
Yes
Semi-Standby
Received wakeup event
Power on
Is it Ambilight
wakeup ?
Audio MUTEn = LOW
SW_MUTE = LOW
AP: Background Manager
Yes
No
DTV_IRQ = Low
Yes
DTV_IRQ = High
Wait 100ms
No
Standby
(HW)
Ambilight off
Check
PowerDown
Start up OK
Yes
Yes
Blinking LEDNo
NVM status to
check Upgrade bit
Yes
Yes
Standby
(HW)
BACKLIGHT_ON_OFF = HIGH
Panel Initialization
No
ON Mode
18490_205_090409.eps
090409
Service Modes, Error Codes, and Fault Finding
Figure 5-11 Start-up flowchart
2009-Apr-10
Service Modes, Error Codes, and Fault Finding
RISC START
Disable AP RC/LKB key
Stop Backlight Dimming
PWM_DIMMING = 100%
Turn Off Backlight
BACKLIGHT_ON_OFF = LOW
Switch off LVDS Signal
Wait for Panel_Off_Time_3
based on Panel ID in ms (from
Panel Flash)
Turn Off LVDS Power,
LCD_PWR_ON = HIGH
PWM_Dimming = 0%
Disable DC_PROT &
POWER_DOWN INT
Pass Error Buffer and CEC Info
to T8032
Switch IR/GPIO control from
RISC to T8032
Mute Audio, MUTEn = HIGH
Notify T8032 to go to Standby
END
(STANDBY)
Wait 3000ms to block next
startup to ensure PSU properly
dischaged
T8032 blinks LED2 according to
Error Buffer
STANDBY due
to Protection?
No
Yes
Receive Standby Command
T8032 START
Turn off LED1
Set Last Status = STANDBY
No
Wait for Panel_Off_Time_2
based on Panel ID in ms (from
Panel Flash)
PBS SemistandbyYes
Turn off LED
Switch off backlight
SemiStandby
18490_206_090409.eps
090409
EN 23LC9.1A LA5.
STANDBY SEQUENCE
The following flowchart depicts the Standby (plus SemiStandby condition) sequence:
Figure 5-12 Standby flowchart
2009-Apr-10
EN 24LC9.1A LA5.
START
Note: To
Avoid False
Tr ig g e ri n g
Log Error Code
Mute Audio Output
Go to STANDBY
Check
DC_PROT = LOW
for 3 sec?
Ye s
No
END
DC Protection
[Protection]
H_17740_037.eps
240108
POWERDOWN SEQUENCE
The following figure shows the power-down sequence
flowchart:
START
Service Modes, Error Codes, and Fault Finding
POWER_DOWN INT
based on falling
edge trigger
Wait for
impending
Power Off
MT5392 Detects
POWER_DOWN INT
Reconfirm
POWER_DOWN
= LOW?
Ye s
Mute Audio Output
Write Protect Flash and
System EEPROM
System Idle
END
Note: To
No
Avoid False
Triggering
18490_200_090408.eps
090408
Figure 5-13 Power-down flowchart
The power-down condition is detected by the MT5392
POWER_DOWN signal which is an interrupt pin. A “low” level
on this line signifies that power-down is detected. The two
major activities that occur over this operation is the muting of
audio output and write protecting the system flash and
EEPROM.
DC PROTECTION
The following figure shows the DC_PROT interrupt flowchart:
Figure 5-14 DC Protection flowchart
5.6.10 SSB replacement
Follow the instructions in the flowchart in case a SSB has to be
swapped.
2009-Apr-10
Service Modes, Error Codes, and Fault Finding
START
Go to SAM mode and save the TV settings
via “NVM Copy to USB”.
Set is still
operating?
- Replace SSB board by a Service SSB.
- Make the SS B fit mechanically to the set.
Go to SAM mode, and reload settings
via “NVM Copy from USB”.
Saved settings
on USB stick?
Progra m “Display Option” code via 062598MENU, followed by 3 digits code (this code
can be found on the side sticker of the set or
service manual).
Check and perform alignments in SAM
accordin g to the Service Manual.
E.g. option codes, colour temperature...
Connect PC via ComPair interface to Service
connector at side-AV.
END
Yes
After entering “Display Option” code, set is
going to Standby (= validation of code).
Restart the set.
No
- Verify “Option Codes” a ccording to back sticker of set
or service manual.
- Default settings for W hite drive see Table 6-1
No
Set is starting up & display is OK.
If not already done;
Check latest software on S ervice website.
Update all relevant software via USB.
Set is starting up normally but no
display.
Final ch eck of all menu s in CSM .
Special a ttentio n to “Mo del no. serial no.,
panel code & HDCP keys status”.
Program “Model no.”, “Serial no.”, “IPB/PSU
12NC” and “Display 12NC”.
Launch ComPair with correct FF database
Top right corner disp layed “F” or “cF”
Press 5 s. the “Vol -” & “CH -“ button on the local
keyboard until the OSD “F” or “cF” dissappeared.
Unplug the mainscord to verify the correct
disablin g of the factory-mode.
Set is starting up in “Factory” mode.
Start-up set.
Set behaviour?
18490_207_090409.eps
090409
EN 25LC9.1A LA5.
Figure 5-15 SSB replacement flowchart
2009-Apr-10
EN 26LC9.1A LA5.
5.7Software Upgrading
5.7.1Introduction
It is possible for the user to upgrade the main software via the
USB port. This allows replacement of a software image in a
stand alone set, without the need of an E-JTAG debugger. A
description on how to upgrade the main software can be found
in the DFU or on the Philips website.
5.7.2Main Software Upgrade
Automatic Software Upgrade
In “normal” conditions, so when there is no major problem with
the TV, the main software and the default software upgrade
application can be upgraded with the “autorun.upg” (FUS part
in the one-zip file). This can also be done by the consumers
themselves, but they will have to get their software from the
commercial Philips website or via the Software Update
Assistant in the user menu (see DFU). The “autorun.upg” file
must be placed in the root of your USB stick.
How to upgrade:
1. Copy “autorun.upg” to the root of your USB stick.
2. Insert USB stick in the side I/O while the set is in “On”
mode. The set will prompt for software upgrade
acknowledge, after which the upgrading will start
automatically. As soon as the programming is finished, you
have to give a “restart” command, after which the set will
restart. In the “Setup” menu you can check if the latest
software is running.
Service Modes, Error Codes, and Fault Finding
5.7.3Content and Usage of the One-Zip Software File
Below you find a content explanation of the One-Zip file, and
instructions on how and when to use it.
•Ambi_clustername_version.zip. Not to be used by
Service technicians.
•Panel_clustername_version.zip. Not to be used by
Service technicians.
•EDID_clustername_version.zip. Contains the EDID
content of the different EDID NVMs. See ComPair for
further instructions.
•FUS_clustername_version.zip. Contains the
“autorun.upg” which is needed to upgrade the TV main
software and the software download application.
•NVM_clustername_version.zip. Default NVM content.
Must be programmed via ComPair.
5.7.4How to Copy NVM Data to/from USB
Write NVM data to USB
1. Insert the USB stick into the USB slot while in SAM mode.
2. Execute the command "NVM Copy" > "NVM Copy to USB",
to copy the NVM data to the USB stick. The NVM filename
on the USB stick will be named "NVM_COPY.BIN" (this
takes a couple of seconds).
Write NVM data to TV
1. First, ensure (via a PC) that the filename on the USB stick
has the correct format: "NVM_COPY.BIN".
2. Insert the USB stick into the USB slot while in SAM mode.
3. Execute the command "NVM Copy" > "NVM Copy from
USB" to copy the USB data to NVM (this takes about a
minute to complete).
Important: The file must be located in the root directory of the
USB stick.
2009-Apr-10
Loading...
+ 60 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.