CY670 Series Silicon Diode Standard Curve CY670
Technical Data
M-4446/0307
Standard Curve CY670
Measurement Current = 10 µA ±0.05%
T Voltage dV/dT T Voltage dV/dT T Voltage dV/dT
(K) (V) (mV/K) (K) (V) (mV/K) (K) (V) (mV/K)
1.20 1.646540 -9.87 18.00 1.228300 -15.25 125.00 0.939242 -1.96
1.40 1.644290 -12.49 18.50 1.220700 -15.18 130.00 0.929390 -1.98
1.60 1.641570 -14.79 19.00 1.213110 -15.20 135.00 0.919446 -2.00
1.80 1.638370 -17.15 19.50 1.205480 -15.34 140.00 0.909416 -2.01
2.00 1.634720 -19.30 20.00 1.197748 -15.63 145.00 0.899304 -2.03
2.20 1.630670 -21.14 21.00 1.181548 -16.98 150.00 0.889114 -2.05
2.40 1.626290 -22.61 22.00 1.162797 -21.11 155.00 0.878851 -2.06
2.60 1.621660 -23.63 23.00 1.140817 -20.77 160.00 0.868518 -2.07
2.80 1.616870 -24.16 24.00 1.125923 -9.42 165.00 0.858120 -2.09
3.00 1.612000 -24.67 25.00 1.119448 -4.60 170.00 0.847659 -2.10
3.20 1.606970 -25.63 26.00 1.115658 -3.19 175.00 0.837138 -2.11
3.40 1.601730 -26.80 27.00 1.112810 -2.58 180.00 0.826560 -2.12
3.60 1.596260 -27.91 28.00 1.110421 -2.25 185.00 0.815928 -2.13
3.80 1.590570 -28.99 29.00 1.108261 -2.08 190.00 0.805242 -2.14
4.00 1.584650 -30.21 30.00 1.106244 -1.96 195.00 0.794505 -2.15
4.20 1.578480 -31.59 31.00 1.104324 -1.88 200.00 0.783720 -2.16
4.40 1.572020 -32.91 32.00 1.102476 -1.82 210.00 0.762007 -2.18
4.60 1.565330 -33.97 33.00 1.100681 -1.77 220.00 0.740115 -2.20
4.80 1.558450 -34.74 34.00 1.098930 -1.73 230.00 0.718054 -2.21
5.00 1.551450 -35.25 35.00 1.097216 -1.70 240.00 0.695834 -2.23
5.20 1.544360 -35.60 36.00 1.095534 -1.67 250.00 0.673462 -2.24
5.40 1.537210 -35.92 37.00 1.093878 -1.64 260.00 0.650949 -2.26
5.60 1.530000 -36.22 38.00 1.092244 -1.62 270.00 0.628302 -2.27
5.80 1.522730 -36.48 39.00 1.090627 -1.61 273.15 0.621141 -2.28
6.00 1.515410 -36.71 40.00 1.089024 -1.60 280.00 0.605528 -2.28
6.50 1.496980 -36.86 42.00 1.085842 -1.59 290.00 0.582637 -2.29
7.00 1.478680 -36.21 44.00 1.082669 -1.59 300.00 0.559639 -2.30
7.50 1.460860 -35.00 46.00 1.079492 -1.59 305.00 0.548102 -2.31
8.00 1.443740 -33.42 48.00 1.076303 -1.60 310.00 0.536542 -2.31
8.50 1.427470 -31.67 50.00 1.073099 -1.61 320.00 0.513361 -2.32
9.00 1.412070 -29.95 52.00 1.069881 -1.61 330.00 0.490106 -2.33
9.50 1.397510 -28.31 54.00 1.066650 -1.62 340.00 0.466760 -2.34
10.00 1.383730 -26.84 56.00 1.063403 -1.63 350.00 0.443371 -2.34
10.50 1.370650 -25.51 58.00 1.060141 -1.64 360.00 0.419960 -2.34
11.00 1.358200 -24.31 60.00 1.056862 -1.64 370.00 0.396503 -2.35
11.50 1.346320 -23.20 65.00 1.048584 -1.67 380.00 0.373002 -2.35
12.00 1.334990 -22.15 70.00 1.040183 -1.69 390.00 0.349453 -2.36
12.50 1.324160 -21.17 75.00 1.031651 -1.72 400.00 0.325839 -2.36
13.00 1.313810 -20.25 77.35 1.027594 -1.73 410.00 0.302161 -2.37
13.50 1.303900 -19.41 80.00 1.022984 -1.75 420.00 0.278416 -2.38
14.00 1.294390 -18.63 85.00 1.014181 -1.77 430.00 0.254592 -2.39
14.50 1.285260 -17.92 90.00 1.005244 -1.80 440.00 0.230697 -2.39
15.00 1.276450 -17.31 95.00 0.996174 -1.83 450.00 0.206758 -2.39
15.50 1.267940 -16.77 100.00 0.986974 -1.85 460.00 0.182832 -2.39
16.00 1.259670 -16.31 105.00 0.977650 -1.88 470.00 0.159010 -2.37
16.50 1.251610 -15.94 110.00 0.968209 -1.90 480.00 0.135480 -2.33
17.00 1.243720 -15.64 115.00 0.958657 -1.92 490.00 0.112553 -2.25
17.50 1.235960 -15.41 120.00 0.949000 -1.94 500.00 0.090681 -2.12
POLYNOMIAL REPRESENTATION
Curve CY670 can be expressed by a polynomial equation based on the Chebychev polynomials. Four separate ranges are required to accurately
describe the curve. Table 1 lists the parameters for these ranges. The polynomials represent Curve CY670 on the preceding page with RMS
deviations of 10 mK. The Chebychev equation is:
Tx atx
() ()
where T(x) = temperature in Kelvin, t
a normalized variable given by:
where Z = voltage and ZL and ZU = lower and upper limit of the voltage over the fit range. The Chebychev polynomials can
be generated from the recursion relation:
Alternately, these polynomials are given by:
The use of Chebychev polynomials is no more complicated than the use of the regular power series and they offer significant advantages in the actual
fitting process. The first step is to transform the measured voltage into the normalized variable using Equation (2). Equation (1) is then used in
combination with equations (3) and (4) to calculate the temperature. Programs 1 and 2 provide sample BASIC subroutines that will take the voltage
and return the temperature T calculated from Chebychev fits. The subroutines assume the values ZL and ZU have been input along with the degree of
the fit. The Chebychev coefficients are also assumed to be in any array A(0), A(1),..., A(i
An interesting property of the Chebychev fit is evident in the form of the Chebychev polynomial given in Equation (4). No term in Equation (1) will
be greater than the absolute value of the coefficient. This property makes it easy to determine the contribution of each term to the temperature
calculation and where to truncate the series if full accuracy is not required.
FUNCTION Chebychev (Z as double)as double
REM Evaluation of Chebychev series
X=((Z-ZL)-(ZU-Z))/(ZU-ZL)
Tc(0)=1
Tc(1)=X
T=A(0)+A(1)*X
FOR I=2 to Ubound(A())
Tc(I)=2*X*Tc(I-1)-Tc(I-2)
T=T+A(I)*Tc(I)
NEXT I
Chebychev=T
END FUNCTION
Program 1. BASIC subroutine for evaluating the temperature T
from the Chebychev series using Equations (1) and (3). An
array Tc (i
) should be dimensioned. See text for details.
degree
(x) = a Chebychev polynomial, and ai = the Chebychev coefficient. The parameter x is
i
x
=
tx xtxtx
11
iii
+−
tx tx x
() ()
01
tx i x=
() ()
i
n
=
∑
ii
0
i
=
ZL ZU Z
−− −
()( )
ZU ZL
()
2
=−
() () ()
1,
==
cos • arccos
−
FUNCTION Chebychev (Z as double)as double
REM Evaluation of Chebychev series
X=((Z-ZL)-(ZU-Z))/(ZU-ZL)
T=0
FOR I=0 to Ubound(A())
T=T+A(I)*COS(I*ARCCOS(X))
NEXT I
Chebychev=T
END FUNCTION
NOTE:
Program 2. BASIC subroutine for evaluating the temperature T
from the Chebychev series using Equations (1) and (4). Double
precision calculations are recommended.
⎦
).
degree
arccos arctan
X
()
π
=−
2
(1)
(2)
(3)
(4)
⎡⎤
X
⎢⎥
⎣⎦
2
−
1
X
Table 1.
2.0 K to 12.0 K 12.0 K to 24.5 K 24.5 K to 100.0 K 100 K to 500 K
ZL = 1.294390
ZU = 1.680000
A(0) = 6.429274
A(1) = -7.514262
A(2) = -0.725882
A(3) = -1.117846
A(4) = -0.562041
A(5) = -0.360239
A(6) = -0.229751
A(7) = -0.135713
A(8) = -0.068203
A(9) = -0.029755
ZL = 1.11230
ZU = 1.38373
A(0) = 17.244846
A(1) = -7.964373
A(2) = 0.625343
A(3) = -0.105068
A(4) = 0.292196
A(5) = -0.344492
A(6) = 0.271670
A(7) = -0.151722
A(8) = 0.121320
A(9) = -0.035566
A(10) = 0.045966
ZL = 0.909416
ZU = 1.122751
A(0) = 82.017868
A(1) = -59.064244
A(2) = -1.356615
A(3) = 1.055396
A(4) = 0.837341
A(5) = 0.431875
A(6) = 0.440840
A(7) = -0.061588
A(8) = 0.209414
A(9) = -0.120882
A(10) = 0.055734
A(11) = -0.035974
ZL = 0.07000
ZU = 0.99799
A(0) = 306.592351
A(1) = –205.393808
A(2) = -4.695680
A(3) = -2.031603
A(4) = -0.071792
A(5) = -0.437682
A(6) = 0.176352
A(7) = -0.182516
A(8) = 0.064687
A(9) = -0.027019
A(10) = 0.010019
One Omega Drive, P.O. Box 4047
Stamford, CT 06907
Tel: (203) 359-1660
Telex: 996404 Cable OMEGA
Fax (203) 359-7700 © 2007 OMEGA ENGINEERING, INC. ALL RIGHTS RESERVED.