ON Semiconductor MC100EP16VC Technical data

MC100EP16VC
3.3V / 5VECL Differential Receiver/Driver with High Gain and Enable Output
The EP16VC provides an EN data input (D) signal in a way that provides glitchless gating of the QHG and QHG
When the EN
outputs.
signal is LOW, the input is passed to the outputs and
the data output equals the data input. When the data input is HIGH and
goes HIGH, it will force the QHG LOW and the QHG HIGH on the
EN next negative transition of the data input. If the data input is LOW when the EN and Q
goes HIGH, the next data transition to a HIGH is ignored
remains LOW and QHG remains HIGH. The next positive
HG
transition of the data input is not passed on to the data outputs under these conditions. The Q
HG
state as long as the EN influence on the Q this output whether EN
output and the data input is passed on (inverted) to
is HIGH or LOW. This configuration is ideal for crystal oscillator applications where the oscillator can be free running and gated on and off synchronously without adding extra counts to the output.
The VBB/D pin is internally dedicated and available for differential interconnect. V decouple V
/D may rebias AC coupled inputs. When used,
BB
/D and VCC via a 0.01 F capacitor and limit current
BB
sourcing or sinking to 1.5 mA. When not used, V open.
The 100 Series contains temperature compensation.
310 ps Typical Prop Delay Q, 380 ps Typical Prop Delay QHG, QHG
Gain > 200
Maximum Frequency > 3 GHz Typical
PECL Mode Operating Range: V
with V
EE
= 0 V
NECL Mode Operating Range: V
with V
= −3.0 V to −5.5 V
EE
Open Input Default State
Q
Output Will Default LOW with D Inputs Open or at V
HG
V
Output
BB
input which is synchronized with the
and QHG outputs remain in their disabled
input is held HIGH. The EN input has no
/D should be left
BB
= 3.0 V to 5.5 V
CC
= 0 V
CC
EE
http://onsemi.com
MARKING DIAGRAMS*
8
1
SO−8
D SUFFIX
CASE 751
8
1
TSSOP−8
DT SUFFIX
CASE 948R
K = MC100 A = Assembly Location L = Wafer Lot Y = Year W= Work Week
*For additional information, see Application Note AND8002/D
ORDERING INFORMATION
Device Package Shipping
MC100EP16VCD SO−8 98 Units/Rail MC100EP16VCDR2 SO−8 2500 Tape & Reel
MC100EP16VCDT TSSOP−8 100 Units/Rail
8
KEP66
ALYW
1
8
KP66
ALYW
1
Semiconductor Components Industries, LLC, 2003
September, 2003− Rev. 2
MC100EP16VCDTR2 TSSOP−8 2500 Tape & Reel
1 Publication Order Number:
MC100EP16VC/D
MC100EP16VC
VBB/D
1
Q
D
2
3
OE
Q
LEN
V
BB
45
EN
LATCH
D
78Q
6
V
CC
HG
Q
HG
V
EE
Figure 1. 8−Lead Pinout (Top View) and Logic Diagram
ATTRIBUTES
Characteristics Value
Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor N/A ESD Protection Human Body Model
Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Level 1 Flammability Rating Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Transistor Count 167 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
PIN DESCRIPTION
PIN FUNCTION
D* ECL Data Input Q Q
, Q
HG
HG
EN
* ECL Enable Input
/D Reference Voltage Output / ECL Data Input
V
BB
V
CC
V
EE
* Pins will default LOW when left open.
Machine Model
ECL Data Output ECL High Gain Data Outputs
Positive Supply Negative Supply
> 4 kV
> 200 V
> 2 kV
MAXIMUM RATINGS (Note 2)
Symbol
V
CC
V
EE
V
I
I
out
I
BB
PECL Mode Power Supply VEE = 0 V 6 V NECL Mode Power Supply VCC = 0 V −6 V PECL Mode Input Voltage
NECL Mode Input Voltage Output Current Continuous
VBB Sink/Source ± 1.5 mA TA Operating Temperature Range −40 to +85 °C T
stg
JA
JC
JA
JC
T
sol
Storage Temperature Range −65 to +150 °C
Thermal Resistance (Junction−to−Ambient) 0 LFPM
Thermal Resistance (Junction−to−Case) std bd 8 SOIC 41 to 44 °C/W
Thermal Resistance (Junction−to−Ambient) 0 LFPM
Thermal Resistance (Junction−to−Case) std bd 8 TSSOP 41 to 44 °C/W
Wave Solder <2 to 3 sec @ 248°C 265 °C
2. Maximum Ratings are those values beyond which device damage may occur.
Parameter Condition 1 Condition 2 Rating Units
VEE = 0 V VCC = 0 V
Surge
500 LFPM
500 LFPM
VI V
CC
VI V
EE
8 SOIC 8 SOIC
8 TSSOP 8 TSSOP
6
−6 50
100
190 130
185 140
mA mA
°C/W °C/W
°C/W °C/W
http://onsemi.com
2
V V
MC100EP16VC
100EP DC CHARACTERISTICS, PECL V
= 3.3 V, VEE = 0 V (Note 3)
CC
−40°C 25°C 85°C
Symbol Characteristic
I
EE
V
OH
V
OL
V
IH
V
IL
V
BB
V
IHCMR
I
IH
I
IL
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
3. Input and output parameters vary 1:1 with V
4. All loading with 50 to V
5. V
IHCMR
input signal.
100EP DC CHARACTERISTICS, PECL V
Power Supply Current 25 36 45 30 40 50 32 42 52 mA Output HIGH Voltage (Note 4) 2105 2230 2355 2105 2230 2355 2105 2230 2355 mV Output LOW Voltage (Note 4) 1305 1430 1555 1305 1430 1555 1305 1430 1555 mV Input HIGH Voltage (Single−Ended) 2075 2420 2075 2420 2075 2420 mV Input LOW Voltage (Single−Ended) 1355 1675 1355 1675 1355 1675 mV Output Voltage Reference 1725 1825 1925 1700 1800 1900 1675 1775 1875 mV Input HIGH Voltage Common Mode
Range (Differential) (Note 5) Input HIGH Current 150 150 150 A Input LOW Current D 0.5 0.5 0.5 A
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
−2.0 volts.
min varies 1:1 with VEE, V
CC
IHCMR
CC
max varies 1:1 with VCC. The V
CC
Min Typ Max Min Typ Max Min Typ Max
2.0 3.3 2.0 3.3 2.0 3.3 V
. VEE can vary +0.3 V to −2.2 V.
range is referenced to the most positive side of the differential
IHCMR
= 5.0 V, VEE = 0 V (Note 6)
Unit
−40°C 25°C 85°C
Symbol Characteristic
I
EE
V
OH
V
OL
V
IH
V
IL
V
BB
V
IHCMR
I
IH
I
IL
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
6. Input and output parameters vary 1:1 with V
7. All loading with 50 to V
8. V
IHCMR
input signal.
Power Supply Current 25 36 45 30 40 50 32 42 52 mA Output HIGH Voltage (Note 7) 3805 3930 4055 3805 3930 4055 3805 3930 4055 mV Output LOW Voltage (Note 7) 3005 3130 3255 3005 3130 3255 3005 3130 3255 mV Input HIGH Voltage (Single−Ended) 3775 4120 3775 4120 3775 4120 mV Input LOW Voltage (Single−Ended) 3055 3375 3055 3375 3055 3375 mV Output Voltage Reference 3425 3525 3625 3400 3500 3600 3375 3475 3575 mV Input HIGH Voltage Common Mode
Range (Differential) (Note 8) Input HIGH Current 150 150 150 A Input LOW Current D 0.5 0.5 0.5 A
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
−2.0 volts.
min varies 1:1 with VEE, V
CC
IHCMR
CC
max varies 1:1 with VCC. The V
Min Typ Max Min Typ Max Min Typ Max
2.0 5.0 2.0 5.0 2.0 5.0 V
. VEE can vary +2.0 V to −0.5 V.
range is referenced to the most positive side of the differential
IHCMR
Unit
100EP DC CHARACTERISTICS, NECL V
= 0 V; V
CC
= −5.5 V to −3.0 V (Note 9)
EE
−40°C 25°C 85°C
Symbol Characteristic
I
EE
V
OH
V
OL
V
IH
V
IL
V
BB
V
IHCMR
I
IH
I
IL
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
9. Input and output parameters vary 1:1 with V
10.All loading with 50 to V
11. V
IHCMR
input signal.
Power Supply Current 25 36 45 30 40 50 32 42 52 mA Output HIGH Voltage (Note 10) −1195 −1070 −945 −1195 −1070 −945 −1195 −1070 −945 mV Output LOW Voltage (Note 10) −1995 −1870 −1745 −1995 −1870 −1745 −1995 −1870 −1745 mV Input HIGH Voltage (Single−Ended) −1225 −880 −1225 −880 −1225 −880 mV Input LOW Voltage (Single−Ended) −1945 −1625 −1945 −1625 −1945 −1625 mV Output Voltage Reference −1575 −1475 −1375 −1600 −1500 −1400 −1625 −1525 −1425 mV Input HIGH Voltage Common Mode
Range (Differential) (Note 11) Input HIGH Current 150 150 150 A Input LOW Current D 0.5 0.50 0.5 A
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
−2.0 volts.
min varies 1:1 with VEE, V
CC
max varies 1:1 with VCC. The V
IHCMR
Min Typ Max Min Typ Max Min Typ Max
VEE+2.0 0.0 VEE+2.0 0.0 VEE+2.0 0.0 V
.
CC
range is referenced to the most positive side of the differential
IHCMR
Unit
http://onsemi.com
3
MC100EP16VC
AC CHARACTERISTICS V
= 0 V; VEE = −3.0 V to −5.5 V or VCC = 3.0 V to 5.5 V; V
CC
= 0 V (Note 12)
EE
−40°C 25°C 85°C
Symbol Characteristic
f
t t
max
PLH PHL
Maximum Frequency (See Figure 2 F
,
Propagation Delay (Differential) Q
max
/JITTER)
(Differential) QHG, QHG
(Single−Ended) Q
(Single−Ended) QHG, QHG
t
S
t
H
t
SKEW
t
JITTER
V
PP
t
r
t
f
Setup Time EN = L to D
Hold Time EN = L to D
Duty Cycle Skew (Note 13) 5.0 20 5.0 20 5.0 20 ps RMS Random Clock Jitter
(See Figure 2 F
max
/JITTER)
Input Voltage Swing HG (Differential Configuration) Q25150
Output Rise/Fall Times Q
(20% − 80%) QHG, QHG
EN =H to D501001560
EN =H to D
Min Typ Max Min Typ Max Min Typ Max
> 3 > 3 > 3 GHz
200 250 250 300
1005050
280 360 330 410
15
350 450 400 500
250 300 300 350
310 380 360 430
50
100540 1005040
20
400 500 450 550
275 325 325 375
340 430 390 480
50
1001810 100
50
20
425 525 475 575
5
0.2 < 1 0.2 < 1 0.2 < 1 ps
800 800
20070300
130
1200 120025150
400
25080350
220
800 800
150
1200 120025150
450
250
240
100
800 800
350 170
1200 1200
500 270
Unit
ps
ps
ps
mV
ps
12.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC−2.0 V.
13.Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.
http://onsemi.com
4
Loading...
+ 7 hidden pages