ON Semiconductor NCP1239FDR2G, NCP1239FDR2, NCP1239VDR2, NCP1239VDR2G Reference Manual

© Semiconductor Components Industries, LLC, 2005
October, 2005 − Rev. 5
1 Publication Order Number
NCP1239/D
NCP1239
Low−Standby High Performance PWM Controller
Housed in SO−16 the NCP1239 represents a major leap toward ultra−compact Switch Mode Power Supplies specifically tailored for medium to high power off−line applications, e.g. notebook adapters. The NCP1239 offers everything needed to build a rugged and efficient power supply, including a dedicated event management to drive a Power Factor Correction (PFC) front−end circuitry. The circuit disables the front−end PFC stage while still in fault or standby conditions by interrupting the PFC controller powering for improved no−load consumption figures. As soon as normal operating mode recovers, the NCP1239 feeds back the PFC that wakes−up.
When power demand is low, the IC automatically enters the so−called skip−cycle mode and provides excellent efficiency at light loads. Because this occurs at a user adjustable low peak current, no acoustic noise takes place.
Features
Current−Mode Operation with Internal Ramp Compensation
Internal High−Voltage Current Source for loss−less Startup
Adjustable Skip−Cycle Capability
Selectable Soft−Start Period
Internal Frequency Dithering for Improved EMI Signature
Go−to−Standby Signal for PFC Front−Stage
Large V
CC
Operation from 12.2 V to 36 V
500 mV Overcurrent Limit
500 mA/−800 mA Peak Current Capability
5 V/10 mA Pinned−out Reference Voltage
Adjustable Switching Frequency up to 250 kHz.
Overload Protection Independent of the Auxiliary V
CC
Adjustable Over Power Compensation (NCP1239F)
Programmable Maximum Duty Cycle (NCP1239V)
Pb−Free Packages are A vailable*
Typical Applications
High Power AC/DC Adapters for Notebooks etc.
Offline Battery Chargers
Telecom and PC Power Supplies
Flyback Applications (NCP1239F) and Forward Applications
(NCP1239V)
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
NCP1239xD = Device Code x = F or V A = Assembly Location WL = Wafer Lot Y = Year WW = Work Week G = Pb−Free Package
MARKING DIAGRAM
16
SO−16
FD or VD SUFFIX
CASE 751B
NCP1239xDG
AWLYWW
1
1
16
http://onsemi.com
PIN CONNECTIONS
Over Power Limit
FB
1
16
CSSkip Adjust
GNDSS/Timer
DrvBrown−out
V
CC
Rt
NCFault Detect
NCREF5V
HVGTS
Max Duty− Cycle
FB
1
16
CSSkip Adjust
GNDSS/Timer
DrvBrown−out
V
CC
Rt
NCFault Detect
NCREF5V
HVGTS
NCP1239F
NCP1239V
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.
ORDERING INFORMATION
NCP1239
http://onsemi.com
2
Figure 1. NCP1239F Typical Application Example
Cbulk
Vbulk
+
to PFC_V
CC
BO
1 16 2 3 4
15 14 13
NCP1239F
OVP
+
GND
V
out
Rbo1
GND
Rcomp
Cbo
5 12 6 7 8
11 10
9
Rramp
V
CC
REF5V
+
REF5V (5V/10mA)
Css
Rbo2
Rt
NTC
Thermistor
Figure 2. NCP1239V Typical Application Example
Cbulk
Vbulk
+
to PFC_V
CC
BO
1 16 2 3 4
15 14 13
NCP1239V
OVP
V
out
Rbo1
GND
Rdmax
Cbo
5 12 6 7 8
11 10
9
Rramp
V
CC
REF5V
+
REF5V (5V/10mA)
Css
Rbo2
Rt
NTC
Thermistor
D3
D4
+
GND
L2
NCP1239
http://onsemi.com
3
MAXIMUM RATINGS
Rating Symbol Value Unit
Power Supply Voltage V
CC
36 V Pins 1 to 10 (except Vref Pin) Maximum Voltage −0.3, +10 V Maximum Voltage on Pin 16 (HV) 500 V Thermal Resistance, Junction−to−Air, SOIC Version
R
JA
145 °C/W
Maximum Junction Temperature TJ
MAX
150 °C Storage Temperature Range −60 to +150 °C ESD Capability, HBM Model (All Pins except HV) 2 kV ESD Capability Machine Model (All Pins except VCC)
Machine Model (VCC Pin)
200
160
V
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.
ELECTRICAL CHARACTERISTICS (For typical values T
J
= 25°C, for min/max values TJ = 0°C to +125°C, V
pin16
= 48 V,
VCC = 20 V unless otherwise noted.)
Symbol Rating Pin Min Typ Max Unit
Supply Section
V
CCON
Turn−on Threshold Level, VCC Going up 13 15.5 16.4 17.5 V
V
CCOFF
Minimum Operating Voltage after Turn−on 13 10.5 11.2 12.2 V
HYST1 Difference (V
CCON
− V
CCOFF
) 13 4.5 5.1 V
V
CCLATCH
VCC Decreasing Level at which the Latch−off Phase ends 13 6.5 6.9 7.2 V
V
CCRESET
VCC Level at which the Internal Logic gets reset 13 4.0 V
I
CC1
Internal IC Consumption, no output load on Pin 12 (@I
Rt
= 20 A)
NCP1239F NCP1239V
13
2.1
2.6
3.0
4.0
mA
I
CC2a
Internal IC Consumption, 1 nF output load on Pin 12
NCP1239F (65 kHz)
NCP1239V (118 kHz)
13
3.1
4.2
3.8
6.5
mA
I
CC2b
Internal IC Consumption, 1 nF output load on Pin 12
NCP1239F (100 kHz) NCP1239V (182 kHz)
13
3.9
5.5
5.0
8.5
mA
I
CC2c
Internal IC Consumption, 1 nF output load on Pin 12
NCP1239F (130 kHz) NCP1239V (236 kHz)
13
4.6
6.7
5.9
9.6
mA
I
CC3
Internal IC Consumption, latchoff phase
(NCP1239F and NCP1239V)
13
0.40 0.75
mA
Internal Startup Current Source
I
C1_hv
High−Voltage Current Source (sunk by Pin 16), VCC = 10 V 16 2.0 4.0 5.3 mA
I
C1_VCC
Startup Charge Current flowing out of the VCC Pin, VCC=10 V 13 1.8 3.6 4.5 mA
I
C2
High−Voltage Current Source, VCC = 0 16 4.2 mA
5 V Reference Voltage (REF5V)
REF5V Reference Voltage
@ No load on Pin 2 @ I
pin2
= 5 mA
2
4.7
4.6
5.0
4.9
5.2
5.1
V
Iref Current Capability 2 5.0 10 mA
NCP1239
http://onsemi.com
4
ELECTRICAL CHARACTERISTICS (For typical values T
J
= 25°C, for min/max values TJ = 0°C to +125°C, V
pin16
= 48 V,
VCC = 20 V unless otherwise noted.)
Symbol UnitMaxTypMinPinRating
Drive Output
Vcl Output Voltage Positive Clamp 12 11.5 13.6 16 V
T
rise
Output Voltage Rise−Time @ CL = 1 nF, 10−90% of output signal 12 40 ns
T
fall
Output Voltage Fall−Time @ CL = 1 nF, 10−90% of output signal 12 25 ns
V
source
High State Voltage Drop @ I
pin12
= 3 mA and VCC = 12 V 12 2.5 3.3 V
I
source
Source Current Capability (@ V
pin12
= 0 V) 12 500 mA
R
OL
Sink Resistance @ V
pin12
=1 V 12 3.8 7.5
I
sink
Sink Current Capability (@ V
pin12
= 10 V) 12 800 mA
Oscillator
fsw Recommended Switching Frequency Range 12 25 250 kHz
Vosc
Pin 4 Voltage @ Rt = 100 k
4 1.6 V
Kosc Product (Switching Frequency times the Rt Pin 4 resistance) (Note 1)
@ 65 kHz and 130 kHz (NCP1239F) @ 118 kHz and 236 kHz (NCP1239V)
6050
11000
6500
11800
6950
12600
kHz*k
fsw
Internal Modulation Swing, in percentage of fsw ±3.5 %
Dmax Maximum Duty−Cycle 75.5 80.0 83.0 %
Current Limitation
I
Limit
Maximum Internal Set−Point 10 0.84 0.90 0.95 V
T
DEL_CS
Propagation Delay from V
pin10
> I
Limit
to gate turned off
(Pin 12 loaded by 1 nF)
10 130 220 ns
T
LEB−65kHz
Leading Edge Blanking Duration (Pins 9 and 10) @ 65 kHz
(NCP1239F)
9, 10 420 ns
T
LEB−130kHz
Leading Edge Blanking Duration (Pins 9 and 10) @ 130 kHz
(NCP1239F)
9, 10 230 ns
T
LEB−118kHz
Leading Edge Blanking Duration (Pin 10) @ 118 kHz (NCP1239V) 10 320 ns
T
LEB−236kHz
Leading Edge Blanking Duration (Pin 10) @ 236 kHz (NCP1239V) 10 170 ns
Over Power Limit (NCP1239F)
I
ocp
Internal Current Source of the Over Power Limit Pin
@ 1 V on Pin 5 and V
pin9
= 0.5 V
@ 2 V on Pin 5 and V
pin9
= 0.5 V
9
60
120
80
160
100 185
A
V
opl
Over Power Limitation Threshold
@ TJ = 25°C @ TJ = 0°C to 125°C
9
0.48
0.47
0.50
0.50
0.52
0.52
V
T
DEL_OCP
Propagation Delay from V
pin9
> V
opl
to gate turned off
(Pin 12 loaded by 1 nF)
9 130 220 ns
Maximum Duty−Cycle (Dmax) Control (NCP1239V)
I
Dmax
Pin 9 Current Source @ V
pin9
= 1.0 V and V
pin9
= 2.0 V 9 46 55 63
A
D
max
Maximum Duty Cycle @ 118 kHz and V
pin9
= 1.0 V 9 20 24 29 %
K
Dmax
Dmax Coefficient @ 118 kHz and V
pin9
= 1.0 V (Note 2) 9 1.10 1.30 1.53
%/k
1. The nominal switching frequency fsw equals: fsw = K
OSC
/Rt. The implemented jittering makes the switching frequency continuously vary
around this nominal value ($3.5% variation).
2. K
Dmax
is the proportionality coefficient that links the maximum duty−cycle to the Pin 9 resistor: Dmax = K
Dmax*Rpin9
. K
Dmax
is defined in
the “Maximum Duty−Cycle Limitation” section of the operating description.
NCP1239
http://onsemi.com
5
ELECTRICAL CHARACTERISTICS (For typical values T
J
= 25°C, for min/max values TJ = 0°C to +125°C, V
pin16
= 48 V,
VCC = 20 V unless otherwise noted.)
Symbol UnitMaxTypMinPinRating
Soft−Start and Timer
I
ch
Soft−Start or Jittering charge current @ V
pin6
= 2.4 V 6 60 95 110
A
I
disch
Jittering Discharge Current @ V
pin6
= 2.4 V 6 77 107 137
A
V
jitter
Jittering Saw−Tooth Lower Threshold 6 1.67 1.80 1.89 V
V
jitter
H Jittering Saw−Tooth Upper Threshold 6 2.85 3.00 3.20 V
V
timer
L Timer Peak Threshold 6 4.0 4.3 4.6 V
I
timerC
Timer Charge Current @ V
pin6
= 3.5 V and Pin 8 open 6 3.9 5.2 6.4
A
I
timerD
Timer Discharge Current @ V
pin6
= 3.5 V and Pin 8 open 6 400
A
Feedback Section
Rup Internal Pullup Resistor 8 20
k
Ifb Source Current @ V
pin8
= 0.5 V 8 200
A
Iratio Pin 8 to current Setpoint division ratio 3.0
Internal Ramp Compensation
R
ramp
Internal Resistor 10 32
k
V
ramp
Internal Saw−Tooth Amplitude 10 3.2 V
Skipping Mode and Standby Management
Rgts Pin 1 output impedance in standby state
(Pin 8 grounded, V
pin6
> 4.5 V) @ VCC = 12.5 V
1 4.0 8.0 18
k
Igts Sink Current Source in Normal Mode
@ V
pin8
= 2 V, Pin 7 open @ V
CC
− V
pin1
=0.7 V
1 0.6 1.0 mA
FB−skip Default Feedback Level for Skip−Cycle Operation and Standby
Detection
7 380 430 480 mV
FB_stby−out Default Feedback Level to Leave Standby 7 650 740 810 mV
V
stby−out/Vskip
Ratio leave standby Setpoint to skip−cycle Setpoint 1.5 1.7 1.9
R
pin7
Internal Pin 7 Impedance 7 110
k
Pin 7 to Skipping Setpoint ratio 3.0
Brown−Out Detection
BO
thH
Brown−Out Detection Upper Threshold 5 0.45 0.50 0.55 V
BO
thL
Brown−Out Detection Low Threshold 5 0.20 0.24 0.28 V
BO
hyst
Brown−Out Hysteresis 5 0.20 0.26 0.30 V
Protections
TSD Thermal Shutdown:
Thermal Shutdown Threshold Hysteresis
140
30
°C
Vfault Fault Detection Threshold 3 2.2 2.4 2.6 V
ORDERING INFORMATION
Device Package Shipping
NCP1239FDR2 SOIC−16 2500 / Tape & Reel NCP1239FDR2G SOIC−16
(Pb−Free)
2500 / Tape & Reel
NCP1239VDR2 SOIC−16 2500 / Tape & Reel NCP1239VDR2G SOIC−16
(Pb−Free)
2500 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
NCP1239
http://onsemi.com
6
PIN FUNCTION DESCRIPTION
Pin No. Pin Name Function Pin Description
1 GTS Shuts the PFC down in
standby
The standby detection block changes Pin 1 state in accordance to the mode (standby or normal mode). Pin1 is designed to drive an external pnp transistor that connects or disconnects the NCP1239’s VCC to the PFC’s.
2 REF5V A 5V reference voltage This pin helps to internally bias the controller but can also be used to power
surrounding logic gates for any purposes. The typical output current is 10 mA. This voltage source is disabled during the circuit startup and latched−off phases. A 100 nF filtering capacitor must be placed between Pin 2 and ground.
3 Fault Detect Enables to permanently
shutdown the part
If the Pin 3 voltage exceeds 2.4 V, the circuit is permanently shut down. This pin can be used to monitor the voltage across a thermistor in order to protect the application from excessive heating and/or to detect an overvoltage condition.
4 Rt Timing resistor Pin 4 resistor allows a precise frequency programming. The circuit is optimized to
operate between 50 kHz and 150 kHz (NCP1239F) and between 100 kHz and 250 kHz (NCP1239V).
5 Brown−Out Brown−Out This pin receives a portion of the bulk capacitor to authorize operation above a
certain level of mains only. It also serves to elaborate an offset voltage on Pin 9 used for Over Power Compensation.
6 SS/Timer Performs soft−start and
fault timeout
During Power on and fault conditions, the capacitor connected to this pin ensures a soft−start period. When a fault is detected, this pin is internally brought high by a current source. If 4.3 V are reached, the fault is confirmed and the circuit enters an auto−recovery burst mode, otherwise the pin goes back to a lower value and oscillates to perform frequency jittering.
7 Skip Adjust Adjust skip level By adjusting the skip−cycle level, it is possible to fight against noisy transformers
and modify the standby detection thresholds. Keep Pin 7 open to operate with the default levels (skip threshold setpoint: 140 mV, normal mode recovery setpoint:
250 mV). 8 FB Feedback signal An opto−coupler collector pulls this pin low to regulate 9 Over Power
Limit
(NCP1239F)
Enables a precise peak
current clamp and then an
accurate Over Power
Detection
This pin delivers a current proportional to V
pin5
, an image of the high voltage rail. Inserting a resistor between Pin 9 and the current sense resistor, an offset proportional to the input voltage is built. Such offset compensates the circuit and power switch propagation delays for an accurate power limitation in the whole input voltage range.
9 Max Duty−
Cycle
(NCP1239V)
Enables to precisely clamp the maximum
duty−cycle.
This terminal sources a constant current. Connect a resistor between Pin 9 and Ground to select the maximum duty−cycle.
10 CS The current sense input This pin receives the primary current information via a sense element. By inserting
a resistor in series with this pin, it becomes possible to introduce ramp compensation.
11 Ground The IC ground − 12 Drv Drives the MOSFET By offering up to +500 mA/−800 mA peak, this pin lets you drive large Qg
MOSFET’s. It is clamped to 16 V maximum not to exceed the maximum gate−source voltage of most power MOSFET’s.
13 V
CC
Supplies the controller This pin accepts up to 36 V from an auxiliary winding. 14 NC Creepage distance. 15 NC Creepage distance. 16 HV The high−voltage startup This pin connects to the bulk capacitor to generate the startup current.
NCP1239
http://onsemi.com
7
Figure 3. NCP1239F Internal Circuit Architecture
− +
7
S
R
Q Q
Vcc < 4V
450mV
5V
0.5V / 0.25V
Rt
BO
REF5V
SS / timer
PFC_Vcc
Fault detect
Skip adjust
Vdd
/ 3
to Skip
20k
0.9V
Oscillator
GND
32k
CS
Drv
Vcc
Vdd
Regul
UVLOs Latch Reset
Error flag
HV
Over Power Limit
Vdd
2.5V
Vdd
2.5V
100k
Fault
Vdd Vdd
Soft−Start and timer management
Stby_detect
Error_Flag
Stby
OVL
OVL
Vcc<7V
stdwn
Vstop
PWM Latch
Output Buffer
BO_out
Jittering Modulation
“Jittered” Reference
Jittering Modulation
CLK
CLK
0.5V
BO_in
Soft−Start Ipk limit
Soft−Start Ipk limit
Internal Thermal Shutdown
TSD
FB
Divider by 2
+
Skip
Skip
FB
Startup Phase
(Vcc<VccOFF)
1mA
Vcc
10k
Vstop
regOUT
Stby_detect
25r
15r
S
R
Q Q
FB<Vpin1 => Skip high
FB>1.6*Vpin1 =>Stby_detect RESET
pfcOFF
pfcON
UVLO
14V
clamp
pfcON
OUTon
Ramp Compensation
3.2V
BO_in
75 mA/V x V
pin5
LEB
LEB
+
+
16
15
14
13
+
3
1
S
R
Q Q
6
2
+
12
11
10
5
+
S
R
Q Q
9
+
+
− +
+
8
4
NCP1239
http://onsemi.com
8
Figure 4. NCP1239V Internal Circuit Architecture
− +
7
S
R
Q Q
Vcc < 4V
450mV
5V
0.5V / 0.25V
Rt
BO
REF5V
SS / timer
PFC_Vcc
Fault detect
Skip adjust
Vdd
/ 3
to Skip
20k
0.9V
Oscillator
GND
32k
CS
Drv
Vcc
Vdd
Regul
UVLOs Latch Reset
Error flag
HV
Dmax
Vdd
2.5V
Vdd
2.5V
100k
Fault
Vdd Vdd
Soft−Start and timer management
Stby_detect
Error_Flag
Stby
OVL
OVL
Vcc<7V
stdwn
Vstop
PWM Latch
Output Buffer
BO_out
Jittering Modulation
“Jittered” Reference
Jittering Modulation
CLK
CLK
BO_in
Soft−Start Ipk limit
Soft−Start Ipk limit
Internal Thermal Shutdown
TSD
FB
Divider by 2
+
Skip
Skip
FB
Startup Phase
(Vcc<VccOFF)
1mA
Vcc
10k
Vstop
regOUT
Stby_detect
25r
15r
S
R
Q Q
FB<Vpin1 => Skip high
FB>1.6*Vpin1 =>Stby_detect RESET
pfcOFF
pfcON
UVLO
14V
clamp
pfcON
OUTon
Ramp Compensation
3.2V
Idmax
LEB
+
+
16
15
14
13
+
3
1
S
R
Q Q
6
2
+
12
11
10
5
+
S
R
Q Q
9
+
+
+
8
4
OSC
OSC
NCP1239
http://onsemi.com
9
Figure 5. High Voltage Current Source
vs. Temperature @ V
CC
= 10 V
Figure 6. Startup Current Sourced by V
CC
Pin
vs. Temperature @ V
CC
= 10 V
TEMPERATURE (°C)
100755025−25
I
C1_VCC
(mA)
TEMPERATURE (°C)
125100755025
6.0
I
C1_HV
, (mA)
5.0
−25
0
4.0
3.0
2.0
1.0
0
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5 0
TYPICAL PERFORMANCE CHARACTERISTICS
Figure 7. High Voltage Current Source
vs. Temperature @ V
CC
= 0 V
TEMPERATURE (°C)
125100755025−25
I
C2
(mA)
6.0
0
5.0
4.0
3.0
2.0
1.0
0
Figure 8. High Voltage Pin Leakage Current
vs. Temperature
12
5
TEMPERATURE (°C)
12
5
100755025
0
10
20
30
Pin16 Leakage Current (A)
40
50
60
0
Figure 9. VCC Startup Threshold
vs. Temperature
TEMPERATURE (°C)
125100755025
V
CCON
(V)
16.7
0
16.6
16.5
16.4
16.3
16.2
16.1
16.0
15.9
Figure 10. VCC Turn−Off Threshold
vs. Temperature
11.5
TEMPERATURE (°C)
1
25
100755025−25
V
CCOFF
(V)
0
11.4
11.3
11.2
11.1
11.0
10.9
10.8
0
NCP1239
http://onsemi.com
10
TEMPERATURE (°C)
125100755025−25
6.75
6.80
6.85
6.90
V
CCLATCH
(V)
6.95
0
TYPICAL PERFORMANCE CHARACTERISTICS
Figure 11. VCC Latched−Off vs. Temperature
TEMPERATURE (°C)
12
5
100755025−25
1.6
2.2
2.8
I
CC1
(mA)
Figure 12. No Load Circuit Consumption
vs. Temperature
1.8
2.0
2.4
2.6
0
TEMPERATURE (°C)
125100755025−25
2.0
2.5
3.0
3.5
4.0
I
CC2
(mA)
Figure 13. NCP1239F Circuit Consumption
(1 nF on driver Pin 12) vs. Temperature
130 kHz
4.5
5.0
100 kHz
65 kHz
0
TEMPERATURE (°C)
12
5
100755025−25
I
CC2
(mA)
Figure 14. NCP1239V Circuit Consumption
(1 nF on driver Pin 12) vs. Temperature
7.3
200 kHz
130 kHz
0
6.9
6.5
6.1
5.7
5.3
4.9
4.5
4.1
3.7
3.3
260 kHz
TEMPERATURE (°C)
125100755025−25
I
CC3
(mA)
Figure 15. Latched−Off Mode Consumption
vs. Temperature
4.70
4.85
4.90
4.95
TEMPERATURE (°C)
12
5
100755025−25
REF5V (V)
4.80
0 mA
5 mA
10 mA
0.6
5.00
5.05
0
4.75
0
0.5
0.4
0.3
0.2
0.1
0
Figure 16. REF5V Voltage Source
vs. Temperature
NCP1239
http://onsemi.com
11
TEMPERATURE (°C)
125100755025−25
2.0
3.0
8.0
Vdrop (V)
TEMPERATURE (°C)
12
5
100755025−25
Rsink ()
0
5.0
6.0
4.0
TYPICAL PERFORMANCE CHARACTERISTICS
Figure 17. Driver High State Voltage Drop
vs. Temperature
Figure 18. Driver Sink Resistance
vs. Temperature
3.0
00
12300
TEMPERATURE (°C)
TEMPERATURE (°C)
12
5
100755025−25
79
81
83
125100755025−25
6700
Dmax (%)
K
osc
(kHz*k)
130 kHz
77
78
80
82
Figure 19. Driver Voltage Clamp vs. Temperature Figure 20. Maximum Duty Cycle vs. Temperatur
e
(NCP1239F)
Figure 21. Oscillator K
osc
Parameter vs. Temperature
(K
osc
= fsw * R
pin4
) (NCP1239F)
TEMPERATURE (°C)
125100755025−25
16
Vcl CLAMP VOLTAGE (V)
65 kHz
0 0
0
TEMPERATURE (°C)
12
5
100755025
K
osc
(kHz*k)
K
osc1
@ 130 kHz
Figure 22. Oscillator K
osc
Parameter vs. Temperature
(K
osc
= fsw * R
pin4
) (NCP1239V)
K
osc2
@ 260 kHz
−25
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2.0
7.0
1.0
15
14
13
12
10
11
10
6650
6600
6550
6500
6450
6400
12150
12000
11850
11700
11550
11400
11250
0
NCP1239
http://onsemi.com
12
TEMPERATURE (°C)
12
5
100755025−25
410
415
420
430
435
FB
skip
(mV)
425
445
450
440
0
125
40
60
80
120
140
180
TEMPERATURE (°C)
100755025−25
I
ocp
(
A)
100
160
BO = 2 V
BO = 1 V
0
TYPICAL PERFORMANCE CHARACTERISTICS
TEMPERATURE (°C)
1
25
100755025−25
0.508
V
opl
(V)
Figure 23. Pin 9 Current vs. Temperature
(@ V
pin9
= 0.5 V) (NCP1239F)
Figure 24. Over Power Limitation Threshold vs
.
Temperature (NCP1239F)
0
0.506
0.504
0.502
0.500
0.498
0.496
0.494
0.492
TEMPERATURE (°C)
12
5
100755025−25
BO_H (V)
0.510
TEMPERATURE (°C)
125100755025−25
FB
stby−out
(mV)
780
0
0
TEMPERATURE (°C)
125100755025−25
0.920
I
Limit
(V)
0
Figure 25. Maximum Current Setpoint vs.
Temperature
Figure 26. Default Feedback Threshold for
Standby Detection vs. Temperature
Figure 27. Default Feedback Level for Normal
Operation Recovery
Figure 28. Brown−Out Upper Threshold vs.
Temperature
0.915
0.910
0.905
0.900
0.895
0.890
0.890
0.885
0.880
770 760 750 740 730 720 710 700
0.505
0.500
0.495
0.490
0.485
0.480
Loading...
+ 26 hidden pages