Monolithic High Voltage
Gated Oscillator Power
Switching Regulator
The NCP1050 through NCP1055 are monolithic high voltage
regulators that enable end product equipment to be compliant with low
standby power requirements. This device series combines the required
converter functions allowing a simple and economical power system
solution for office automation, consumer, and industrial products.
These devices are designed to operate directly from a rectified AC line
source. In flyback converter applications they are capable of providing
an output power that ranges from 6.0 W to 40 W with a fixed AC input
of 100 V, 115 V, or 230 V, and 3.0 W to 20 W with a variable AC input
that ranges from 85 V to 265 V.
This device series features an active startup regulator circuit that
eliminates the need for an auxiliary bias winding on the converter
transformer, fault detector and a programmable timer for converter
overload protection, unique gated oscillator c onfiguration f or e xtremely
fast loop response with double pulse suppression, power switch current
limiting, input undervoltage lockout with hysteresis, thermal shutdown,
and auto restart fault detection. These devices are available in
economical 8−pin dual−in−line and 4−pin SOT−223 packages.
Features
• Startup Circuit Eliminates the Need for Transformer Auxiliary Bias
Winding
• Optional Auxiliary Bias Winding Override for Lowest Standby
Power Applications
• Converter Output Overload and Open Loop Protection
• Auto Restart Fault Protection
• IC Thermal Fault Protection
• Unique, Dual Edge, Gated Oscillator Configuration for Extremely
Fast Loop Response
• Oscillator Frequency Dithering with Controlled Slew Rate Driver for
Reduced EMI
• Low Power Consumption Allowing European Blue Angel Compliance
• On−Chip 700 V Power Switch Circuit and Active Startup Circuit
• Rectified AC Line Source Operation from 85 V to 265 V
• Input Undervoltage Lockout with Hysteresis
• Oscillator Frequency Options of 44 kHz, 100 kHz, 136 kHz
T ypical Applications
• AC−DC Converters
• Wall Adapters
• Portable Electronic Chargers
• Low Power Standby and Keep−Alive Supplies
http://onsemi.com
MARKING
DIAGRAMS
8
DIP−8
8
1
Pin: 1.V
4
1
X= Current Limit (0, 1, 2, 3, 4, 5)
Z= Oscillator Frequency (A, B, C)
A= Assembly Location
WL, L= Wafer Lot
YY, Y= Year
WW, W = Work Week
ORDERING INFORMATION
See detailed ordering and shipping information on page 22 of
this data sheet.
Drain Voltage Range
Drain Current Peak During Transformer Saturation
Power Supply/VCC Bypass and Control Input
Voltage Range
Current
Thermal Characteristics
P Suffix, Plastic Package Case 626A−01
Junction−to−Lead
Junction−to−Air, 2.0 Oz. Printed Circuit Copper Clad
0.36 Sq. Inch
1.0 Sq. Inch
ST Suffix, Plastic Package Case 318E−04
Junction−to−Lead
Junction−to−Air, 2.0 Oz. Printed Circuit Copper Clad
0.36 Sq. Inch
1.0 Sq. Inch
Operating Junction TemperatureT
Storage TemperatureT
1. Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those
indicated may adversely affect device reliability. Functional operation under absolute maximum−rated conditions is not implied. Functional
operation should be restricted to the Recommended Operating Conditions.
A.This device series contains ESD protection and exceeds the following tests:
Pins 1−3: Human Body Model 2000 V per MIL−STD−883, Method 3015.
Machine Model Method 400 V.
Pin 5: Human Body Model 1000 V per MIL−STD−883, Method 3015.
Machine Model Method 400 V.
Pin 5 is connected to the power switch and start−up circuits, and is rated only to the max voltage of the part, or 700 V.
B.This device contains Latch−up protection and exceeds 100 mA per JEDEC Standard JESD78.
The NCP105X series represents a new higher level of
integration by providing on a single monolithic chip all of
the active power, control, logic, and protection circuitry
required to implement a high voltage flyback converter and
compliance with very low standby power requirements for
modern consumer electronic power supplies. This device
series is designed for direct operation from a rectified 240
VAC line source and requires minimal external components
for a complete cost sensitive converter solution. Potential
markets include cellular phone chargers, standby power
supplies for personal computers, secondary bias supplies for
microprocessor keep−alive supplies and IR detectors. A
description of each of the functional blocks is given below,
and the representative block diagram is shown in Figure 2.
This device series features an active startup regulator
circuit that eliminates the need for an auxiliary bias winding
on the c onverter t ransformer, fault l ogic w ith a p rogrammable
timer for converter overload protection, unique gated
oscillator configuration f or e xtremely f ast l oop r esponse w ith
double pulse suppression, o scillator f requency d ithering w ith
a controlled slew rate driver for reduced EMI,
cycle−by−cycle current limiting, input undervoltage lockout
with hysteresis, t hermal s hutdown, a nd a uto r estart o r l atched
off fault detect device options. T hese d evices a re a vailable i n
economical 8−pin PDIP and 4−pin SOT−223 packages.
Oscillator
The Oscillator is a unique fixed−frequency, duty−cycle−
controlled oscillator. It charges and discharges an on chip
timing capacitor to generate a precise square wave signal
used to pulse width modulate the Power Switch Circuit.
During the discharge of the timing capacitor, the Oscillator
duty cycle output holds one input of the Driver low. This
action keeps the Power Switch Circuit off, thus limiting the
maximum duty cycle.
A frequency modulation feature is incorporated into the
IC in order to aide in EMI reduction. Figure 3 illustrates this
frequency modulation feature. The power supply voltage,
V
, acts as the input to the built−in voltage controlled
CC
oscillator. As the VCC voltage is swept across its nominal
operating range of 7.5 to 8.5 V, the oscillator frequency is
swept across its corresponding range.
The center oscillator frequency is internally programmed
for 44 kHz, 100 kHz, or 136 kHz operation with a controlled
charge to discharge current ratio that yields a maximum
Power Switch duty cycle of 77%. The Oscillator
temperature characteristics are shown in Figures 5
through 9. Contact an ON Semiconductor sales
representative for further information regarding frequency
options.
Control Input
The Control Input pin circuit has parallel source follower
input stages with voltage clamps set at 1.35 and 4.6 V.
Current sources clamp the input current through the
followers at approximately 47.5 A with 10 A hysteresis.
When a source or sink current in excess of this value is
applied to this input, a logic signal generated internally
changes state to block power switch conduction. Since the
output of the Control Input sense is sampled continuously
during t
(77% duty cycle), it is possible to turn the Power
on
Switch Circuit on or off at any time within ton. Because it
does not have to wait for the next cycle (rising edge of the
clock signal) to switch on, and because it does not have to
wait for current limit to turn off, the circuit has a very fast
transient response as shown in Figure 3.
In a typical converter application the control input current
is drawn by an optocoupler. The collector of the optocoupler
is connected to the Control Input pin and the emitter is
connected to ground. The optocoupler LED is mounted in
series with a shunt regulator (typically a TL431) at the DC
output of the converter. When the power supply output is
greater than the reference voltage (shunt regulator voltage
plus optocoupler diode voltage drop), the optocoupler turns
on, pulling down on the Control Input. The control input
logic is configured for line input sensing as well.
Turn On Latch
The Oscillator output is typically a 77% positive duty
cycle square waveform. This waveform is inverted and
applied to the reset input of the turn−on latch to prevent any
power switch conduction during the guaranteed off time.
This square wave is also gated by the output of the control
section and applied to the set input of the same latch.
Because of this gating action, the power switch can be
activated when the control input is not asserted and the
oscillator output is high.
The use of this unique gated Turn On Latch over an
ordinary Gated Oscillator allows a faster load transient
response. The power switch is allowed to turn on
immediately, within the maximum duty cycle time period,
when the control input signals a necessary change in state.
Turn Off Latch
A Turn Off Latch feature has been incorporated into this
device series to protect the power switch circuit from
excessive current, and to reduce the possibility of output
overshoot in reaction to a sudden load removal. If the Power
Switch current reaches the specified maximum current limit,
the Current Limit Comparator resets the Turn Off Latch and
turns the Power Switch Circuit off. The turn off latch is also
reset when the Oscillator output signal goes low or the
Control Input is asserted, thus terminating output MOSFET
conduction. Because of this response to control input
signals, it provides a very fast transient response and very
tight load regulation. The turn of f latch has an edge triggered
set input which ensures that the switch can only be activated
once during any oscillator period. This is commonly
referred to as double pulse suppression.
SENSEFET in order to monitor the drain current. A
portion of the current flowing through the circuit goes into
a sense element, R
if the voltage across R
. The current limit comparator detects
sense
exceeds the reference level that
sense
is present at its inverting input. If this level is exceeded, the
comparator quickly resets the Turn Off Latch, thus
protecting the Power Switch Circuit.
A Leading Edge Blanking circuit was placed in the current
sensing signal path to prevent a premature reset of the Turn
Off Latch. A potential premature reset signal is generated
each time the Power Switch Circuit is driven into conduction
and appears as a narrow voltage spike across current sense
resistor R
. The spike is due to the Power Switch Circuit
sense
gate to source capacitance, transformer interwinding
capacitance, and output rectifier recovery time. The Leading
Edge Blanking circuit has a dynamic behavior that masks the
current signal until the Power Switch Circuit turn−on
transition is completed. The current limit propagation delay
time is typically 135 to 165 nanoseconds. This time is
measured from when an overcurrent appears at the Power
Switch Circuit drain, to the beginning of turn−off. Care must
be taken during transformer saturation so that the maximum
device current limit rating is not exceeded.
The high voltage Power Switch Circuit is monolithically
integrated with the control logic circuitry and is designed to
directly drive the converter transformer. Because the
characteristics of the power switch circuit are well known,
the gate drive has been tailored to control switching
transitions to help limit electromagnetic interference (EMI).
The Power Switch Circuit is capable of switching 700 V
with an associated drain current that ranges nominally from
0.10 to 0.68 Amps.
Startup Circuit
Rectified AC line voltage is applied to the Startup Circuit
on Pin 5, through the primary winding. The circuit is
self−biasing and acts as a constant current source, gated by
control logic. Upon application of the AC line voltage, this
circuit routes current into the supply capacitor typically
connected to Pin 1. During normal operation, this capacitor
is hysteretically regulated from 7.5 to 8.5 V by monitoring
the supply voltage with a comparator and controlling the
startup current source accordingly. This Dynamic
Self−Supply (DSS) functionality offers a great deal of
applications flexibility as well. The startup circuit is rated at
a maximum 700 V (maximum power dissipation limits must
be observed).
Undervoltage Lockout
An Undervoltage Lockout (UVLO) comparator is
included to guarantee that the integrated circuit has
sufficient voltage to be fully functional. The UVLO
comparator monitors the supply capacitor input voltage at
Pin 1 and disables the Power Switch Circuit whenever the
capacitor voltage drops below the undervoltage lockout
threshold. When this level is crossed, the controller enters a
new startup phase by turning the current source on. The
supply voltage will then have to exceed the startup threshold
in order to turn off the startup current source. Startup and
normal operation of the converter are shown in Figure 3.
Fault Detector
The NCP105X series has integrated Fault Detector
circuitry for detecting application fault conditions such as
open loop, overload or a short circuited output. A timer is
generated by driving the supply capacitor with a known
current and hysteretically regulating the supply voltage
between set thresholds. The timer period starts when the
supply voltage reaches the nominal upper threshold of 8.5 V
and stops when the drain current of the integrated circuit
draws the supply capacitor voltage down to the undervoltage
lockout threshold of 7.5 V.
If, during this timer period, no feedback has been applied
to the control input, the fault detect logic is set to indicate an
abnormal condition. This may occur, for example, when the
optocoupler fails or the output of the application is
overloaded or completely shorted. In this case, the part will
stop switching, go into a low power mode, and begin to draw
down the supply capacitor to the reset threshold voltage of
4.5 V. At that time, the startup circuit will turn on again to
drive the supply to the turn on threshold. Then the part will
begin the cycle again, effectively sampling the control input
to determine if the fault condition has been removed. This
mode is commonly referred to as burst mode operation and
is shown is Figure 4.
Proper selection of the supply capacitor allows successful
startup with monotonically increasing output voltage,
without falsely sensing a fault condition. Figure 4 shows
successful startup and the evolution of the signals involved
in the presence of a fault.
Thermal Shutdown
The internal Thermal Shutdown block protects the device
in the event that the maximum junction temperature is
exceeded. When activated, typically at 160°C, one input of
the Driver is held low to disable the Power Switch Circuit.
The Power Switch is allowed to resume operation when the
junction temperature falls below 85°C. The thermal
shutdown feature is provided to prevent catastrophic device
failures from accidental overheating. It is not intended to be
used as a substitute for proper heatsinking.
Two application examples have been provided in this
document, and they are described in detail in this section.
Figure 28 shows a Universal Input, 6 Watt Converter
Application as well as a 5.5 Watt Charger Application using
the NCP1053B. The Charger consists of the additional
components Q1, C13, and R7 through R10, as shown. These
were constructed and tested using the printed circuit board
layout shown in Figure 40. The board consists of a fiberglass
epoxy material (FR4) with a single side of two ounce per
square foot (70 m thick) copper foil. Test data from the tw o
applications is given in Figures 29 through 39.
Both applications generate a well−regulated output
voltage over a wide range of line input voltage and load
current values. The charger application transitions to a
constant current output if the load current is increased
beyond a preset range. This can be very effective for battery
charger application for portable products such as cellular
telephones, personal digital assistants, and pagers. Using the
NCP105X series in applications such as these offers a wide
range of flexibility for the system designer.
The NCP105X application offers a low cost alternative to
other applications. It uses a Dynamic Self−Supply (DSS)
function to generate its own operating supply voltage such
that an auxiliary transformer winding is not needed. (It also
offers the flexibility to override this function with an
auxiliary winding if ultra−low standby power is the
designer’s main concern.) This product also provides for
automatic output overload, short circuit, and open loop
protection by entering a programmable duty cycle burst
mode of operation. This eliminates the need for expensive
devices overrated for power dissipation or maximum
current, or for redundant feedback loops.
The application shown in Figure 28 can be broken down
into sections for the purpose of operating description.
Components C1, L1 and C6 provide EMI filtering for the
design, although this is very dependent upon board layout,
component type, etc. D1 through D4 along with C2 provide
the AC to bulk DC rectification. The NCP1053 drives the
primary side of the transformer, and the capacitor, C5, is an
integral part of the Dynamic Self−Supply. R1, C3, and D5
comprise an RCD snubber and R2 and C4 comprise a ringing
damper both acting together to protect the IC from voltage
transients greater than 700 volts and reduce radiated noise
from the converter . Diode D6 along with C7−9, L2, C11, and
C12 rectify the transformer secondary and filter the output
to provide a tightly regulated DC output. IC3 is a shunt
regulator that samples the output voltage by virtue of R5 and
R6 to provide drive to the optocoupler, IC2, Light Emitting
Diode (LED). C10 is used to compensate the shunt regulator .
When the application is configured as a Charger, Q1 delivers
additional drive to the optocoupler LED when in constant
current operation by sampling the output current through R7
and R8.
Component Selection Guidelines
Choose snubber components R1, C3, and D5 such that the
voltage on pin 5 is limited to the range from 0 to 700 volts.
These components protect the IC from substrate injection if
the voltage was to go below zero volts, and from avalanche
if the voltage was to go above 700 volts, at the cost of slightly
reduced efficiency. For lower power design, a simple RC
snubber as shown, or connected to ground, can be sufficient.
Ensure that these component values are chosen based upon
the worst−case transformer leakage inductance and
worst−case applied voltage. Choose R2 and C4 for best
performance radiated switching noise.
Capacitor C5 serves multiple purposes. It is used along
with the internal startup circuitry to provide power to the IC
in lieu of a separate auxiliary winding. It also serves to
provide timing for the oscillator frequency sweep for
limiting the conducted EMI emissions. The value of C5 will
also determine the response during an output fault (overload
or short circuit) or open loop condition as shown in Figure 4,
along with the total output capacitance.
Resistors R5 and R6 will determine the regulated output
voltage along with the reference voltage chosen with IC3.
The base to emitter voltage drop of Q1 along with the
value of R7 will set the fixed current limit value of the
Charger application. R9 is used to limit the base current of
Q1. Component R8 can be selected to keep the current limit
fixed with very low values of output voltage or to provide
current limit foldback with results as shown in
Figures 29 and 33. A relatively large value of R8 allows for
enough output voltage to effectively drive the optocoupler
LED for fixed current limit. A low value of R8, along with
resistor R10, provides for a low average output power using
the fault protection feature when the output voltage is very
low. C13 provides for output voltage stability when the
Charger application is in current limit.
The products described herein (NCP1050, 1051, 1052, 1053, 1054, 1055), may be covered by one or more of the following U.S. patents:
4,553,084; 5,418,410; 5,477,175; 6,137,696; 6,137,702; 6,271,735, 6,480,043, 6,362,067, 6,587,357. There may be other patents pending.
SENSEFET is a trademark of Semiconductor Components Industries, LLC (SCILLC)
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800−282−9855 Toll Free USA/Canada
http://onsemi.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
NCP1050/D
24
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.