Philips BFT93W Datasheet

DISCRETE SEMICONDUCTORS
DATA SH EET
BFT93W
Product specification Supersedes data of November 1992 File under Discrete Semiconductors, SC14
Philips Semiconductors
March 1994
Philips Semiconductors Product specification
PNP 4 GHz wideband transistor BFT93W
FEATURES
High power gain
Gold metallization ensures
excellent reliability
SOT323 (S-mini) package.
APPLICATIONS
It is intended as a general purpose transistor for wideband applications up to 2 GHz.
DESCRIPTION
Silicon PNP transistor in a plastic, SOT323 (S-mini) package. The BFT93W uses the same crystal as the SOT23 version, BFT93.
PINNING
PIN DESCRIPTION
base
1
emitter
2
collector
3
handbook, 2 columns
12
Top view
BFT93W Marking code: X1.
Fig.1 SOT323.
3
MBC870
QUICK REFERENCE DATA
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V V I P h C f
CBO CEO
C
tot FE
re
T
collector-base voltage open emitter −−−15 V collector-emitter voltage open base −−−12 V collector current (DC) −−−50 mA total power dissipation up to Ts=93°C; note 1 −−300 mW DC current gain IC= 30 mA; VCE= 5 V 20 50 feedback capacitance IC= 0; VCE= 5 V; f = 1 MHz 1 pF transition frequency IC= 30 mA; VCE= 5V;
4 GHz
f = 500 MHz
G
UM
F noise figure I
maximum unilateral power gain IC= 30 mA; VCE= 5V;
f = 500 MHz; T
= 10 mA; VCE= 5V;
C
amb
=25°C
15.5 dB
2.4 dB
f = 500 MHz
T
j
junction temperature −−150 °C
Note
is the temperature at the soldering point of the collector pin.
1. T
s
March 1994 2
Philips Semiconductors Product specification
PNP 4 GHz wideband transistor BFT93W
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
CBO
V
CEO
V
EBO
I
C
P
tot
T
stg
T
j
THERMAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS VALUE UNIT
R
th j-s
collector-base voltage open emitter −−15 V collector-emitter voltage open base −−12 V emitter-base voltage open collector −−2V collector current (DC) −−50 mA total power dissipation up to Ts=93°C; note 1 300 mW storage temperature 65 +150 °C junction temperature 150 °C
thermal resistance from junction to soldering point up to Ts=93°C; note 1 190 K/W
Note to the “Limiting values” and “Thermal characteristics”
1. T
is the temperature at the soldering point of the collector pin.
s
CHARACTERISTICS
=25°C (unless otherwise specified).
T
j
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
CBO
h f
T
C
FE
c
collector cut-off current IE= 0; VCB= 5V −−−50 nA DC current gain IC= 30 mA; VCE= 5 V 20 50 transition frequency IC= 30 mA; VCE= 5V;
f = 500 MHz; T
amb
=25°C
collector capacitance IE=ie= 0; VCB= 5V;
4 GHz
1.2 pF
f = 1 MHz
C
e
emitter capacitance IC=ic= 0; VEB= 0.5 V;
1.4 pF
f = 1 MHz
C
re
feedback capacitance IC= 0; VCE= 5V;
1 pF
f = 1 MHz
G
UM
maximum unilateral power gain; note 1
F noise figure Γ
IC= 30 mA; VCE= 5V; f = 500 MHz; T
I
= 30 mA; VCE= 5V;
C
f = 1 GHz; T
= Γ
; IC= 10 mA;
s
opt
amb
=25°C
amb
=25°C
15.5 dB
10 dB
2.4 dB
VCE= 5 V; f = 500 MHz
= Γ
s
opt
; IC= 10 mA;
Γ
3 dB
VCE= 5 V; f = 1 GHz
Note
1. G
is the maximum unilateral power gain, assuming s12 is zero.
UM
March 1994 3
2
s
G
UM
10
-----------------------------------------------------------­1s
()1s
21
2
11
()
dB.log=
2
22
Philips Semiconductors Product specification
PNP 4 GHz wideband transistor BFT93W
150
MLB424
o
T ( C)
s
400
P
tot
(mW)
300
200
100
0
0 50 100 200
Fig.2 Power derating as a function of the soldering
point temperature.
30
MLB425
I (mA)
C
60
h
FE
40
20
0
0
VCE= 5V; Tj=25°C.
10 20 40
Fig.3 DC current gain as a function of collector
current, typical values.
2
C
re
(pF)
1.6
1.2
0.8
0.4
0
0
IC= 0; f = 1 MHz.
48
12 16
V (V)
CB
Fig.4 Feedback capacitance as a function of
collector-base voltage, typical values.
MLB426
V =
CE 10 V
5 V
I (mA)
C
MLB427
2
10
6
f
T
(GHz)
4
2
20
0
f = 500 MHz; T
amb
101
=25°C.
Fig.5 Transition frequency as a function of
collector current, typical values.
March 1994 4
Philips Semiconductors Product specification
PNP 4 GHz wideband transistor BFT93W
30
MSG G
UM
I (mA)
C
MLB428
30
gain (dB)
20
10
0
0
VCE= 5 V; f = 500 MHz.
10 20 40
Fig.6 Gain as a function of collector current,
typical values.
30
MSG G
UM
I (mA)
MLB429
C
30
gain (dB)
20
10
0
0
VCE= 5 V; f = 1 GHz.
10 20 40
Fig.7 Gain as a function of collector current,
typical values.
50
gain (dB)
40
G
UM
MSG
30
20
10
0
10
VCE= 5 V; IC= 10 mA.
2
10
Fig.8 Gain as a function of frequency,
typical values.
MLB430
G
max
3
10
f (MHz)
4
10
50
gain (dB)
40
G
UM
MSG
30
20
10
0
10
VCE= 5 V; IC= 30 mA.
2
10
3
10
G
f (MHz)
MLB431
max
4
10
Fig.9 Gain as a function of frequency,
typical values.
March 1994 5
Philips Semiconductors Product specification
PNP 4 GHz wideband transistor BFT93W
o
90
1.0
0.8
0.6
135
1
o
0.5
o
45
2
VCE= 10 V; IC= 30 mA.
0.2
3 GHz
5
0.4
0.2
180
o
0.2 0.5 1 2 5
0
0.2
0.5
o
135
1
o
90
40 MHz
o
00
5
2
o
45
MLB434
1.0
Fig.10 Common emitter input reflection coefficient (s11), typical values.
o
90
135
o
o
45
40 MHz
o
180
50 40 30 20 10
o
135
3 GHz
VCE= 10 V; IC= 30 mA.
Fig.11 Common emitter forward transmission coefficient (s21), typical values.
March 1994 6
o
0
o
45
o
90
MLB435
Philips Semiconductors Product specification
PNP 4 GHz wideband transistor BFT93W
o
90
VCE= 10 V; IC= 30 mA.
135
o
o
45
3 GHz
0.5 0.4 0.3 0.2 0.1
o
180
o
135
40 MHz
o
90
o
45
MLB436
o
0
Fig.12 Common emitter reverse transmission coefficient (s12), typical values.
o
90
1.0
0.8
0.6
135
1
o
0.5
o
45
2
0.2
180
o
0.2 0.5 1 2 5
0
3 GHz
0.2
0.5
o
135
VCE= 10 V; IC= 30 mA.
Fig.13 Common emitter output reflection coefficient (s22), typical values.
March 1994 7
5
0.4
0.2
o
00
40 MHz
5
2
1
o
90
o
45
MLB437
1.0
Philips Semiconductors Product specification
PNP 4 GHz wideband transistor BFT93W
6
F
(dB)
4
2
0
VCE= 5V.
101
1 GHz
500 MHz
I (mA)
C
Fig.14 Minimum noise figure as a function of
collector current, typical values.
MLB432
f (MHz)
MLB433
4
10
6
F
(dB)
4
2
2
10
0
10
VCE= 5V.
2
10
I =
C 30 mA
20 mA
10 mA
5 mA
3
Fig.15 Minimum noise figure as a function of
frequency, typical values.
March 1994 8
Loading...
+ 16 hidden pages