Composite Transistors
2.8
+0.2
–0.3
1.50.65±0.15 0.65±0.15
1
6
5
4
3
2
1.45±0.1
0.95 0.95
1.9±0.1
+0.25
–0.05
0.3
+0.1
–0.05
0.5
+0.1
–0.05
2.9
+0.2
–0.05
1.1
+0.2
–0.1
0.8
0.4±0.2
0 to 0.05
0.16
+0.1
–0.06
0.1 to 0.3
XN6435
Silicon PNP epitaxial planer transistor
For high-frequency amplification
Features
■
●
Two elements incorporated into one package.
●
Reduction of the mounting area and assembly cost by one half.
Basic Part Number of Element
■
●
2SA1022 × 2 elements
Absolute Maximum Ratings (Ta=25˚C)
■
Parameter Symbol Ratings Unit
Collector to base voltage
Rating
Collector to emitter voltage
of
Emitter to base voltage
element
Collector current I
Total power dissipation
Junction temperature
Overall
Storage temperature
V
CBO
V
CEO
V
EBO
C
P
T
T
j
T
stg
–30 V
–20 V
–5 V
–30 mA
300 mW
150 ˚C
–55 to +150 ˚C
1 : Collector (Tr1) 4 : Base (Tr2)
2 : Base (Tr1) 5 : Emitter (Tr2)
3 : Collector (Tr2) 6 : Emitter (Tr1)
EIAJ : SC–74
Mini Type Package (6–pin)
Marking Symbol: 7W
Internal Connection
Tr1
61
5
Unit: mm
2
43
Tr2
Electrical Characteristics (Ta=25˚C)
■
Parameter Symbol Conditions min typ max Unit
I
Collector cutoff current
Emitter cutoff current I
Forward current transfer ratio h
Forward current transfer hFE ratio
Collector to emitter saturation voltage
Base to emitter voltage V
Transition frequency f
Noise figure NF VCB = –10V, IE = 1mA, f = 5MHz 2.8 dB
Reverse transfer impedance Z
Common emitter reverse transfer capacitance
Ratio between 2 elements
*1
CBO
I
CEO
EBO
FE
hFE (small/large)*1VCE = –10V, IC = –1mA 0.5 0.99
V
CE(sat)
BE
T
rb
C
re
VCB = –10V, IE = 0 –0.1 µA
VCE = –20V, IB = 0 –100 µA
VEB = –5V, IC = 0 –10 µA
VCE = –10V, IC = –1mA 50 220
IC = –10mA, IB = –1mA – 0.1 V
VCE = –10V, IC = –1mA – 0.7 V
VCB = –10V, IE = 1mA, f = 200MHz 150 MHz
VCB = –10V, IE = 1mA, f = 2MHz 22 Ω
VCB = –10V, IE = 1mA, f = 10.7MHz
1.2 pF
1
Composite Transistors
XN6435
PT — Ta IC — V
500
)
400
mW
(
T
300
200
100
Total power dissipation P
0
0 40 80 120 160
Ambient temperature Ta (˚C
hFE — I
C
120
FE
100
80
60
40
Ta=75˚C
25˚C
–25˚C
VCE=–10V
V
CE
–30
–25
)
mA
(
–20
C
–15
–10
Collector current I
–5
0
0 –10–2 –4 –8–6
)
Collector to emitter voltage VCE (V
Cob — V
6
)
pF
(
5
ob
4
3
2
CB
Ta=25˚C
IB=–250µA
–200µA
–150µA
–100µA
–50µA
f=1MHz
I
=0
E
Ta=25˚C
)
–100
)
V
(
–30
CE(sat)
–10
–3
–1
–0.3
–0.1
–0.03
Collector to emitter saturation voltage V
–0.01
–0.1 –0.3
Collector current IC (mA
)
5
pF
(
re
4
3
2
— I
CE(sat)
25˚C
–1 –3 –10 –30 –100
C
IC/IB=10
Ta=75˚C
–25˚C
)
Cre — V
CE
IC=–1mA
f=10.7MHz
Ta=25˚C
20
Forward current transfer ratio h
0
–0.1 –0.3
–1 –3 –10 –30 –100
Collector current IC (mA
fT — I
E
600
)
500
MHz
(
T
400
300
200
100
Transition frequency f
0
0.1 0.3 1 3 10 30 100
VCB=–10V
Ta=25˚C
Emitter current IE (mA
1
Collector output capacitance C
0
–0.1 –0.3
)
24
20
–1 –3 –10 –30 –100
Collector to base voltage VCB (V
PG — I
C
VCE=–10V
f=100MHz
Ta=25˚C
)
)
dB
(
16
12
8
Power gain PG
4
0
–0.1 –0.3 –1 –3 –10 –30 –100
)
Collector current IC (mA
)
1
Common emitter reverse transfer capacitance C
0
–1 –5
–2 –3
Collector to emitter voltage VCE (V
NF — I
5
4
)
dB
(
3
2
Noise figure NF
1
0
0.1 0.3 1 3 1020.50.2 5
Emitter current IE (mA
–10
–20
E
–50
–30
VCB=–10V
f=100MHz
Ta=25˚C
)
–100
)
2