ON Semiconductor NCV78825 User Manual

NCV78825
f
T
High Efficiency 3 A Synchronous Buck Dual LED Driver with Integrated High Side Switch and Current Sensing for
www.onsemi.com
Automotive Front Lighting
Description
The NCV78825 is a single−chip and high efficient Synchronous Buck Dual LED Driver designed for automotive front lighting applications like high beam, low beam, DRL (daytime running light), turn indicator, fog light, static cornering, etc. The NCV78825 is in particular designed for high current LEDs and provides a complete solution to drive 2 LED strings of up−to 60 V. It includes 2 independent current regulators for the LED strings and required diagnostic features for automotive front lighting with a minimum of external components – the chip doesn’t need any external sense resistor for the buck current regulation. The available output current and voltages can be customized per individual LED string. When more than 2 LED channels are required on 1 module, then 2, 3 or more devices NCV78825 can be combined; also with NCV787x3 devices – the predecessor of the NCV78825. Thanks to the SPI programmability, one single hardware configuration can support various application platforms.
Features
A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb−Free Package
Single Chip
Buck Topology
2 LED Strings up−to 60 V
High Current Capability up to 3 A DC per Output
See detailed ordering and shipping information on page 2 o this data sheet.
ORDERING INFORMATION
Integrated High Side Switch
Low Side Pre−driver for External NMOS Device
High Overall Efficiency
Minimum of External Components
Integrated High Accuracy Current Sensing
Integrated Switched Mode Buck Current Regulator
Average Current Regulation Through the LEDs
High Operating Frequencies to Reduce Inductor Sizes
Low EMC Emission for LED Switching and Dimming
ypical Applications
High Beam
Low Beam
DRL
Position or Park Light
Turn Indicator
Fog
Static Cornering
SPI Interface for Dynamic Control of System Parameters
Fail Safe Operating (FSO) Mode, Stand−Alone Mode
Master−Slave Synchronization Mode of the Buck Channels
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable
This is a Pb−Free Device
SSOP36 EP
CASE 940AB
MARKING DIAGRAM
NV78825−0
AWLYYWWG
© Semiconductor Components Industries, LLC, 2017
February, 2018 − Rev. 1
1 Publication Order Number:
NCV78825/D
NCV78825
ORDERING INFORMATION
Table 1. AVAILABLE PART NUMBERS
Device Marking Package* Shipping
NCV78825DQ0R2G NV78825−0 SSOP36 EP
1500 / Tape & Reel
(PbFree)
*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting
Techniques Reference Manual, SOLDERRM/D.
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specification Brochure, BRD8011/D.
TYPICAL APPLICATION SCHEMATIC
VBOOST
C_M3V
μC
VIO of MCU
R_SDO
VDRIVE
C_DRV
C_DD
VINBCK1
VBOOST
LBCKSW1
VDRIVE
VDD_C
RSTB LEDCTRL1
LEDCTRL2 SCLK SDI SDO
CSB
TEST
NCV78825
TEST1
TEST2
VBOOSTM3V
GND
LSFET1
GNDS1
VLED1
VINBCK2
LBCKSW2
LSFET2 GNDS2
VLED2
EXPOSED
PAD
R_LED_1
R_LED_2
Figure 1. Typical Application Schematic
L_BCK_1
T_LS 1
C_LED_1
L_BCK_2
T_LS 2
C_LED_2
LED−string 1
C_BCK_1
LED−string 2
C_BCK_2
www.onsemi.com
2
NCV78825
Table 2. EXTERNAL COMPONENTS
Component
L_BCK_x Buck regulator coil (see BUCK REGULATOR chapter for details) 47 (22) μH
C_BCK_x
C_M3V
C_DD
C_DRV C_LED_x R_LED_x
R_SDO
T_LSx
1. Pin TEST has to be connected to ground. TEST1 and TEST2 pins can be connected to ground or left floating.
2. C_LED_x is optional. If used, time constant of the C_LED_x and R_LED_x filter has to be lower than minimal LEDCTRLx PWM time for proper VLED measurement.
3. R_LED_x is necessary to ensure Absolute maximum ratings of IVLEDx current (see Table 4).
4. GNDSx pins have to be star connections to the corresponding S of the external LS FET.
Buck regulator output capacitor (see BUCK REGULATOR chapter for details) 220 nF Capacitor for M3V regulator 470 (see Table 8) nF VDD decoupling capacitor 470 (see Table 7) nF V
decoupling capacitor 470 nF
DRIVE
Optional VLEDx pin filter capacitor (Note 2) 1 nF VLEDx pin serial resistor (Notes 2 and 3) 1 kΩ SPI pull−up resistor 1 kΩ Buck regulator low side switch (LS FET) NVTFS5C680NL,
Function Typ. Value Unit
NVMFS5C673NL
www.onsemi.com
3
NCV78825
VDRIVE
(4.5 V – 10 V)
VDD_C
LEDCTRL1 LEDCTRL2
RSTB
SDI
SCLK
CSB SDO
TEST
TEST1 TEST2
VGATE
LDO
Bandgap
POR
Bias
OSC
5 V input
5 V input/
OD output
LV IOs
2−Channel Buck
Vref
Digital control
ADC
MUX
Dividers
Temp
OTP
CTRL
CTRL
VBOOSTM3V
regulator
Current
sense CMP
Predriver
VGATE
Current
sense CMP
Predriver
VGATE
VBOOST
VBOOSTM3V
VINBCK11
VINBCK12
LBCKSW11
LBCKSW12
LSFET1
GNDS1
VLED1
VINBCK21
VINBCK22
LBCKSW21
LBCKSW22
LSFET2
GNDS2 VLED2
EXPOSED PAD
VDD,
VLEDx
VBOOST,
GND
Figure 2. Block Diagram
www.onsemi.com
4
NCV78825
RSTB
SDO
SCLK
SDI
CSB
LSFET1
GNDS1
NC
VBOOST
VBOOSTM3V
NC
10
11
1
2
3
4
5
6
7
8
9
36
35
34
33
32
31
30
29
28
27
26
LEDCTRL1
LEDCTRL2
TEST
TEST1
VDRIVE
LSFET2
GNDS2
GND
TEST2
VDD_C
NC
LBCKSW11
LBCKSW12
NC
VLED1
NC
VINBCK11
VINBCK12
12
13
14
15
16
SELF PROT PDMOS
17
18
Figure 3. ESD Schematic
SELF PROT PDMOS
25
24
23
22
21
20
19
LBCKSW21
LBCKSW22
NC
VLED2
NC
VINBCK21
VINBCK22
www.onsemi.com
5
RSTB
1
SDO
2 3
SCLK
4
SDI
5
CSB LSFET1
6
GNDS1
7
NC
8 9
VBOOST
10
VBOOSTM3V NC
11 12
LBCKSW11
13
LBCKSW12
14
NC
15
VLED1
16
NC
17
VINBCK11
18
VINBCK12
NCV78825
LEDCTRL1 LEDCTRL2
TEST
TEST1 VDRIVE LSFET2
GNDS2
GND
TEST2
VDD_C
NC LBCKSW21 LBCKSW22
NC
VLED2
NC
VINBCK21 VINBCK22
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19
Figure 4. Pin Connections − SSOP36−EP (Top View)
Table 3. PIN DESCRIPTION
Pin No.
SSOP36−EP
VBOOST Supply
Voltage
1 2 SDO SPI data output MV open−drain 3 SCLK SPI clock MV in 4 SDI SPI data input MV in 5 CSB SPI chip select (chip select bar) MV in 6 LSFET1 Buck 1 driver output for ext. low side switch MV out 7 GNDS1 Buck 1 ground sense for ext. low side switch MV out
8, 11, 14, 16, 21, 23, 26 GND/NC GND/NC connection in application NC
9 VBOOST Booster input voltage pin HV supply 10 VBOOSTM3V VBOOSTM3V regulator output pin HV out (supply) 12 LBCKSW11 Buck 1 switch output HV out 13 LBCKSW12 Buck 1 switch output HV out 15 VLED1 LED String 1 Forward Voltage Sense Input HV in 17 VINBCK11 Buck 1 high voltage supply HV supply 18 VINBCK12 Buck 1 high voltage supply HV supply 19 VINBCK22 Buck 2 high voltage supply HV supply 20 VINBCK21 Buck 2 high voltage supply HV supply 22 VLED2 LED String 2 Forward Voltage Sense Input HV in 24 LBCKSW22 Buck 2 switch output HV out
Pin Name Description I/O Type
RSTB External reset signal MV in
www.onsemi.com
6
NCV78825
Table 3. PIN DESCRIPTION (continued)
Pin No.
SSOP36−EP
25 LBCKSW21 Buck 2 switch output HV out 27 VDD_C 3.3 V logic supply LV supply 28 TEST2 Internal function. To be tied to GND or left open LV in/out 29 GND Ground Ground 30 GNDS2 Buck 2 ground sense for ext. low side switch MV out 31 LSFET2 Buck 2 driver output for ext. low side switch MV out 32 VDRIVE Pre−driver supply MV supply 33 TEST1 Internal function. To be tied to GND or left open LV in/out 34 TEST Internal function. To be tied to GND LV in 35 LEDCTRL2 LED string 2 enable MV in 36 LEDCTRL1 LED string 1 enable MV in
EP EXPOSED PAD To be tied to GND
Table 4. ABSOLUTE MAXIMUM RATINGS
Characteristic
VBOOST Supply Voltage V VINBCKx Supply Voltage (Note 1) VINBCKx Max of
VBOOSTM3V Supply Voltage (Note 2) VBOOSTM3V Max of V VDRIVE Supply Voltage VDRIVE −0.3 12 V LSFETx Voltage (Note 3) LSFETx −0.3 Min of VDRIVE + 0.3, 12 V VLED Sense Voltage VLEDx −0.3 Min of V Logic Supply Voltage (Note 4) V Medium Voltage IO Pins IOMV −0.3 7.0 V Test Pins (Note 5) TESTx −0.3 Min of V Buck Switch Low Side (Note 1) LBCKSWx −2 VINBCKx + 0.3 V VLED Sink/source Current IVLEDx −30 30 mA Storage Temperature (Note 6) T The Exposed Pad (Note 7) EXPAD GND − 0.3 GND + 0.3 V The LS Pre−driver Sense GND Voltage GNDSx GND − 0.3 GND + 0.3 V Electrostatic Discharge on Component
Level Human Body Model (Note 8) Electrostatic Discharge on Component
Level Charge Device Model (Note 8)
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. V(VINBCKx − LBCKSWx) < 70 V, the driver in off state.
2. The VBOOSTM3V regulator in off state.
3. The LSFETx driver in HiZ state.
4. Absolute maximum rating for pins: VDD, TEST. Also valid for relative difference VBOOST − VBOOSTM3V.
5. Absolute maximum rating for pins: TEST1, TEST2.
6. For limited time up to 100 hours. Otherwise the max storage temperature is 85°C.
7. The exposed pad must be hard wired to GND pin in the application to ensure both electrical and thermal connection.
8. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AECQ100002 (EIA−JESD22A114−B) ESD Charge Device Model tested per EIA−JESD22C101 Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78
Symbol Min Max Unit
BOOST
DD
STRG
V
ESD_HBM
V
ESD_CDM
VBOOSTM3V − 0.3, −0.3
−0.3 68 V Min of V
BOOST
− 3.6, −0.3 Min of V
BOOST
BOOST
BOOST
−0.3 3.6 V
DD
−50 150 °C
−2 +2 kV
−500 +500 V
I/O TypeDescriptionPin Name
+ 0.3, 68 V
+ 0.3, 68 V
+ 0.3, 68 V
+ 0.3, 3.6 V
www.onsemi.com
7
NCV78825
Operating ranges define the limits for functional operation and parametric characteristics of the device. A mission profile (Note 1) is a substantial part of the operation
conditions; hence the Customer must contact ON Semiconductor in order to mutually agree in writing on the allowed missions profile(s) in the application.
Table 5. RECOMMENDED OPERATING RANGES
Characteristic
Boost Supply Voltage V VINBCKx Supply Voltage (Note 2) VINBCKx V VDRIVE Voltage Supply VDRIVE 4.5 10 V Buck Switch Peak Output Current I_LBCKSW 3.8 A Functional Operating Junction
Temperature Range (Note 3) Parametric Operating Junction
Temperature Range (Note 4) The Exposed Pad Connection (Note 5) EXPOSED_PAD GND − 0.1 GND GND + 0.1 V The LS Pre−driver Sense GND Voltage
(Note 6)
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
1. A mission profile describes the application specific conditions such as, but not limited to, the cumulative operating conditions over life time,
the system power dissipation, the system’s environmental conditions, the thermal design of the customer’s system, the modes, in which the device is operated by the customer, etc. No more than 100 cumulated hours in life time above T
2. Hard connection of VINBCKx to VBOOST on PCB.
3. The circuit functionality is not guaranteed outside the functional operating junction temperature range. Also please note that the device is
verified on bench for operation up to 170°C but that the production test guarantees 155°C only.
4. The parametric characteristics of the circuit are not guaranteed outside the Parametric operating junction temperature range.
5. The exposed pad must be hard wired to GND pin in an application to ensure both electrical and thermal connection.
6. The hard connection of the GNDSx pins on the PCB, mainly to the S of the LS NMOS device
corresponding S of the LS NMOS max +/− 0.2 mV.
Symbol Min Typ Max Unit
BOOST
T
JF
T
JP
GNDSx GND − 0.1 GND GND + 0.1 mV
6 67 V
− 0.1 V
BOOST
−40 155 °C
−40 150 °C
BOOST
V
.
tw
+ 0.1 V
BOOST
the voltage difference between the pin and
Table 6. THERMAL RESISTANCE
Characteristic
Thermal Resistance Junction to Exposed Pad (Note 1) SSOP36−EP Rthjp 3.5 °C/W
1. Includes also typical solder thickness under the Exposed Pad (EP).
Package Symbol Min Typ Max Unit
www.onsemi.com
8
NCV78825
ELECTRICAL CHARACTERISTICS
Table 7. VDD: 3.3 V LOW VOLTAGE ANALOG AND DIGITAL SUPPLY
Characteristic Symbol Conditions Min Typ Max Unit
The Regulator Output Voltage VDD 3.05 3.45 3.6 V VDD External Decoupling Cap C_DD 0.3 0.47 2.2 μF The VDRIVE Current Consumption (Note 2) I_VDRIVE 8 15 mA Output Current Limitation VDD_ILIM 15 160 mA POR Toggle Level on VDD Rising POR POR Toggle Level on VDD Falling POR POR Hysteresis POR OTP UV Toggle Level on VBOOST OTP_UV 13 15 V OTP UV Toggle Level Hysteresis OTP_UV_HYST 0.01 0.2 0.75 V
1. All Min and Max parameters are guaranteed over full junction temperature (TJP) range (−40 °C; 150 °C), unless otherwise specified.
2. Only internal consumption, Excluding LS NMOS gate charge current.
3V_H 3V_L
3V_HYST
Table 8. VBOOSTM3V: HIGH SIDE AUXILIARY SUPPLY
Characteristic
VBOOSTM3V Regulator Output Voltage V DC Output Current Capability (Note 1) M3V_IOUT 7.5 42 mA Output Current Limitation M3V_ILIM 300 mA VBOOSTM3V External Decoupling Cap C_M3V Referenced to VBOOST 0.1 0.47 2.2 VBOOSTM3V Ext. Decoupling Cap. ESR C_M3V_ESR Referenced to VBOOST 200 VBSTM3V POR Level, Falling Edge M3V_PORL Referenced to VBOOST −2.7 −1.8 V VBSTM3V POR Level, Rising Edge M3V_PORH Referenced to VBOOST −2.4 −1.8 V VBSTM3V POR Level Hysteresis M3V_PORHYST 0.05 V VBOOST POR Level M3V_VBSTPOR VBOOST goes down 3.5 5.5 V
1. VBOOST = 68 V, f
= 2 MHz, maximum total gate charge for both activated BUCK channels Qgate = 20 nC
BUCK
Symbol Conditions Min Typ Max Unit
BSTM3V
Referenced to VBOOST −3.6 −3.3 −3.0 V
2.7 3.05 V
2.45 2.8 V
0.01 0.2 0.75 V
mF
mW
Table 9. OSC10M: SYSTEM OSCILLATOR CLOCK
Characteristic Symbol Conditions Min Typ Max Unit
System Oscillator Frequency FOSC10M 8 10 12 MHz
Table 10. ADC FOR MEASURING VBOOST, VDD, VLED1, VLED2, TEMP
Characteristic
ADC Resolution ADC_RES 8 Bits Integral Nonlinearity (INL) ADC_INL Best fitting straight line method −1.5 1.5 LSB Differential Nonlinearity (DNL) ADC_DNL Best fitting straight line method −2 2 LSB Full Path Gain Error for
Measurements of VLEDx, VBOOST
Offset at Output of ADC ADC_OFFS −2 2 LSB Time for 1 SAR Conversion ADC_CONV Full conversion of 8 bits 6.67 8 10 ADC Full Scale for VDD
Measurement ADC Full Scale for VLEDx
Measurement ADC Full Scale for VLEDx
Measurement ADC Full Scale for VLEDx
Measurement
Symbol Conditions Min Typ Max Unit
ADC_GE −3.25 3.25 %
ADCFS_VDD 3.87 4 4.13 V
ADCFS_VLED00 The VLED range code is “00” 67.725 70 72.275 V
ADCFS_VLED01 The VLED range code is “01” 48.375 50 51.625 V
ADCFS_VLED10 The VLED range code is “10” 38.700 40 41.300 V
ms
www.onsemi.com
9
NCV78825
Table 10. ADC FOR MEASURING VBOOST, VDD, VLED1, VLED2, TEMP (continued)
Characteristic UnitMaxTypMinConditionsSymbol
ADC Full Scale for VLEDx Measurement
ADC Full Scale for VBOOST Measurement
TSD Threshold Level ADC_TSD ADC measurement of junction
Temperature measurement accuracy at hot
Temperature measurement accuracy at cold
VLED Input Impedance VLED_RES 280 790
Table 11. BUCK REGULATOR – SWITCH
Characteristic Symbol Conditions Min Typ Max Unit
On Resistance, Range 1 RON1 At room−temperature, I(VINBCKx) = 0.18 A,
On Resistance at Hot, Range 1 RON1_H At Tj = 160 °C, I(VINBCKx) = 0.18 A,
On Resistance, Range 2 RON2 At room−temperature, I(VINBCKx) = 0.375 A,
On Resistance at Hot, Range 2 RON2_H At Tj = 160 °C, I(VINBCKx) = 0.375 A,
On Resistance, Range 3 RON3 At room−temperature, I(VINBCKx) = 0.75 A,
On Resistance at Hot, Range 3 RON3_H At Tj = 160 °C, I(VINBCKx) = 0.75 A,
On Resistance, Range 4 RON4 At room−temperature, I(VINBCKx) = 1.5 A,
On Resistance at Hot, Range 4 RON4_H At Tj = 160 °C, I(VINBCKx) = 1.5 A,
On Resistance, Range 5 RON5 At room−temperature, I(VINBCKx) = 3 A,
On Resistance at Hot, Range 5 RON5_H At Tj = 160 °C, I(VINBCKx) = 3 A,
Switching Slope – ON Phase TRISE Normal mode (DRV_SLOW_EN = “0”) 3 V/ns Switching Slope – OFF Phase
(Note 22) Switching Slope – ON Phase TRISE_SL Slow mode (DRV_SLOW_EN = “1”) 1.5 V/ns Switching Slope – OFF Phase
(Note 22)
1. Falling switching slope depends on used current (range, current sense threshold level) and LBCKSWx node capacitance.
ADCFS_VLED11 The VLED range code is “11” 29.025 30 30.975 V
ADCFS_VBST 67.725 70 72.275 V
163 169 175 °C
temperature
ADC_TEMP_H T = 155°C −7 7 °C
ADC_TEMP_C T = −40°C −15 15 °C
7.36
V(BOOST − VINBCKx)  0.2 V
6.3 10.2
V(BOOST − VINBCKx)  0.2 V
3.68
V(BOOST − VINBCKx) 0.2 V
3.2 5.12
V(BOOST − VINBCKx) 0.2 V
1.84
V(BOOST − VINBCKx) 0.2 V
1.7 2.56
V(BOOST − VINBCKx) 0.2 V
0.92
V(BOOST − VINBCKx) 0.2 V
0.9 1.28
V(BOOST − VINBCKx) 0.2 V
0.46
V(BOOST − VINBCKx) 0.2 V
0.5 0.64
V(BOOST − VINBCKx) 0.2 V
TFALL Normal mode (DRV_SLOW_EN = “0”) 3 V/ns
TFALL_SL Slow mode (DRV_SLOW_EN = “1”) 1.5 V/ns
kW
W
W
W
W
W
W
W
W
W
W
Table 12. BUCK REGULATOR – CURRENT REGULATION
Characteristic Symbol Conditions Min Typ Max Unit
Current Sense Threshold Level, Range 1, Min Value
Current Sense Threshold Level, Range 1, Spec. Value
Current Sense Threshold Level, Range 1, Max Value
Current Sense Threshold Level, Range 2, Min Value
ITHR1_000 [BUCKx_VTHR = 000000000]
end of the BUCK ON−phase
ITHR1_219 [BUCKx_VTHR = 011011011]
end of the BUCK ON−phase
Min. value for specified precision
ITHR1_511 [BUCKx_VTHR = 111111111]
end of the BUCK ON−phase
ITHR2_000 [BUCKx_VTHR = 000000000]
end of the BUCK ON−phase
23.40 29.30 35.20 mA
117.19 mA
234.38 mA
46.90 58.59 70.30 mA
www.onsemi.com
10
NCV78825
Table 12. BUCK REGULATOR – CURRENT REGULATION (continued)
Characteristic UnitMaxTypMinConditionsSymbol
Current Sense Threshold Level, Range 2, Spec. Value
Current Sense Threshold Level, Range 2, Max Value
Current Sense Threshold Level, Range 3, Min Value
Current Sense Threshold Level, Range 3, Spec. Value
Current Sense Threshold Level, Range 3, Max Value
Current Sense Threshold Level, Range 4, Min Value
Current Sense Threshold Level, Range 4, Spec. Value
Current Sense Threshold Level, Range 4, Max Value
Current Sense Threshold Level, Range 5, Min Value
Current Sense Threshold Level, Range 5, Spec. Value
Current Sense Threshold Level, Range 5, Max Value
Current Sense Threshold Increase per Code, Range 1
Current Sense Threshold Increase per Code, Range 2
Current Sense Threshold Increase per Code, Range 3
Current Sense Threshold Increase per Code, Range 4
Current Sense Threshold Increase per Code, Range 5
Current Threshold Accuracy Only with Trimming Constant for Range 5 (Note 23)
Current Threshold Accuracy without Temperature Compensation (Note 23)
Current Threshold Accuracy (Note 23)
Offset of Peak Current Comparator
Over−current Detection Level, Range1
Over−current Detection Level, Range2
Over−current Detection Level, Range3
ITHR2_219
ITHR2_511 [BUCKx_VTHR = 111111111]
ITHR3_000 [BUCKx_VTHR = 000000000]
ITHR3_219 [BUCKx_VTHR = 011011011]
ITHR3_511 [BUCKx_VTHR = 111111111]
ITHR4_000 [BUCKx_VTHR = 000000000]
ITHR4_219 [BUCKx_VTHR = 011011011]
ITHR4_511 [BUCKx_VTHR = 111111111]
ITHR5_000 [BUCKx_VTHR = 000000000]
ITHR5_219
ITHR5_511 [BUCKx_VTHR = 111111111]
dITHR1
dITHR2
dITHR3
dITHR4
dITHR5
ITHR_ERR_DD Specified for BUCKx_VTHR
ITHR_ERR_D Specified for BUCKx_VTHR
ITHR_ERR
CMP_OFFSET BUCKx_OFF_CMP_DIS = 1 −10 +10 mV
OCDR1 305 mA
OCDR2 609 mA
OCDR3 1219 mA
[BUCKx_VTHR = 011011011]
end of the BUCK ON−phase.
Min. value for specified precision
end of the BUCK ON−phase
end of the BUCK ON−phase
end of the BUCK ON−phase
Min. value for specified precision
end of the BUCK ON−phase
end of the BUCK ON−phase
end of the BUCK ON−phase
Min. value for specified precision
end of the BUCK ON−phase
end of the BUCK ON−phase
[BUCKx_VTHR = 011011011]
end of the BUCK ON−phase
Min. value for specified precision
end of the BUCK ON−phase
9 bit, linear increase 0.40 mA
9 bit, linear increase 0.80 mA
9 bit, linear increase 1.61 mA
9 bit, linear increase 3.21 mA
9 bit, linear increase 6.42 mA
011011011, without the delta of
the trimming code and without
temp. compensation
011011011, with the delta of the
trimming code and without temp.
compensation
Specified for BUCKx_VTHR
011011011, the delta of the
trimming code and temp.
compensation
234.38 mA
468.75 mA
93.80 117.19 140.60 mA
468.75 mA
937.5 mA
187.50 234.38 281.30 mA
937.5 mA
1875 mA
375.00 468.75 562.50 mA
1875 mA
3750 mA
−9 +9 %
−7 +7 %
−4 +4 %
www.onsemi.com
11
NCV78825
Table 12. BUCK REGULATOR – CURRENT REGULATION (continued)
Characteristic UnitMaxTypMinConditionsSymbol
Over−current Detection Level, Range4
Over−current Detection Level, Range5
Time Constant for Longest Off Time
Time Constant for Shortest Off Time
TOFF Time Relative Error with Temperature Compensation
TOFF Time Relative Error TOFF_ERR TC = Toff × VCOIL @ VLED > 2
TOFF Time Absolute Error TOFF_ERR_ABS TC = Toff × VCOIL @ VLED > 2
Time Constant Decrease per Code
Detection Level of VLED to be too Low
Zero−cross−detection Threshold Level
Zero−cross−detection Filter Time
HS Overvoltage Detection Threshold Level
HS Overvoltage Detection Filter Time
HS Gate Voltage Detection Threshold Level
HS Gate Voltage Detection Filter Time
OpenLEDx Detection Time TON_OPEN 40 50 60 Buck Minimum TON Time TON_MIN For
Delay from BUCKx ISENS Comparator Input Voltage Balance to BUCKx Switch Going OFF
1. Measured as comparator DC threshold value, without comparator delay and switch falling slope.
OCDR4 2437 mA
OCDR5 4875 mA
TC_00 [BUCKx_TOFF = 00000] 50
TC_31 [BUCKx_TOFF = 11111] 5
TOFF_ERRW TC = Toff × VCOIL @ VLED > 2
Toff > 350 ns, Toff temperature
dependency relative to Thot =
155°C, see Figure 8
dTC
VLED_LMT 1.62 1.8 1.98 V
TC_ZCD −2.8 −1.2 −0.2 mV
TC_ZCD_FT 20 80 ns
OVD_THR LBCKSWx−VINBCKx, rising
OVD_FT 100 ns
HSVT_THR 0.6 V
HSVT_FT 45 ns
ISENSCMP_DEL ISENS cmp. over−drive ramp >
5 bits, exponential decrease 7.16 %
VINBCKx – LBCKSWx < 2.4 V,
no failure at LBCKSWx pin
for Slope = 1.25 A/μs, @125°C
V,
V,
Toff > 350 ns
V,
Toff 350 ns
edge
1 mV/10 ns,
−10 +10 %
−15 +15 %
−35 +35 ns
100 200 mV
50 250 ns
45 ns
ms × V
ms × V
ms
Table 13. BUCK REGULATOR – LS SWITCH PRE−DRIVER
Characteristic
Top Switch Ron Ront 40 Bottom Switch Ron Ronb 8 The Pull Down Resistor LS_PUD 10 LS FET Gate Voltage Threshold Level LS_VT Comparator level for non−overlap
LS FET Gate Voltage Comparator Propagation Delay
The Maximum Reverse Polarity Current LS_IREV LSx_IREV_NOCTRL = 1 300 mA
Symbol Conditions Min Typ Max Unit
0.4 V
control when LS−>off, HS−>on
LS_DEL 10 ns
www.onsemi.com
12
W
W
kW
NCV78825
Table 13. BUCK REGULATOR – LS SWITCH PRE−DRIVER (continued)
Characteristic UnitMaxTypMinConditionsSymbol
The non−overlap Time LS−off to HS−on
1. The time from detection of the LS switch in off state (pre−driver voltage at LS_VT threshold), to start of switching HS on.
Table 14. 5 V TOLERANT DIGITAL INPUTS (SCLK, CSB, SDI, LEDCTRL1, LEDCTRL2, RSTB)
Characteristic
High−level Input Voltage VINHI 2 V Low−level Input Voltage VINLO 0.8 V Pull Resistance (Note 1) Rpull 40 160 LED PWM Propagation Delay (Note 2) BUCKx_SW_DEL Activation time of the BUCKx
Sampling Resolution LEDCTRL_SR 100 125 ns RSTB Debouncer Time RSTB_DEB 100 200 ns
1. Pull down resistor (Rpd) for RSTB, LEDCTRLx, SDI and SCLK, pull up resistor (Rpu) for CSB to VDD.
2. Jitter is present due to the internal resynchronization.
LS_DT Adaptive: LSx_NO_MD[1:0] = 00
30 ns
(Note 1) LS_FNO1 Adaptive: LSx_NO_MD[1:0] = 01 1 6.5 LS_FNO2 Fixed: LSx_NO_MD[1:0] = 10 2.5 LS_FNO3 Fixed: LSx_NO_MD[1:0] = 11 5
Symbol Conditions Min Typ Max Unit
4.4 5.5 6.95
switch from the LEDCTRLx pin
% of
Toff
kW
ms
Table 15. 5 V TOLERANT OPEN−DRAIN DIGITAL OUTPUT (SDO)
Characteristic
Low−voltage Output Voltage VOUTLO Iout = −10 mA (current flows into the pin) 0.4 V Equivalent Output Resistance RDSON Lowside switch 10 40 SDO Pin Leakage Current SDO_ILEAK 2 SDO Pin Capacitance SDO_C 10 pF CLK to SDO Propagation
Delay
Symbol Conditions Min Typ Max Unit
SDO_DL Low−side switch activation/deactivation time;
60 ns
@1 kΩ to 5 V, 100 pF to GND, for falling edge V(SDO) goes below 0.5 V
Table 16. 3V DIGITAL INPUTS (TEST, TEST1, TEST2)
Characteristic
High−level Input Voltage VIN3HI 2.3 V Low−level Input Voltage VIN3LO 0.8 V Pull Resistance Rpd3 Pull−down resistance 60
Symbol Conditions Min Typ Max Unit
Table 17. SPI INTERFACE
Characteristic
CSB Setup Time t CSB Hold Time t SCLK Low Time t SCLK High Time t Data−in (DIN) Setup Time, Valid Data
before Rising Edge of CLK Data−in (DIN) Hold Time, Hold Data after
Rising Edge of CLK Output (DOUT) Disable Time (Note1) t Output (DOUT) Valid (Note 1) Output (DOUT) Valid (Note 2)
Symbol Conditions Min Typ Max Unit
CSS CSH
WL WH
t
DIS
t
V1→0
t
V0→1
SU
t
H
0.5 μs
0.25 μs
0.5 μs
0.5 μs
0.25 μs
0.275 μs
0.08 0.32 μs
0.32 μs
0.32 + t(RC) μs
W
mA
kW
www.onsemi.com
13
Table 17. SPI INTERFACE (continued)
t
Characteristic UnitMaxTypMinConditionsSymbol
Output (DOUT) Hold Time t CSB High Time t
1. SDO low–side switch activation time
2. Time depends on the SDO load and pull–up resistor
HO
CS
NCV78825
0.01 μs 1 μs
V
IH
CSB
V
IL
V
IH
SCLK
V
IL
V
IH
DIN
V
IL
V
IH
DOUT
HI−Z
V
IL
Initial state of SCLK after CSB falling edge is don’t care, it can be low or high
t
CSS
SU
tHt
DIN15
t
V
t
WH
DIN14
t
WL
DIN13
t
HO
CSB
DIN1
DOUT15 DOUT14 DOUT13 DOUT1 DOUT0
Figure 5. SPI Communication Timing
DIN0
t
CSH
t
CS
DIS
HI−Z
www.onsemi.com
14
TYPICAL CHARACTERISTICS
NCV78825
Accuracy (±4% / ±7% / ±9%) guaranteed from VTHR code 219 [dec]
219
Figure 6. Buck Peak Current vs. Ranges and VTHR Code
120
[%]
100
80
79,2
72,9
60
40
41,0
20
Buck Switch Rdson relative to value at 1605C
0
−40 −20 0 20 40 60 80 100 120 140 160
45,6
50,6
55,7
61,1
66,8
Temperature [5C]
85,9
100,0
92,7
Figure 7. Typical Temperature Behavior of Buck HS Switch Rdson Relative to the V alue at 160ºC
www.onsemi.com
15
Loading...
+ 32 hidden pages