Omega Products FV-200 Installation Manual

User’s Guide
Shop online at
omega.com
e-mail: info@omega.com
For latest product manuals:
omegamanual.info
Series FV-200
Vortex Shedding Flow Meter
OMEGAne t ®Online Service I nternet e-mail
omega.com info@omega.com
U.S.A. : One Omega Drive, P.O. Box 4047
ISO 9001 Certied Stamford, CT 06907-0047
TEL: (203) 359-1660 FAX: (203) 359-7700 e-mail: info@omega.com
Canada : 976 Bergar
Laval (Quebec) H7L 5A1, Canad a TEL: (514) 856-6928 FAX: (514) 856-6886 e-mail: info@omega.c a
For immediate technical or application assistance:
U.S.A. and Canada : Sales Service: 1-800-826-6342/1-800-TC-OMEG A
Customer Service: 1-800-622-2378/1-800-622-BES T Engineering Service: 1-800-872-9436/1-800-USA-WHEN
Mexico: En Espa n ˜o l: (001) 203-359-7803
e-mail: espanol@omega.com FAX: (001) 203-359-7807 info@omega.com.m x
®
®
®
Servicing Europe:
Czech Republic: Frystatska 184, 733 01 Karviná, Czech Republic
TEL: + 420 (0) 59 6311899 FAX: + 420 (0) 59 6311114
Toll Free: 0800-1-66342 e-mail: info@omegashop.cz
Germany/Austria : Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
TEL: +49 (0)7056 9398- 0 FAX: +49 (0)7056 9398-29 Toll Free in Germany: 0800 639 7678 e-mail: info@omega.d e
United Kingdom: One Omega Drive, River Bend Technology Centre
ISO 9001 Certied Northbank, Irlam, Manchester
M44 5BD United Kingdom TEL: +44 (0)161 777 6611 FAX: +44 (0)161 777 6622 Toll Free in United Kingdom: 0800-488-488 e-mail: sales@omega.co.uk
It is the policy of OMEGA Engineering, Inc. to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.
The information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains, and reserves the right to alter specifications without notice. WARNING: These products are not designed for use in, and should not be used for, human applications.
TABLE OF CONTENTS
INTRODUCTION ....................................................................................................................................................... 1
DESCRIPTION .........................................................................................................................................................................1
OPERATING PRINCIPLE .......................................................................................................................................................1
FLUIDS ....................................................................................................................................................................................... 1
GENERAL INSTALLATION INFORMATION ...................................................................................................... 2
FLOW RATE AND RANGE REQUIREMENTS .................................................................................................................. 2
PIPING REQUIREMENTS ..................................................................................................................................................... 2
BACK PRESSURE ....................................................................................................................................................................7
TEMPERATURE .......................................................................................................................................................................7
OUTPUTS .................................................................................................................................................................................. 8
KFACTORS ..............................................................................................................................................................................8
ELECTRICAL INSTALLATION
POWER ......................................................................................................................................................................................8
WIRING ...................................................................................................................................................................................... 8
4-20 mA LOOP .................................................................................................................................................................... 8
0-5 VDC Output ................................................................................................................................................................11
Pulse Output .....................................................................................................................................................................11
3 PIN CONNECTION OPTION ..........................................................................................................................................12
RVL INLINE SERIES ..............................................................................................................................................14
SPECIFICATIONS ..................................................................................................................................................................14
FLOW RATES ..........................................................................................................................................................................14
MECHANICAL INSTALLATION ........................................................................................................................................15
Dimensions ........................................................................................................................................................................16
Temperature Limits .........................................................................................................................................................16
Pressure Drop ....................................................................................................................................................................16
RVL WAFER SERIES .............................................................................................................................................17
SPECIFICATIONS ..................................................................................................................................................................17
FLOW RATES ..........................................................................................................................................................................17
MECHANICAL INSTALLATION ........................................................................................................................................17
Dimensions ........................................................................................................................................................................20
Temperature Limits .........................................................................................................................................................20
Pressure Drop ....................................................................................................................................................................21
RVL TUBE SERIES .................................................................................................................................................22
SPECIFICATIONS ..................................................................................................................................................................22
FLOW RATES ..........................................................................................................................................................................22
MECHANICAL INSTALLATION ........................................................................................................................................22
Dimensions ........................................................................................................................................................................23
Temperature Limits .........................................................................................................................................................24
Pressure Drop ....................................................................................................................................................................24
MAINTENANCE .......................................................................................................................................................25
TROUBLESHOOTING ............................................................................................................................................25
APPENDIX .................................................................................................................................................................26
INTRODUCTION
DESCRIPTION
The FV-200 series vortex-shedding  ow meter is a general-purpose electronic liquid  ow meter. Three outputs are available. The standard output is a two wire (loop powered) 4-20 mA current. Options for a 0 to 5 VDC or a frequency output proportional to the volumetric  ow rate are also available. The choice of output must be made at the time of ordering. High accuracy is assured by individual  ow testing. Since it uses no moving parts, maintenance is minimized.
The FV-200 is available in several types of plastics allowing them to be used in a wide variety of chemical applications.
OPERATING PRINCIPLE
Counter
Detector
An everyday example of a vortex shedding phenomenon is a  ag waving in the breeze: the  ag waves due to the vortices shed by
Bluff Body
air moving across the  agpole.
Within the  ow meter, as a  uid
Detector
moves across a tiny strut or “blu body”, vortices are also shed but on a smaller scale. The vortices
FIGURE 1
form alternately, from one side to the other, causing pressure  uctuations. These are detected by the crystals in the sensor tube, and are converted to an analog signal or pulse output. The frequency of the vortices is directly proportional to the  ow. This results in extremely accurate and repeatable measurements with no troublesome moving parts (see  gure 1).
FLUIDS
Any clean liquid compatible with the plastic material of construction that does not contain signi cant amounts of  bers or abrasive materials can be used.
Danger - Do not use with: explosive or  ammable materials, food or bev­erages, or gaseous  uids.
Viscosities above 1 cSt will raise the minimum usable  ow rate (in e ect reducing range-abil­ity). This e ect is linear to viscosity. No adjust­ments are required for viscosities up to 2.0 cSt. Liquids with higher viscosities will adversely
Viscosity Minimum Maximum Flow Range
1 cSt 1 12 12:1 2 cSt 2 12 6:1 3 cSt 3 12 4:1 4 cSt 4 12 3:1 5 cSt 5 12 2.4:1 6 cSt 6 12 2:1
Viscosity and Rangeability
a ect the permissible amount and duration of over range  ow (see table 1).
TABLE 1
Page 1
GENERAL INSTALLATION INFORMATION
Prior to installation, the following items should be considered.
1) The vortex transmitter contains electronic circuitry which can be a ected by high electromagnet­ic or electrostatic  elds. Care should be taken to locate the installation in an area away from large electrical motors, transformers, or other devices which can produce such interference.
2) Proper grounding is required to eliminate electrical noise which may be present within the  uid and piping system or in the near vicinity of the vortex transmitter. For non-conductive piping sys­tems, an exterior grounding strap should be used to provide a path to earth ground. For conduc­tive piping systems, a properly grounded pipe will require no additional preparation.
FLOW RATE AND RANGE REQUIREMENTS
Most manufacturers state  ow range capabilities by publishing the maximum allowed  ow rates. Then they provide a turndown ratio to determine minimum  ow rate. To use the turndown ratio, simply divide the maximum rate by the ratio to determine the minimum rate. The FV-200 vortex  ow meters have a 12:1 turndown ratio at a viscosity of 1 cSt. Higher viscosities will reduce the turndown.
NOTE: The ¼” NPT and ½” Flare meters have a standard turndown ratio of 8:1
PIPING REQUIREMENTS
Turbulence in the pipe line can a ect the accuracy of most  ow meters. Sources of turbulence are pumps, valves, or changes-in-direction in the line. To avoid these potential problems, it is standard prac­tice to place the meter a certain distance from the turbulence source. These distances are indicated in Pipe Diameters (PD). For example, 10 PD means place the  ow meter ten times its inside diameter away from the source of turbulence. Downstream distances between the meter and a valve or a change-in­direction must also be followed.
The best accuracy is achieved with at least 20 PD upstream and 5 PD downstream for FV-200 vortex  ow meters. If an upstream elbow is closely coupled to another elbow creating a change in plane, 27 PD is required upstream and 10 PD downstream. (see Figure 2, 3, and 4)
When the diameter of the meter is smaller than the pipe line, at least 20 PD of pipe with the same diam­eter as the meter upstream, and 2 PD downstream is needed. Overall, 25 PD of straight run prior to the meter is required (see Figure 5). If there is a plane change in the installation, this IN OUT requirement in­creases to 25 PD upstream (30 overall). The downstream requirement is now 2 PD of pipe with the same diameter as the meter, and a minimum of 5 PD overall of straight run. If there is a valve downstream the usual 10 PD between the meter and a valve is still required.
If the required piping parameters are not met, there will be a reduction in accuracy.
NOTE: Pulsating  ow will a ect accuracy (pressure pulses will not.
Page 2
HORIZONTAL FLOW - (Sensing element in vertical orientation)
Piping Requirements
Con guration
(pipe diameters)
Inlet Outlet
1 plane change
5
20
1 plane change w/outlet valve 10 2 plane changes
5
27
2 plane changes w/outlet valve 10
20 Dia
Minimum
Flow
20 Dia
Minimum
Accuracy
(full scale)
±1.00% 0.25%
5 Dia
Minimum
10 Dia
Minimum
Repeatability
(of point)
Two Plane
Changes
Two Plane
Changes
Flow
27 Dia
Minimum
Flow
5 Dia
Minimum
27 Dia
Minimum
Flow
10 Dia
Minimum
FIGURE 2
Page 3
HORIZONTAL FLOW - (Sensing element in horizontal orientation)
Piping Requirements
Con guration
(pipe diameters)
Inlet Outlet
1 plane change
5
20
1 plane change w/outlet valve 10 2 plane changes
5
27
2 plane changes w/outlet valve 10
20 Dia
Minimum
Flow
20 Dia
Minimum
Flow
Accuracy
(full scale)
Repeatability
(of point)
±1.50% 0.25%
5 Dia
Minimum
10 Dia
Minimum
Two Plane
Changes
Two Plane
Changes
27 Dia
Minimum
Flow
27 Dia
Minimum
Flow
5 Dia
Minimum
10 Dia
Minimum
FIGURE 3
Page 4
VERTICAL FLOW - (upward or downward  ow and sensor in any orientation)
Piping Requirements
Con guration
(pipe diameters)
Inlet Outlet
1 plane change
20
1 plane change w/outlet valve 10 2 plane changes
27
2 plane changes w/outlet valve 10
Two Plane
Changes
Flow
Minimum
27 Dia
Two Plane
Changes
Flow
Minimum
27 Dia
Accuracy
(full scale)
Repeatability
(of point)
5
±1.00% 0.25%
5
Flow
20 Dia
Minimum
Flow
20 Dia
Minimum
10 Dia
Minimum
5 Dia
Minimum
FIGURE 4
Page 5
10 Dia
Minimum
5 Dia
Minimum
25 Dia
Minimum
10 Dia
Minimum
Flow
5 Dia
Minimum
5 Dia
Minimum
Two Plane
Changes
5 Dia
Minimum
20 Dia
Minimum
25 Dia
Minimum
20 Dia
Minimum
30 Dia
Minimum
25 Dia
Minimum
2 Dia
Minimum
5 Dia
Minimum
Flow
2 Dia
Minimum
5 Dia
Minimum
Flow
2 Dia
Minimum
FIGURE 5
Page 6
BACK PRESSURE
Back pressure (the pressure immediately downstream of the meter) must be maintained above a mini­mum level in order to avoid cavitation. For most applications, this may be ignored if the  ow rate is less than 75% of maximum.
Back Pressure = 2.75 ∆P + 1.25 PV - 14.7
Where:
P = Pressure drop in psi at max  ow
PV = Vapor pressure in psia of the liquid at operating temp. (eg. the PV of water at 100 °F is 0.42.) BP = Back pressure (downstream of meter) in psig.
For example the back pressure required for water, at 100 °F (37 °C) in a ½” meter, where the maximum pressure drop is 8 psi, 7.8 psig back pressure is su cient. For other liquids, use the following formula to calculate the minimum back pressure.
BP = (2.75 × 8) + (1.25 × 0.42) - 14.7 BP = 22 + 0.525 - 14.7 BP = 7.825
TEMPERATURE
To protect the internal crystals in each unit, temperature limitations must be adhered to. All permissible operating temperatures are identi ed by meter and material type. Additionally  uid temperature will af­fect maximum working pressures. For de-rating information see the maximum  uid operating pressures for the speci c  ow meter model.
OUTPUTS
The FV-200 series meters can be obtained with either an analog output or a rate frequency output. The standard analog output is a 4-20 mA current an optional 0-5 VDC is also available. The analog output can also be re-con gured in the  eld using a PC communications cable and programming software which are both available from Omega.
The analog current output varies between 4 mA (0  ow) and 20 mA (maximum  ow). The 0 to 5 VDC analog output is also continuously variable between 0 V (0  ow) and 5 V (maximum  ow).
NOTE: One of the two analog output options (4-20 mA or 0-5 VDC) are hard-
ware selected at the factory and can not be changed in the  eld.
The rate frequency output produces pulses whose frequency is proportional to the  ow going through the meter. Each meter has a slightly di erent output frequency which is listed on the calibration sheet that accompanies the meter. Table 2 shows the long term aver- age full scale output frequency for standard size meters.
Meter Size
in (mm)
¼ (6.4) 1055 0.47
½ (12.7) 820 0.61
½ (12.7) 570 0.88
¾ (19.1) 284 1.76
1 (25.4) 292 1.71
1½ (38.1) 144 3.47
2 (50.8) 148 3.38
3 (76.2) 61 8.20
Average Full Scale
Frequency (Hz)
TABLE 2
Pulse Width
(msec)
Page 7
The frequency output option generates a square wave with an amplitude that matches the input power level. The pulse width varies with frequency and is found by using the following formula. The result is in seconds.
PW =
2 x Maximum Frequency (Hz)
1
KFACTORS
The K-factor (with regards to  ow) is the number of pulses that must be accumulated to equal a particu­lar volume of  uid. Think of each pulse as representing a small fraction of the totalizing unit.
Calibration reports that accompany FV-200 series meters include a nominal K-factor in both gallons and liters. See the sample calibration sheet in the appendix of this manual.
ELECTRICAL INSTALLATION
POWER
The meter requires an 8 to 28 VDC power supply. The speci c connections depend upon which output is option is used. See wiring details for the speci c output option .
NOTE: This instrument requires clean electrical line power. Do not operate this unit on circuits with noisy components (i.e.
Fluorescent lights, relays, compressors, variable frequency drives, etc.) Linear power supplies are also much preferable to switching power supplies.
NOTE: The power and output connections share a common ground.
WIRING
4-20 mA LOOP
Connect a twisted pair wire (not provided) to the terminals of the transmitter marked +8-28 VDC and Output. If the twisted pair wire is shielded, do not connect the shield to the transmitter. The shield should
be grounded at the receiver only (see  gure 6). The transmitter is reverse-polarity protected.
Page 8
Loading...
+ 24 hidden pages