Copyright 2010 Koninklijke Philips Electronics N.V.
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise without the prior permission of Philips.
(B01) 4160-61
SSB: Mini LVDS(B08E) 5960-61
SSB: SRP List Explanation62
SSB: SRP List63
11. Styling Sheets
Styling Sheet 32" - 46"64
Published by ER/JY 1063 BU TV Consumer CarePrinted in the NetherlandsSubject to modificationEN 3122 785 18920
2010-Mar-19
EN 2LC10.1A LA1.
Revision List
1.Revision List
Manual xxxx xxx xxxx.0
•First release.
2.Technical Specifications and Connections
Index of this chapter:
2.1 Technical Specifications
2.2 Directions for Use
2.3 Connections
Notes:
•Figures can deviate due to the different set executions.
•Specifications are indicative (subject to change).
2.1Technical Specifications
For on-line product support please use the links in Table 2-1.
Here is product information available, as well as getting started,
user manuals, frequently asked questions and software &
drivers.
Table 2-1 Described Model numbers
CTNStylingPublished in:
32PFL5605/93
32PFL5605/98
40PFL5605/93
40PFL5605/98
46PFL5605/67
46PFL5605/93
46PFL5605/98
van Gogh3122 785 18920
2.2Directions for Use
You can download this information from the following websites:
10 - HDMI 1 & 2: Digital Video, Digital Audio - In
Figure 2-4 HDMI (type A) connector
1 - D2+ Data channel j
2 - Shield Gnd H
3 - D2- Data channel j
4 - D1+ Data channel j
5 - Shield Gnd H
6 - D1- Data channel j
7 - D0+ Data channel j
8 - Shield Gnd H
9 - D0- Data channel j
10 - CLK+ Data channel j
11 - Shield Gnd H
12 - CLK- Data channel j
13 - Easylink Control channel jk
14 - n.c.
15 - DDC_SCL DDC clock j
16 - DDC_SDA DDC data jk
17 - Ground Gnd H
18 - +5V j
19 - HPD Hot Plug Detect j
20 - Ground Gnd H
2010-Mar-19
Precautions, Notes, and Abbreviation List
3.Precautions, Notes, and Abbreviation List
EN 5LC10.1A LA3.
Index of this chapter:
3.1 Safety Instructions
3.2 Warnings
3.3 Notes
3.4 Abbreviation List
3.1Safety Instructions
Safety regulations require the following during a repair:
•Connect the set to the Mains/AC Power via an isolation
transformer (> 800 VA).
•Replace safety components, indicated by the symbol h,
only by components identical to the original ones. Any
other component substitution (other than original type) may
increase risk of fire or electrical shock hazard. Of de set
ontploft!
Safety regulations require that after a repair, the set must be
returned in its original condition. Pay in particular attention to
the following points:
•Route the wire trees correctly and fix them with the
mounted cable clamps.
•Check the insulation of the Mains/AC Power lead for
external damage.
•Check the strain relief of the Mains/AC Power cord for
proper function.
•Check the electrical DC resistance between the Mains/AC
Power plug and the secondary side (only for sets that have
a Mains/AC Power isolated power supply):
1. Unplug the Mains/AC Power cord and connect a wire
between the two pins of the Mains/AC Power plug.
2. Set the Mains/AC Power switch to the “on” position
(keep the Mains/AC Power cord unplugged!).
3. Measure the resistance value between the pins of the
Mains/AC Power plug and the metal shielding of the
tuner or the aerial connection on the set. The reading
should be between 4.5 MΩ and 12 MΩ.
4. Switch “off” the set, and remove the wire between the
two pins of the Mains/AC Power plug.
•Check the cabinet for defects, to prevent touching of any
inner parts by the customer.
picture carrier at 475.25 MHz for PAL, or 61.25 MHz for
NTSC (channel 3).
•Where necessary, measure the waveforms and voltages
with (D) and without (E) aerial signal. Measure the
voltages in the power supply section both in normal
operation (G) and in stand-by (F). These values are
indicated by means of the appropriate symbols.
3.3.2Schematic Notes
•All resistor values are in ohms, and the value multiplier is
often used to indicate the decimal point location (e.g. 2K2
indicates 2.2 kΩ).
•Resistor values with no multiplier may be indicated with
either an “E” or an “R” (e.g. 220E or 220R indicates 220 Ω).
•All capacitor values are given in micro-farads (μ=× 10
nano-farads (n =× 10
•Capacitor values may also use the value multiplier as the
decimal point indication (e.g. 2p2 indicates 2.2 pF).
•An “asterisk” (*) indicates component usage varies. Refer
to the diversity tables for the correct values.
•The correct component values are listed on the Philips
Spare Parts Web Portal.
3.3.3Spare Parts
For the latest spare part overview, consult your Philips Spare
Part web portal.
3.3.4BGA (Ball Grid Array) ICs
Introduction
For more information on how to handle BGA devices, visit this
URL: http://www.atyourservice-magazine.com
“Magazine”, then go to “Repair downloads”. Here you will find
Information on how to deal with BGA-ICs.
BGA Temperature Profiles
For BGA-ICs, you must use the correct temperature-profile.
Where applicable and available, this profile is added to the IC
Data Sheet information section in this manual.
-9
), or pico-farads (p =× 10
. Select
-12
-6
),
).
3.2Warnings
•All ICs and many other semiconductors are susceptible to
electrostatic discharges (ESD w). Careless handling
during repair can reduce life drastically. Make sure that,
during repair, you are connected with the same potential as
the mass of the set by a wristband with resistance. Keep
components and tools also at this same potential.
•Be careful during measurements in the high voltage
section.
•Never replace modules or other components while the unit
is switched “on”.
•When you align the set, use plastic rather than metal tools.
This will prevent any short circuits and the danger of a
circuit becoming unstable.
3.3Notes
3.3.1 General
•Measure the voltages and waveforms with regard to the
chassis (= tuner) ground (H), or hot ground (I), depending
on the tested area of circuitry. The voltages and waveforms
shown in the diagrams are indicative. Measure them in the
Service Default Mode with a colour bar signal and stereo
sound (L: 3 kHz, R: 1 kHz unless stated otherwise) and
3.3.5Lead-free Soldering
Due to lead-free technology some rules have to be respected
by the workshop during a repair:
•Use only lead-free soldering tin. If lead-free solder paste is
required, please contact the manufacturer of your soldering
equipment. In general, use of solder paste within
workshops should be avoided because paste is not easy to
store and to handle.
•Use only adequate solder tools applicable for lead-free
soldering tin. The solder tool must be able:
– To reach a solder-tip temperature of at least 400°C.
– To stabilize the adjusted temperature at the solder-tip.
– To exchange solder-tips for different applications.
•Adjust your solder tool so that a temperature of around
360°C - 380°C is reached and stabilized at the solder joint.
Heating time of the solder-joint should not exceed ~ 4 sec.
Avoid temperatures above 400°C, otherwise wear-out of
tips will increase drastically and flux-fluid will be destroyed.
To avoid wear-out of tips, switch “off” unused equipment or
reduce heat.
•Mix of lead-free soldering tin/parts with leaded soldering
tin/parts is possible but PHILIPS recommends strongly to avoid mixed regimes. If this cannot be avoided, carefully
clear the solder-joint from old tin and re-solder with new tin.
2010-Mar-19
EN 6LC10.1A LA3.
Precautions, Notes, and Abbreviation List
3.3.6 Alternative BOM identification
It should be noted that on the European Service website,
“Alternative BOM” is referred to as “Design variant”.
The third digit in the serial number (example:
AG2B0335000001) indicates the number of the alternative
B.O.M. (Bill Of Materials) that has been used for producing the
specific TV set. In general, it is possible that the same TV
model on the market is produced with e.g. two different types
of displays, coming from two different suppliers. This will then
result in sets which have the same CTN (Commercial Type
Number; e.g. 28PW9515/12) but which have a different B.O.M.
number.
By looking at the third digit of the serial number, one can
identify which B.O.M. is used for the TV set he is working with.
If the third digit of the serial number contains the number “1”
(example: AG1B033500001), then the TV set has been
manufactured according to B.O.M. number 1. If the third digit is
a “2” (example: AG2B0335000001), then the set has been
produced according to B.O.M. no. 2. This is important for
ordering the correct spare parts!
For the third digit, the numbers 1...9 and the characters A...Z
can be used, so in total: 9 plus 26= 35 different B.O.M.s can be
indicated by the third digit of the serial number.
Identification: The bottom line of a type plate gives a 14-digit
serial number. Digits 1 and 2 refer to the production centre (e.g.
AG is Bruges), digit 3 refers to the B.O.M. code, digit 4 refers
to the Service version change code, digits 5 and 6 refer to the
production year, and digits 7 and 8 refer to production week (in
example below it is 2006 week 17). The 6 last digits contain the
serial number.
MODEL :
PROD.NO:
32PF9968/10
AG 1A0617 000001
MADE IN BELGIUM
220-240V 50/60Hz
VHF+S+H+UHF
S
10000_024_090121.eps
~
BJ3.0E LA
Figure 3-1 Serial number (example)
3.3.7Board Level Repair (BLR) or Component Level Repair
(CLR)
If a board is defective, consult your repair procedure to decide
if the board has to be exchanged or if it should be repaired on
component level.
If your repair procedure says the board should be exchanged
completely, do not solder on the defective board. Otherwise, it
cannot be returned to the O.E.M. supplier for back charging!
3.3.8 Practical Service Precautions
•It makes sense to avoid exposure to electrical shock.
While some sources are expected to have a possible
dangerous impact, others of quite high potential are of
limited current and are sometimes held in less regard.
•Always respect voltages. While some may not be
dangerous in themselves, they can cause unexpected
reactions that are best avoided. Before reaching into a
powered TV set, it is best to test the high voltage insulation.
It is easy to do, and is a good service precaution.
128W
100105
3.4Abbreviation List
0/6/12SCART switch control signal on A/V
board. 0 = loop through (AUX to TV),
6 = play 16 : 9 format, 12 = play 4 : 3
format
AARAAutomatic Aspect Ratio Adaptation:
algorithm that adapts aspect ratio to
remove horizontal black bars; keeps
the original aspect ratio
ACIAutomatic Channel Installation:
algorithm that installs TV channels
directly from a cable network by
means of a predefined TXT page
ADCAnalogue to Digital Converter
AFCAutomatic Frequency Control: control
signal used to tune to the correct
frequency
AGCAutomatic Gain Control: algorithm that
controls the video input of the feature
box
AMAmplitude Modulation
APAsia Pacific
ARAspect Ratio: 4 by 3 or 16 by 9
ASFAuto Screen Fit: algorithm that adapts
aspect ratio to remove horizontal black
bars without discarding video
information
ATSCAdvanced Television Systems
Committee, the digital TV standard in
the USA
ATVSee Auto TV
Auto TVA hardware and software control
system that measures picture content,
and adapts image parameters in a
dynamic way
AVExternal Audio Video
AVCAudio Video Controller
AVIPAudio Video Input Processor
B/GMonochrome TV system. Sound
carrier distance is 5.5 MHz
BDSBusiness Display Solutions (iTV)
BLRBoard-Level Repair
BTSCBroadcast Television Standard
Committee. Multiplex FM stereo sound
system, originating from the USA and
used e.g. in LATAM and AP-NTSC
countries
B-TXTBlue TeleteXT
CCentre channel (audio)
CECConsumer Electronics Control bus:
remote control bus on HDMI
connections
CLConstant Level: audio output to
connect with an external amplifier
CLRComponent Level Repair
ComPairComputer aided rePair
CPConnected Planet / Copy Protection
CSMCustomer Service Mode
CTIColor Transient Improvement:
manipulates steepness of chroma
transients
CVBSComposite Video Blanking and
Synchronization
DACDigital to Analogue Converter
DBEDynamic Bass Enhancement: extra
low frequency amplification
DCMData Communication Module. Also
referred to as System Card or
Smartcard (for iTV).
DDCSee “E-DDC”
D/KMonochrome TV system. Sound
carrier distance is 6.5 MHz
DFIDynamic Frame Insertion
2010-Mar-19
Precautions, Notes, and Abbreviation List
EN 7LC10.1A LA3.
DFUDirections For Use: owner's manual
DMRDigital Media Reader: card reader
DMSDDigital Multi Standard Decoding
DNMDigital Natural Motion
DNRDigital Noise Reduction: noise
reduction feature of the set
DRAMDynamic RAM
DRMDigital Rights Management
DSPDigital Signal Processing
DSTDealer Service Tool: special remote
control designed for service
technicians
DTCPDigital Transmission Content
Protection; A protocol for protecting
digital audio/video content that is
traversing a high speed serial bus,
such as IEEE-1394
DVB-CDigital Video Broadcast - Cable
DVB-TDigital Video Broadcast - Terrestrial
DVDDigital Versatile Disc
DVI(-d)Digital Visual Interface (d= digital only)
E-DDCEnhanced Display Data Channel
(VESA standard for communication
channel and display). Using E-DDC,
the video source can read the EDID
information form the display.
EDIDExtended Display Identification Data
(VESA standard)
EEPROMElectrically Erasable and
Programmable Read Only Memory
EMIElectro Magnetic Interference
EPGElectronic Program Guide
EPLDErasable Programmable Logic Device
EUEurope
EXTEXTernal (source), entering the set by
SCART or by cinches (jacks)
FDSFull Dual Screen (same as FDW)
FDWFull Dual Window (same as FDS)
FLASHFLASH memory
FMField Memory or Frequency
Modulation
FPGAField-Programmable Gate Array
FTVFlat TeleVision
Gb/sGiga bits per second
G-TXTGreen TeleteXT
HH_sync to the module
HDHigh Definition
HDDHard Disk Drive
HDCPHigh-bandwidth Digital Content
Protection: A “key” encoded into the
HDMI/DVI signal that prevents video
data piracy. If a source is HDCP coded
and connected via HDMI/DVI without
the proper HDCP decoding, the
picture is put into a “snow vision” mode
or changed to a low resolution. For
normal content distribution the source
and the display device must be
enabled for HDCP “software key”
decoding.
HDMIHigh Definition Multimedia Interface
HPHeadPhone
IMonochrome TV system. Sound
2
I
CInter IC bus
2
I
DInter IC Data bus
2
I
SInter IC Sound bus
carrier distance is 6.0 MHz
IFIntermediate Frequency
IRInfra Red
IRQInterrupt Request
ITU-656The ITU Radio communication Sector
(ITU-R) is a standards body
subcommittee of the International
Telecommunication Union relating to
radio communication. ITU-656 (a.k.a.
SDI), is a digitized video format used
for broadcast grade video.
Uncompressed digital component or
digital composite signals can be used.
The SDI signal is self-synchronizing,
uses 8 bit or 10 bit data words, and has
a maximum data rate of 270 Mbit/s,
with a minimum bandwidth of 135
MHz.
ITVInstitutional TeleVision; TV sets for
hotels, hospitals etc.
LSLast Status; The settings last chosen
by the customer and read and stored
in RAM or in the NVM. They are called
at start-up of the set to configure it
according to the customer's
preferences
LATAMLatin America
LCDLiquid Crystal Display
LEDLight Emitting Diode
L/L'Monochrome TV system. Sound
carrier distance is 6.5 MHz. L' is Band
I, L is all bands except for Band I
LPLLG.Philips LCD (supplier)
LSLoudspeaker
LVDSLow Voltage Differential Signalling
MbpsMega bits per second
M/NMonochrome TV system. Sound
carrier distance is 4.5 MHz
MHEGPart of a set of international standards
related to the presentation of
multimedia information, standardised
by the Multimedia and Hypermedia
Experts Group. It is commonly used as
a language to describe interactive
television services
MIPSMicroprocessor without Interlocked
Pipeline-Stages; A RISC-based
microprocessor
MOPMatrix Output Processor
MOSFETMetal Oxide Silicon Field Effect
Transistor, switching device
MPEGMotion Pictures Experts Group
MPIFMulti Platform InterFace
MUTEMUTE Line
MTVMainstream TV: TV-mode with
Consumer TV features enabled (iTV)
NCNot Connected
NICAMNear Instantaneous Compounded
Audio Multiplexing. This is a digital
sound system, mainly used in Europe.
NTCNegative Temperature Coefficient,
non-linear resistor
NTSCNational Television Standard
Committee. Color system mainly used
in North America and Japan. Color
carrier NTSC M/N= 3.579545 MHz,
NTSC 4.43= 4.433619 MHz (this is a
VCR norm, it is not transmitted off-air)
NVMNon-Volatile Memory: IC containing
TV related data such as alignments
O/COpen Circuit
OSDOn Screen Display
OADOver the Air Download. Method of
software upgrade via RF transmission.
Upgrade software is broadcasted in
TS with TV channels.
OTCOn screen display Teletext and
Control; also called Artistic (SAA5800)
P50Project 50: communication protocol
between TV and peripherals
PALPhase Alternating Line. Color system
conditioner)
PIPPicture In Picture
PLLPhase Locked Loop. Used for e.g.
FST tuning systems. The customer
can give directly the desired frequency
PODPoint Of Deployment: a removable
CAM module, implementing the CA
system for a host (e.g. a TV-set)
PORPower On Reset, signal to reset the uP
PSDLPower Supply for Direct view LED
backlight with 2D-dimming
PSLPower Supply with integrated LED
drivers
PSLSPower Supply with integrated LED
drivers with added Scanning
functionality
PTCPositive Temperature Coefficient,
non-linear resistor
PWBPrinted Wiring Board (same as “PCB”)
PWMPulse Width Modulation
QRCQuasi Resonant Converter
QTNRQuality Temporal Noise Reduction
QVCPQuality Video Composition Processor
RAMRandom Access Memory
RGBRed, Green, and Blue. The primary
color signals for TV. By mixing levels
of R, G, and B, all colors (Y/C) are
reproduced.
RCRemote Control
RC5 / RC6Signal protocol from the remote
control receiver
RESETRESET signal
ROMRead Only Memory
RSDSReduced Swing Differential Signalling
data interface
R-TXTRed TeleteXT
SAMService Alignment Mode
S/CShort Circuit
SCARTSyndicat des Constructeurs
d'Appareils Radiorécepteurs et
Téléviseurs
SCLSerial Clock I
SCL-FCLock Signal on Fast I
SDStandard Definition
SDASerial Data I
SDA-FDAta Signal on Fast I
2
C
2
C bus
2
C
2
C bus
SDISerial Digital Interface, see “ITU-656”
SDRAMSynchronous DRAM
SECAMSEequence Couleur Avec Mémoire.
Color system mainly used in France
and East Europe. Color carriers=
4.406250 MHz and 4.250000 MHz
SIFSound Intermediate Frequency
SMPSSwitched Mode Power Supply
SoCSystem on Chip
SOGSync On Green
SOPSSelf Oscillating Power Supply
SPISerial Peripheral Interface bus; a 4-
wire synchronous serial data link
standard
S/PDIFSony Philips Digital InterFace
SRAMStatic RAM
SRPService Reference Protocol
SSBSmall Signal Board
SSCSpread Spectrum Clocking, used to
reduce the effects of EMI
STBSet Top Box
STBYSTand-BY
SVGA800 × 600 (4:3)
SVHSSuper Video Home System
SWSoftware
SWANSpatial temporal Weighted Averaging
Signalling
TSTransport Stream
TXTTeleteXT
TXT-DWDual Window with TeleteXT
UIUser Interface
uPMicroprocessor
UXGA1600 × 1200 (4:3)
VV-sync to the module
VESAVideo Electronics Standards
Association
VGA640 × 480 (4:3)
VLVariable Level out: processed audio
output toward external amplifier
VSBVestigial Side Band; modulation
method
WYSIWYRWhat You See Is What You Record:
record selection that follows main
picture and sound
WXGA1280 × 768 (15:9)
XTALQuartz crystal
XGA1024 × 768 (4:3)
YLuminance signal
Y/CLuminance (Y) and Chrominance (C)
signal
YPbPrComponent video. Luminance and
scaled color difference signals (B-Y
and R-Y)
YUVComponent video
2010-Mar-19
4.Mechanical Instructions
PSU-SSB cable twisted
at PSU side
Avoid taping FFC on
top of panel lamp
holder/ folded area
Tape should be at
least 13mm away
from PSU (Safety
concern
)
Secure mains cord
cable away from BC
screw bos
s
1x tape (200mm)
8x tapes (100mm)
2x 11mm clamp
18920_100_100316.eps
100316
Mechanical Instructions
EN 9LC10.1A LA4.
Index of this chapter:
4.1 Cable Dressing
4.2 Service Positions
4.3 Assy/Panel Removal
4.4 Set Re-assembly
4.1Cable Dressing
Notes:
•Figures below can deviate slightly from the actual situation,
due to the different set executions.
Figure 4-1 Cable dressing 32"
2010-Mar-19
EN 10LC10.1A LA4.
Confidential
PSU-SSB cable
twisting in between
VESA ba
r
Avoid taping FFC on
top of panel lamp
holder/ folded are
a
Tape should be
at least 13mm
away from PSU
(Safety concern
)
Speaker cable routing left –
RED, right - WHITE
Secure mains cord cable
away from BC screw bos
s
1x tape (200mm)
9x tapes (100mm)
2x 17mm clamp
1x 11mm clamp
18920_101_100316.eps
100316
Tape should be at least 13mm
away from PSU (Safety concern
)
Avoid taping FFC on top of
panel lamp holder/metal bar
screw poin
t
3x tape (200mm)
8x tapes (100mm)
3x 11mm clamp
18920_102_100317.eps
100317
Mechanical Instructions
Figure 4-2 Cable dressing 40"
2010-Mar-19
Figure 4-3 Cable dressing 46"
4.2Service Positions
18770_150_100218.eps
100219
11
2
18770_151_100218.eps
100218
18770_152_100218.eps
100218
18770_153_100218.eps
100317
26252423
For easy servicing of a TV set, the set should be put face down
on a soft flat surface, foam buffers or other specific workshop
tools. Ensure that a stable situation is created to perform
measurements and alignments. When using foam bars take
care that these always support the cabinet and never only the
display. Caution: Failure to follow these guidelines can
seriously damage the display!
Ensure that ESD safe measures are taken.
4.3Assy/Panel Removal
Instructions below apply to the 32PFL5605/xx, but will be
similar for other models.
4.3.1 Rear Cover
Warning: Disconnect the mains power cord before you remove
the rear cover.
Note: it is not necessary to remove the stand while removing
the rear cover.
1. Remove all screws of the rear cover.
2. Lift the rear cover from the TV. Make sure that wires and
flat coils are not damaged while lifting the rear cover from
the set.
Mechanical Instructions
EN 11LC10.1A LA4.
Figure 4-6 Rear cover -3-
Special note
Some models come with mechanical catches at top of the rear
cover. To open them, please refer to Figure 4-4
to Figure 4-7
for details.
Figure 4-4 Rear cover -1-
Figure 4-7 Rear cover -4-
1. Lift the rear cover on the bottom side [1].
2. Push the cover in direction [2] to unlock the catches.
3. If the rear cover catches still lock, place a flat screwdriver
between flare and rear cover and turn it until the rear cover
and the flare are disassembled from the catch.
4. The location of the catches are indicated with [3], [4], [5]
and [6].
4.3.2Speakers
Tweeters (when applicable)
Each tweeter unit is mounted with one screw.
When defective, replace the whole unit.
Loudspeaker/subwoofer
The loudspeaker/subwoofer is located in the centre of the set,
and is fixed with two screws.
When defective, replace the whole unit.
Figure 4-5 Rear cover -2-
2010-Mar-19
EN 12LC10.1A LA4.
18920_104_100317.eps
100317
2
2
1
3
3
3
3
3
18770_142_100215.eps
100215
1
1
1
1
18770_143_100215.eps
100215
2
18770_144_100215.eps
100215
4
3
3
Mechanical Instructions
4.3.3 Main Power Supply
Refer to Figure 4-8
for details.
2
1
2
2
Figure 4-8 Main Power Supply
1. Unplug all connectors [1].
2. Remove the fixation screws [2].
3. Take the board out.
When defective, replace the whole unit.
Be aware to (re)place the spacers [3].
4.3.6IR & LED Board
Refer to Figure 4-10
3
2
, Figure 4-11 and Figure 4-12 for details.
1
2
1
3
18920_103_100317.eps
2
100317
Figure 4-10 IR & LED Board -1-
4.3.4Small Signal Board (SSB)
Refer to Figure 4-9
for details.
Figure 4-9 SSB
1. Unplug all connectors [1] and [2].
2. Remove the fixation screws [3].
3. Take the board out.
When defective, replace the whole unit.
Figure 4-11 IR & LED Board -2-
4.3.5 Mains Switch
The mains switch assy is mounted below the PSU on the front
bezel with two screws.
When replacing the switch, remove it from its bracket.
2010-Mar-19
Figure 4-12 IR & LED Board -3-
1. Remove the stand [1].
2. Remove the IR & LED board cover [2].
3. Release the clips [3] that secure the IR & LED board.
4. Remove the connectors [4] on the IR/LED board.
4.3.7 Local Control Board
18770_145_100216.eps
100217
1
18920_105_100317.eps
100319
1
1
1
1
2
2
1
2
2
1
1
1
C
D
A
B
E
1
F
Mechanical Instructions
EN 13LC10.1A LA4.
Refer to Figure 4-13
1. Unplug the connector on the IR & LED board that leads to
the Local Control board as described earlier.
2. Release the cable from its clamps/tape.
3. Release the clip on top of the unit [1] and take the unit out.
When defective, replace the whole unit.
4.3.8LCD Panel
Refer to Figure 4-14
1. Remove the Stand and IR/LED board [A] as earlier
described.
2. Remove the Speakers/Subwoofer [B] as earlier described.
3. Remove the PSU [C] and SSB [D] as earlier described.
4. Remove the Mains Switch [E] as earlier described.
for details.
for details.
Figure 4-13 Keyboard Control board
5. Remove the Local Control board [F] as earlier described.
6. Remove the brackets [1].
7. Remove the clamps [2].
8. Remove the flare.
Now the LCD Panel can be lifted from the front cabinet.
4.4Set Re-assembly
To re-assemble the whole set, execute all processes in reverse
order.
Figure 4-14 LCD Panel removal (based on 32" model)
Notes:
•While re-assembling, make sure that all cables are placed
•Pay special attention not to damage the EMC foams in the
and connected in their original position.
set. Ensure that EMC foams are mounted correctly.
2010-Mar-19
EN 14LC10.1A LA5.
10000_038_090121.eps
090819
PHILIPS
MODEL:
32PF9968/10
PROD.SERIAL NO:
AG 1A0620 000001
040
39mm
27mm
(CTN Sticker)
Display Option
Code
Service Modes, Error Codes, and Fault Finding
5.Service Modes, Error Codes, and Fault Finding
Index of this chapter:
5.1 Test Points
5.2 Service Modes
5.3 Service Tools
5.4 Error Codes
5.5 The Blinking LED Procedure
5.6 Fault Finding and Repair Tips
5.7 Software Upgrading
5.1Test Points
In the chassis schematics and layout overviews, the test points
are mentioned. In the schematics, test points are indicated with
“Fxxx” or “Ixxx”, in the layout overviews with a “half-moon” sign.
As most signals are digital, it will be difficult to measure
waveforms with a standard oscilloscope. Several key ICs are
capable of generating test patterns, which can be controlled via
ComPair. In this way it is possible to determine which part is
defective.
Perform measurements under the following conditions:
•Service Default Mode.
•Video: Colour bar signal.
•Audio: 3 kHz left, 1 kHz right.
5.2Service Modes
The Service Mode feature is split into four parts:
•Service Default Mode (SDM).
•Service Alignment Mode (SAM).
•Customer Service Mode (CSM).
•Computer Aided Repair Mode (ComPair).
SDM and SAM offer features, which can be used by the Service
engineer to repair/align a TV set. Some features are:
•A pre-defined situation to ensure measurements can be
made under uniform conditions (SDM).
•Activates the blinking LED procedure for error identification
when no picture is available (SDM).
•The possibility to overrule software protections when SDM
is entered via the Service pins.
•Make alignments (e.g. White Tone), (de)select options,
enter options codes, reset the error buffer (SAM).
•Display information (“SDM” or “SAM” indication in upper
right corner of screen, error buffer, software version,
operating hours, options and option codes, sub menus).
The CSM is a Service Mode that can be enabled by the
consumer. The CSM displays diagnosis information, which the
customer can forward to the dealer or call centre. In CSM
mode, “CSM”, is displayed in the top right corner of the screen.
The information provided in CSM and the purpose of CSM is to:
•Increase the home repair hit rate.
•Decrease the number of nuisance calls.
•Solved customers' problem without home visit.
ComPair Mode is used for communication between a computer
and a TV on I2C /UART level and can be used by a Service
engineer to quickly diagnose the TV set by reading out error
codes, read and write in NVMs, communicate with ICs and the
uP (PWM, registers, etc.), and by making use of a fault finding
database. It will also be possible to up and download the
software of the TV set via I2C with help of ComPair. To do this,
ComPair has to be connected to the TV set via the ComPair
connector, which will be accessible through the rear of the set
(without removing the rear cover).
2010-Mar-19
5.2.1General
Some items are applicable to all Service Modes or are general.
These are listed below.
Life Timer
During the life time cycle of the TV set, a timer is kept (called
“Op. Hour”). It counts the normal operation hours (not the
Stand-by hours). The actual value of the timer is displayed in
SDM and SAM in a decimal value. Every two soft-resets
increase the hour by +1. Standby hours are not counted.
Software Identification, Version, and Cluster
The software ID, version, and cluster will be shown in the main
menu display of SDM, SAM, and CSM.
The screen will show: “AAAAAB XX.YY”, where:
•AAAAA is the chassis name: LC101.
•B is the region indication: E= Europe, A= AP/China, U=
NAFTA, L= LATAM.
•XX is the main version number: this is updated with a major
change of specification (incompatible with the previous
software version). Numbering will go from 01 - 99 and AA ZZ.
– If the main version number changes, the new version
number is written in the NVM.
– If the main version number changes, the default
settings are loaded.
•YY is the sub version number: this is updated with a minor
change (backwards compatible with the previous versions)
Numbering will go from 00 - 99.
– If the sub version number changes, the new version
number is written in the NVM.
– If the NVM is fresh, the software identification, version,
and cluster will be written to NVM.
Display Option Code Selection
When after an SSB or display exchange, the display option
code is not set properly, it will result in a TV with “no display”.
Therefore, it is required to set this display option code after
such a repair.
To do so, press the following key sequence on a standard RC
transmitter: “062598” directly followed by MENU/HOME and
“xxx”, where “xxx” is a 3 digit decimal value of the panel type:
see column “Display Code” in Table 6-5
, or see sticker on the
side/bottom of the cabinet. When the value is accepted and
stored in NVM, the set will switch to Stand-by, to indicate that
the process has been completed.
Figure 5-1 Location of Display Option Code sticker
During this algorithm, the NVM-content must be filtered,
because several items in the NVM are TV-related and not SSBrelated (e.g. Model and Prod. S/N). Therefore, “Model” and
“Prod. S/N” data is changed into “See Type Plate”.
Service Modes, Error Codes, and Fault Finding
18920_201_100317.eps
100317
SDMSDM
EN 15LC10.1A LA5.
In case a call centre or consumer reads “See Type Plate” in
CSM mode, he needs to look to the side/bottom sticker to
identify the set, for further actions.
5.2.2Service Default Mode (SDM)
Purpose
Set the TV in SDM mode in order to be able to create a predefined setting for measurements to be made. In this platform,
a simplified SDM is introduced (without protection override and
without tuning to a frequency of 475.25 MHz).
Specifications
•Set linear video and audio settings to 50%, but volume to
25%. Stored user settings are not affected.
•All service-unfriendly modes (if present) are disabled, since
they interfere with diagnosing/repairing a set. These
service unfriendly modes are:
– (Sleep) timer.
– Blue mute/Wall paper.
– Auto switch “off” (when there is no “ident” signal).
– Hotel or hospital mode.
– Child lock or parental lock (manual or via V-chip).
– Skipping, blanking of “Not favourite”, “Skipped” or
“Locked” presets/channels.
– Automatic storing of Personal Preset or Last Status
settings.
– Automatic user menu time-out (menu switches back/
OFF automatically.
– Auto Volume levelling (AVL).
How to Activate
To activate SDM, use one of the following methods:
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the MENU button
(do not allow the display to time out between entries while
keying the sequence).
•Short one of the “Service” pads on the TV board during cold
start (see Figure 5-2
(remove the short after start-up).
Caution: When doing this, the service-technician must
know exactly what he is doing, as it could damage the
television set.
). Then press the mains button
•ERR: Shows all errors detected since the last time the
buffer was erased in format <xxx> <xxx> <xxx> <xxx>
<xxx> (five errors possible).
•OP: Used to read-out the option bytes. See “Options” in the
Alignments section for a detailed description. Ten codes (in
two rows) are possible.
How to Navigate
As this mode is read only, there is not much to navigate. To
switch to other modes, use one of the following methods:
•Command MENU from the user remote will enter the
normal user menu (brightness, contrast, colour, etc...) with
“SDM” OSD remaining, and pressing MENU key again will
return to the last status of SDM again.
•To prevent the OSD from interfering with measurements in
SDM, command “OSD” or “i+” (“STATUS” or “INFO” for
NAFTA and LATAM) from the user remote will toggle the
OSD “on/off” with “SDM” OSD remaining always “on”.
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the OSD/STATUS/INFO/i+ button to switch to SAM (do not allow the
display to time out between entries while keying the
sequence).
How to Exit
Switch the set to STANDBY by pressing the mains button on
the remote control transmitter or on the television set.
If you switch the television set “off” by removing the mains (i.e.,
unplugging the television), the television set will remain in SDM
when mains is re-applied, and the error buffer is not cleared.
The error buffer will only be cleared when the “clear” command
is used in the SAM menu.
Note:
•If the TV is switched “off” by a power interrupt while in SDM,
the TV will show up in the last status of SDM menu as soon
as the power is supplied again. The error buffer will not be
cleared.
•In case the set is accidentally in Factory mode (with an “F”
displayed on the screen), pressing and holding “VOL-“ and
“CH-” simultaneously should exit the Factory mode.
5.2.3Service Alignment Mode (SAM)
Figure 5-2 Service pads (SSB component side)
On Screen Menu
After activating SDM, the following items are displayed, with
“SDM” in the upper right corner of the screen to indicate that the
television is in Service Default Mode.
Menu items and explanation:
•xx.x hrs: Operating hours (in decimal).
•AAAAAB XX.YY: See paragraph Software Identification,
Version, and Cluster for the SW name definition.
Purpose
•To change option settings.
•To display / clear the error code buffer.
•To perform alignments.
Specifications
•Operation hours counter (maximum five digits displayed).
•Software version, error codes, and option settings display.
•Error buffer clearing.
•Option settings.
•Software alignments (White Tone).
•NVM Editor.
•Set screen mode to full screen (all content is visible).
How to Activate
To activate SAM, use one of the following methods:
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the OSD/STATUS/INFO/i+ button (it depends on region which
button is present on the RC). Do not allow the display to
time out between entries while keying the sequence.
•Or via ComPair.
After entering SAM, the following items are displayed, with
“SAM” in the upper right corner of the screen to indicate that the
television is in Service Alignment Mode.
2010-Mar-19
EN 16LC10.1A LA5.
Service Modes, Error Codes, and Fault Finding
Menu items and explanation:
1. System Inform.
•Op Hour: This represents the life timer. The timer
counts normal operation hours, but does not count
Stand-by hours.
•MAIN SW ID: See paragraph Software Identification,
Version, and Cluster for the SW name definition.
•ERR: Shows all errors detected since the last time the
buffer was erased. Five errors possible.
•OP1 / OP2: Used to read-out the option bytes. See
paragraph 6.5 Option Settings in the Alignments
section for a detailed description. Ten codes are
possible.
2. Clear Codes. Erases the contents of the error buffer.
Select this menu item and press the MENU RIGHT key on
the remote control. The content of the error buffer is
cleared.
3. Options. To set the option bits. See paragraph 6.5 Option
Settings
description.
4. RGB Alignment. To align the White Tone. See White
Tone Alignment:
5. NVM Editor. To change the NVM data in the television set.
See also paragraph 5.6 Fault Finding and Repair Tips.
6. NVM Copy. Gives the possibility to copy/load the NVM file
to/from an USB stick. NVM data copied to a USB memory
device is named “NVM_COPY.BIN”. When copied back to
a TV, the file first must have the same name.
7. Tuner.
•AGC Adjustment: See paragraph 6.3.1
•Store: To store the data.
8. Auto ADC. Refer to chapter 6. Alignments
information.
9. EDID Write Enable. Enables EDID writing.
How to Navigate
•In the SAM menu, select menu items with the UP/DOWN
keys on the remote control transmitter. The selected item
will be indicated. When not all menu items fit on the screen,
use the UP/DOWN keys to display the next / previous
menu items.
•With the LEFT/RIGHT keys, it is possible to:
– Activate the selected menu item.
– Change the value of the selected menu item.
– Activate the selected sub menu.
•When you press the MENU button twice while in top level
SAM, the set will switch to the normal user menu (with the
SAM mode still active in the background). To return to the
SAM menu press the MENU button.
•The “OSD/STATUS/INFO/i+” key from the user remote will
toggle the OSD “on/off” with “SAM” OSD remaining always
“on”.
•Press the following key sequence on the remote control
transmitter: “062596” directly followed by the MENU button
to switch to SDM (do not allow the display to time out
between entries while keying the sequence).
How to Store SAM Settings
To store the settings changed in SAM mode (except the
OPTIONS and RGB ALIGN settings), leave the top level SAM
menu by using the POWER button on the remote control
transmitter or the television set. The mentioned exceptions
must be stored separately via the STORE button.
How to Exit
Switch the set to STANDBY by pressing the mains button on
the remote control transmitter or the television set.
Note:
•When the TV is switched “off” by a power interrupt while in
SAM, the TV will show up in “normal operation mode” as
soon as the power is supplied again. The error buffer will
not be cleared.
in the “Alignments” chapter for a detailed
for a detailed description.
for
instructions.
for detailed
•In case the set is in Factory mode by accident (with “F”
displayed on screen), by pressing and hold “VOL-“ and
“CH-” together should leave Factory mode.
5.2.4Customer Service Mode (CSM)
Purpose
The Customer Service Mode shows error codes and
information on the TV’s operation settings. A call centre can
instruct the customer (by telephone) to enter CSM in order to
identify the status of the set. This helps them to diagnose
problems and failures in the TV before making a service call.
The CSM is a read-only mode; therefore, modifications are not
possible in this mode.
Specifications
•Ignore “Service unfriendly modes”.
•Line number for every line (to make CSM language
independent).
•Set the screen mode to full screen (all contents on screen
is visible).
•After leaving the Customer Service Mode, the original
settings are restored.
•Possibility to use “CH+” or “CH-” for channel surfing, or
enter the specific channel number on the RC.
How to Activate
To activate CSM, press the following key sequence on a
standard remote control transmitter: “123654” (do not allow the
display to time out between entries while keying the sequence).
After entering the Customer Service Mode, the following items
are displayed:
Menu Explanation CSM1
1. Set Type. Type number, e.g. 32PFL5605/93. (*)
2. Production code. Product serial no., e.g.
BZ1A1008123456 (*). BZ= Production centre, 1= BOM
code, A= Service version change code, 10= Production
year, 08= Production week, 123456= Serial number.
3. not used
4. - Option Code 1. Option code information (group 1).
- Option Code 2. Option code information (group 2).
5. SSB. Indication of the SSB factory ID (= 12nc). (*)
6. Display. Indication of the display ID (=12 nc). (*)
7.
PSU. Indication of the PSU factory ID (= 12nc).
(*) If an NVM IC is replaced or initialized, these items must be
re-written to the NVM. ComPair will foresee in a possibility to
do this.
Menu Explanation CSM2
1. Current Main SW. Shows the main software version.
2. Standby SW. Shows the standby software version.
3. MT8282 SW. Shows the MT8282 software version.
4. Bootloader ID. Shows the Bootloader software ID.
5. NVM Version. The NVM software version no.
6. Flash ID. Shows the flash ID.
Menu Explanation CSM3
1. Signal Quality. Shows the signal quality (No Signal/
POOR/AVERAGE/GOOD).
2. not used
3. Key (HDCP). Indicates if the HDMI keys (or HDCP keys)
are valid or not.
4. not used
5. not used
6. HDMI audio format input stream. Specification of HDMI
audio input stream.
7. HDMI video format input stream. Specification of HDMI
video input stream.
2010-Mar-19
Service Modes, Error Codes, and Fault Finding
EN 17LC10.1A LA5.
How to Exit
To exit CSM, use one of the following methods:
•Press the MENU/HOME button on the remote control
transmitter.
•Press the POWER button on the remote control
transmitter.
•Press the POWER button on the television set.
5.3Service Tools
5.3.1 ComPair
Introduction
ComPair (Computer Aided Repair) is a Service tool for Philips
Consumer Electronics products. and offers the following:
1. ComPair helps you to quickly get an understanding on how
to repair the chassis in a short and effective way.
2. ComPair allows very detailed diagnostics and is therefore
capable of accurately indicating problem areas. You do not
have to know anything about I2C or UART commands
yourself, because ComPair takes care of this.
3. ComPair speeds up the repair time since it can
automatically communicate with the chassis (when the uP
is working) and all repair information is directly available.
4. ComPair features TV software up possibilities.
Specifications
ComPair consists of a Windows based fault finding program
and an interface box between PC and the (defective) product.
The (new) ComPair II interface box is connected to the PC via
an USB cable. For the TV chassis, the ComPair interface box
and the TV communicate via a bi-directional cable via the
service connector(s).
How to Connect
This is described in the ComPair chassis fault finding database.
TO TV
TO
TO
UART SERVICE
CONNECTOR
2
C
I
RS232 /UART
ComPair II Developed by Philips Brugge
Optional power
5V DC
ComPair II
RC in
Optional
Switch
PowerModeLink/
Activity
HDMI
2
C only
I
UART SERVICE
CONNECTOR
RC out
TO
I2C SERVICE
CONNECTOR
Multi
function
PC
•Program software can be downloaded from the Philips
Service website.
Additional cables for VCOM Alignment
•ComPair/I
2
C interface cable: 3122 785 90004.
•ComPair/VGA adapter cable: 9965 100 09269.
Note: If you encounter any problems, contact your local
support desk.
5.4Error Codes
5.4.1Introduction
Error codes are required to indicate failures in the TV set. In
principle a unique error code is available for every:
•Activated (SW) protection.
•Failing I
•General I
The last five errors, stored in the NVM, are shown in the
Service menu’s. This is called the error buffer.
The error code buffer contains all errors detected since the last
time the buffer was erased. The buffer is written from left to
right. When an error occurs that is not yet in the error code
buffer, it is displayed at the left side and all other errors shift one
position to the right.
An error will be added to the buffer if this error differs from any
error in the buffer. The last found error is displayed on the left.
An error with a designated error code may never lead to a
deadlock situation. This means that it must always be
diagnosable (e.g. error buffer via OSD or blinking LED
procedure, ComPair to read from the NVM).
In case a failure identified by an error code automatically
results in other error codes (cause and effect), only the error
code of the MAIN failure is displayed.
Example: In case of a failure of the I
code for a “General I
displayed. The error codes for the single devices (EFFECT) is
not displayed. All error codes are stored in the same error
buffer (TV’s NVM) except when the NVM itself is defective.
5.4.2How to Read the Error Buffer
You can read the error buffer in 3 ways:
•On screen via the SAM/SDM/CSM (if you have a picture).
•Via the blinking LED procedure (when you have no
•Via ComPair.
2
C device.
2
C error.
2
2
C failure” and “Protection errors” is
C bus (CAUSE), the error
Example:
– ERROR: 0 0 0 0 0 : No errors detected
– ERROR: 6 0 0 0 0 : Error code 6 is the last and only
detected error
– ERROR: 9 6 0 0 0 : Error code 6 was detected first and
error code 9 is the last detected (newest) error
picture). See paragraph 5.5 The Blinking LED Procedure.
10000_036_090121.eps
091118
Figure 5-3 ComPair II interface connection
Caution: It is compulsory to connect the TV to the PC as
shown in the picture above (with the ComPair interface in
between), as the ComPair interface acts as a level shifter. If
one connects the TV directly to the PC (via UART), ICs will be
blown!
How to Order
ComPair II order codes:
•ComPair II interface: 3122 785 91020.
•ComPair UART interface cable: 3138 188 75051.
5.4.3Error codes
The “layer 1” error codes are pointing to the defective board.
They are triggered by LED blinking when CSM is activated. In
the LC10 platform, only two boards are present: the SSB and
the PSU, meaning only three layer 1 errors are defined:
•2: SSB
•3: PSU
•4: POK line defective.
The following “layer 2” errors have been assigned:
•00: no error
•11: DC protection of speakers; leads to “Protection”
•21: Post video processing IC (MT8282); leads to “Error”
2
•27: I
•34: Tuner I
•35: EEPROM I
C bus error IF demodulator; leads to “Error”
2
C bus error; leads to “Error”
2
C bus error (M24C16); leads to “Protection”
5.4.4 How to Clear the Error Buffer
The error code buffer is cleared in the following cases:
•By using the CLEAR command in the SAM menu:
•If the contents of the error buffer have not changed for 50
hours, the error buffer resets automatically.
Note: If you exit SAM by disconnecting the mains from the
television set, the error buffer is not reset.
5.5The Blinking LED Procedure
5.5.1Introduction
The software is capable of identifying different kinds of errors.
Because it is possible that more than one error can occur over
time, an error buffer is available, which is capable of storing the
last five errors that occurred. This is useful if the OSD is not
working properly.
Errors can also be displayed by the blinking LED procedure.
The method is to repeatedly let the front LED pulse with as
many pulses as the error code number, followed by a period of
1.5 seconds in which the LED is “off”. Then this sequence is
repeated.
Example (1): error code 4 will result in four times the sequence
LED “on” for 0.25 seconds / LED “off” for 0.25 seconds. After
this sequence, the LED will be “off” for 1.5 seconds. Any RC5
command terminates the sequence. Error code LED blinking is
in red colour.
Example (2): the content of the error buffer is “129600”
After entering SDM, the following occurs:
•1 long blink of 5 seconds to start the sequence,
•12 short blinks followed by a pause of 1.5 seconds,
•9 short blinks followed by a pause of 1.5 seconds,
•6 short blinks followed by a pause of 1.5 seconds,
•1 long blink of 1.5 seconds to finish the sequence,
•The sequence starts again with 12 short blinks.
5.6Fault Finding and Repair Tips
Notes:
•It is assumed that the components are mounted correctly
with correct values and no bad solder joints.
•Before any fault finding actions, check if the correct
options are set.
5.6.1NVM Editor
In some cases, it can be convenient if one directly can change
the NVM contents. This can be done with the “NVM Editor” in
SAM mode. With this option, single bytes can be changed.
Caution:
•Do not change these, without understanding the
function of each setting, because incorrect NVM
settings may seriously hamper the correct functioning
of the TV set!
•Always write down the existing NVM settings, before
changing the settings. This will enable you to return to the
original settings, if the new settings turn out to be incorrect.
5.6.2 Load Default NVM Values
It is possible to download default values automatically into the
NVM in case a blank NVM is placed or when the NVM first 20
address contents are “FF”. After the default values are
downloaded, it is possible to start-up and to start aligning the
TV set. To initiate a forced default download the following
action has to be performed:
1. Switch “off” the TV set with the mains cord disconnected
from the wall outlet (it does not matter if this is from “Standby” or “Off” situation).
2. Short-circuit the SDM pads on the SSB (keep short
circuited, see Figure 5-2
3. Press “P+” or “CH+” on the local keyboard (and keep it
pressed).
4. Reconnect the mains supply to the wall outlet.
5. Release the “P+” or “CH+” when the set is started up and
has entered SDM.
When the downloading has completed successfully, the set will
perform a restart. After this, put the set to standby and remove
the short-circuit on the SDM pads.
).
5.5.2 Displaying the Entire Error Buffer
Additionally, the entire error buffer is displayed when Service
Mode “SDM” is entered. In case the TV set is in protection or
Stand-by: The blinking LED procedure sequence (as in SDMmode in normal operation) must be triggered by the following
RC sequence: “MUTE” “062500” “OK”.
In order to avoid confusion with RC5 signal reception blinking,
this blinking procedure is terminated when a RC5 command is
received.
2010-Mar-19
Alternative method:
It is also possible to upload the default values to the NVM with
ComPair in case the SW is changed, the NVM is replaced with
a new (empty) one, or when the NVM content is corrupted.
After replacing an EEPROM (or with a defective/no EEPROM),
default settings should be used to enable the set to start-up and
allow the Service Default Mode and Service Alignment Mode to
be accessed.
5.6.3Fault finding tips Tuner Section
When there is no picture in analog RF mode:
•Check if supply voltages 5 V are present at test points
F205, F206 and F231.
•Check whether picture is present in AV.
•Check if I
2
C lines are working properly (3.3 V).
•Store a known channel manually and check if there is an IF
output signal at the tuner pin 12. If not, the tuner may be
faulty.
•Feed-in a 105 dBuV signal at the tuner pin 12 and check
whether there is an CVBS output signal from the IF
demodulator. If not, the IF demodulator may be faulty.
Check the components in this area.
Service Modes, Error Codes, and Fault Finding
18920_207_100318.eps
100318
EN 19LC10.1A LA5.
5.6.4Fault finding tips Audio Section
Perform following actions for trouble shooting in the Audio
section. Also refer to Figure 5-4
.
•Check presence of +24VAUDIO voltage on testpoint F121
in diagram B01.
•Check presence of +24VAUDIO voltage on pins 19/20 of
the class-D amplifier or testpoint F300 in diagram B03.
•Check availability of audio input signal at pins 5 (L) and 6
(R) of the class-D amplifier in diagram B03.
•Check signal level on pin 4 (MUTE) of the class-D amplifier
in diagram B03. The level should be LOW (0 V).
•Check signal level on pin 2 (SD) of the class-D amplifier in
diagram B03. The level should be HIGH (3 V).
Figure 5-4 Fault finding tree audio
2010-Mar-19
EN 20LC10.1A LA5.
5.7Software Upgrading
5.7.1Introduction
It is possible for the user to upgrade the main software via the
USB port. This allows replacement of a software image in a
stand alone set. A description on how to upgrade the main
software can be found in the DFU or on the Philips website.
5.7.2 Main Software Upgrade
Automatic Software Upgrade
In “normal” conditions, so when there is no major problem with
the TV, the main software and the default software upgrade
application can be upgraded with the “autorun.upg” (FUS part
in the one-zip file). This can also be done by the consumers
themselves, but they will have to get their software from the
commercial Philips website or via the Software Update
Assistant in the user menu (see DFU). The “autorun.upg” file
must be placed in the root of your USB stick.
How to upgrade:
1. Copy “autorun.upg” to the root of your USB stick.
2. Insert USB stick in the side I/O while the set is in “On”
mode. The “Menu” icon will be prompted automatically. Go
to the “Setup” menu for local updates. The TV will prompt
the “upgrade” message; press “Acknowledge” to continue,
after which the upgrading will start automatically. As soon
as the programming is finished, the set will restart. In the
“Setup” menu you can check if the latest software is
running.
Service Modes, Error Codes, and Fault Finding
5.7.3Content and Usage of the One-Zip Software File
Below you find a content explanation of the One-Zip file, and
instructions on how and when to use it. Only files that are
relevant for Service are mentioned here!
•EDID_clustername_version.zip. Contains the EDID
content of the different EDID NVMs. See ComPair for
further instructions.
•FUS_clustername_version.zip. Contains the
“autorun.upg” which is needed to upgrade the TV main
software and the software download application.
•NVM_clustername_version.zip. Default NVM content.
Must be programmed via ComPair.
5.7.4How to Copy NVM Data to/from USB
Write NVM data to USB
1. Insert the USB stick into the USB slot while in SAM mode.
2. Execute the command "NVM Copy" > "NVM Copy to USB",
to copy the NVM data to the USB stick. The NVM filename
on the USB stick will be named "NMLC101A.BIN" (this
takes a couple of seconds).
Write NVM data to TV
1. First, ensure (via a PC) that the filename on the USB stick
has the correct format: "NMLC101A.BIN".
2. Insert the USB stick into the USB slot while in SAM mode.
3. Execute the command "NVM Copy" > "NVM Copy from
USB" to copy the USB data to NVM (this takes about a
minute to complete).
Important: The file must be located in the root directory of the
USB stick.
2010-Mar-19
Loading...
+ 44 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.