NSC LM2647MTCX, LM2647LQX, LM2647EVAL, LM2647MTC, LM2647LQ Datasheet

LM2647 Dual Synchronous Buck Regulator Controller
General Description
The LM2647 is an adjustable 200-500kHz dual channel voltage-mode controlled high-speed synchronous buck regulator controller ideally suited for battery powered appli­cations such as laptop and notebook computers. The LM2647 requires only N-channel FETs for both the upper and lower positions of each synchronous stage. It features line feedforward to improve the response to input transients. At very light loads, the user can choose between the high­efficiency Pulse-skip mode or the constant frequency Forced-PWM mode. Lossless current limiting without the use of external sense resistors is made possible by sensing the voltage drop across the bottom FET. A unique adaptive duty cycle clamping technique is incorporated to significantly re­duce peak currents under abnormal load conditions. The two independently programmable outputs switch 180˚ out of phase (interleaved switching) to reduce the input capacitor and filter requirements. The input voltage range is 5.5V to 28V while the output voltages are adjustable down to 0.6V.
Features
n Input voltage range from 5.5V to 28V n Synchronous dual-channel Interleaved switching n Forced-PWM or Pulse-skip modes n Lossless bottom-side FET current sensing n Adaptive duty cycle clamping n High current N-channel FET drivers n Low shutdown supply currents n Reference voltage accurate to within
±
1.5%
n Output voltage adjustable down to 0.6V n Power Good flag and Chip Enable n Under-voltage lockout n Over-voltage/Under-voltage protection n Soft-start and Soft-shutdown n Switching frequency adjustable 200kHz-500kHz
Applications
n Notebook Chipset Power Supplies n Low Output Voltage High-Efficiency Buck Regulators
Typical Application (Channel 2 in parenthesis)
20056304
June 2003
Dual Synchronous Buck Regulator Controller
© 2003 National Semiconductor Corporation DS200563 www.national.com
Connection Diagrams
20056302
Top View
28-Lead TSSOP (MTC)
20056303
Top View
28-Lead LLP (LQA)
Ordering Information
Order Number Package Drawing Supplied As
LM2647MTC MTC28 48 Units/Rail
LM2647MTCX MTC28 2500 Units/13" Reel
LM2647LQ LQA28A 1000 Units/7" Reel
LM2647LQX LQA28A 4500 Units/13" Reel
Pin Description
(All pin numbers referred to here correspond to the TSSOP package)
Pin 1, SENSE1: Output voltage sense pin for Channel 1. It is tied directly to the output rail. The SENSE pin voltage is used together with the VIN voltage (on Pin 22) to (internally) calculate the CCM (continuous conduction mode) duty cycle. This calculation is used by the IC to set the minimum duty cycle in the SKIP mode to 85% of the CCM value. It is also used to set the adaptive duty cycle clamp (see Pin 3). An internal 20resistor from the SENSE pin to ground dis­charges the output capacitor gently (Soft-shutdown) when­ever Power Not Good is signaled on Pin 9.
Pin 2, FB1: Feedback pin for Channel 1. This is the inverting input of the error amplifier. The voltage on this pin under regulation is nominally at 0.6V. A Power Good window on this pin determines if the output voltage is within regulation limits (
±
13%). If the voltage (on either channel) falls outside this window for more than 7µs, Power Not Good is signaled on the PGOOD pin (Pin 9). Output over-voltage and under­voltage conditions are also detected by comparing the volt­age on the Feedback pin with appropriate internal reference voltage levels. If the voltage exceeds the safe window (
±
30%) for longer than 7µs, a fault condition is asserted. Then both the lower FETs are latched ON and the upper FETs are latched OFF. When single channel operation is desired, the Feedback pins of both channels should be connected together, near the IC. All other pins specific to the unused channel should be left floating (not connected to each other either).
Pin 3, COMP1: Compensation pin for Channel 1. This is also the output of the error amplifier of this channel. The voltage level on this pin is compared with an internally generated ramp signal to set the duty cycle for normal regulation. Since the Feedback pin is the inverting input of the same error amplifier, appropriate control loop compensation compo­nents are placed between this pin and the Feedback pin. The COMP pin is internally pulled low during Soft-start so as to limit the duty cycle. Once Soft-start is completed, the voltage on this pin can take up the value required to maintain output regulation. But an internal voltage clamp does not allow the pin to go much higher than the steady-state re­quirement. This forms the adaptive duty cycle clamp feature which serves to limit the maximum allowable duty cycle and peak currents under sudden overloads. But at the same time it has enough headroom to permit an adequate response to step loads within the normal operating range.
Pin 4, SS1: Channel 1 Soft-start pin. A Soft-start capacitor is placed between this pin and ground. A typical capacitance of
0.1µF is always recommended between this pin and ground. The IC connects an internal 1.8 kresistor (R
SS_DCHG
, see Electrical Characteristics table) between this pin and ground to discharge any remaining charge on the Soft-start capaci­tor under several conditions. These conditions include the initial power-up sequence, start-up by toggling the EN pin, and also recovery from a fault condition. The purpose is to bring down the voltage on both the Soft-start pins to below 100mV for obtaining reset. Reset having thus been obtained, an 11µA current source at this pin charges up the Soft-start capacitor. The voltage on this pin controls the maximum duty cycle, and this produces a gradual ramp-up of the output voltage, thereby preventing large inrush currents into the
LM2647
www.national.com 2
Pin Description (Continued)
output capacitors. The voltage on this pin finally clamps close to 5V. This pin is again connected to the internal 115µA current sink whenever a current limit event is in progress. This sink current discharges the Soft-start capacitor and forces the duty cycle low to protect the power components. When a fault condition is asserted (See Pin 2) the SS pin is internally connected to ground via the 1.8 kresistor.
Pin 5, VDD: 5V supply rail for the control and logic sections of both channels. For normal operation to start, the voltage on this pin must be brought above 4.5V. Subsequently, the voltage on this pin (including any ripple component) should not allowed to fall below 4V for a duration longer than 7µs. Since this pin is also the supply rail for the internal control sections, it should be well-decoupled particularly at high frequencies. A minimum 0.1µF-0.47µF (ceramic) capacitor should be placed on the component side very close to the IC with no intervening vias between this capacitor and the VDD/SGND pins. If the voltage on Pin 5 falls below the lower UVLO threshold, both upper FETs are latched OFF and lower FETs latched ON. Power Not Good is then also sig­naled immediately (on Pin 9). To effect recovery, the EN pin must be taken below 0.8V and then back above 2V (with VDD held above 4.5V). Or the voltage on the VDD pin must be taken below 1.0V and then back again above 4.5V (with EN pin held above 2V). Normal operation will then resume assuming that the fault condition has cleared.
Pin 6, FREQ: Frequency adjust pin. The switching frequency (for both channels) is set by a resistor connected between this pin and ground. A value of 22.1ksets the frequency to 300kHz (nominal). If the resistance is increased, the switch­ing frequency falls. An approximate relationship is that for every 7.3kincrease (or decrease) in the value of the fre­quency adjust resistance, the time period (1/f) increases (or decreases) by about 1µs.
Pin 7, SGND: Signal Ground pin. This is the lower rail for the control and logic sections of both channels. SGND should be connected on the PCB to the system ground, which in turn is connected to PGND1 and PGND2. The layout is important and the recommendations in the section Layout Guidelines should be followed.
Pin 8, EN: IC Enable pin. When EN is taken high, both channels are enabled by means of a Soft-start power-up sequence (see Pin 4). When EN is brought low, Power Not Good is signaled within 100ns. This causes Soft-shutdown to occur (see Pins 1 and 9). The Soft-start capacitor is then discharged by an internal 1.8kresistor (R
SS_DCHG
, see Electrical Characteristics table). But note that when the En­able pin is toggled, a fault condition is not asserted. There­fore in this case, the lower FETs are not latched ON, even as the output voltage ramps down, eventually falling below the under-voltage threshold. In fact, in this situation, both the upper and the lower FETs of the two channels are latched OFF, until the Enable pin is taken high again. If a fault shutdown has occurred, taking the Enable pin low and then high again (toggling), resets the internal latches, and the IC will resume normal switching operation.
Pin 9, PGOOD: Power Good output pin. An open-Drain logic output that is pulled high with an external pull-up resistor, indicating that both output voltages are within a pre-defined Power Good window. Outside this window, the pin is inter­nally pulled low (Power Not Good signaled) provided the output error lasts for more than 7µs. But the pin is also pulled low within 100ns of the Enable pin being taken low, irrespec­tive of the output voltage level. Note that PGOOD must
always be high before it can respond by going low. So regulation on both channels must be achieved first. Further, for fault monitoring to be in place, PGOOD must have been high prior to occurrence of the fault condition. Note that since under a fault assertion, the lower FETs are always latched ON, this will not happen if regulation has not been already been achieved first. For correct signaling on this pin under single-channel operation, see description of Pin 2.
Pin 10, FPWM: Logic input for selecting either the Forced PWM (FPWM) Mode or Pulse-skip Mode (SKIP) for both channels (together). When the pin is driven high, the IC operates in the FPWM mode, and when pulled low or left floating, the SKIP mode is enabled. In FPWM mode, the lower FET of a given channel is always ON whenever the upper FET is OFF (except for a narrow shoot-through pro­tection deadband). This leads to continuous conduction mode of operation, which has a fixed frequency and (almost) fixed duty cycle down to very light loads. But this does reduce efficiency at light loads. The alternative is the SKIP mode, where the lower FET remains ON only until the volt­age on the Switch pin (see Pin 27 or Pin 16) is more negative than 2.2mV (typical). So for example, for a 21mFET, this translates to a current threshold of 2.2mV/21m= 0.1A. Therefore, if the (instantaneous) inductor current falls below this value, the lower FET will turn OFF every cycle at this point (when operated in SKIP mode). This threshold is set by the zero-cross Comparator in the Block Diagram. Note that if the inductor current waveform is high enough to be always above this zero-cross threshold (V
SW_ZERO
, see Table of Electrical Characteristics), there will be no observable differ­ence between FPWM and SKIP mode settings (in steady­state). SKIP mode, when it actually occurs, is clearly a discontinuous mode of operation. However, note that in con­ventional discontinuous mode, the duty cycle keeps falling (towards zero) as the load decreases. But the LM2647 does not allow the duty cycle to fall by more than 15% of its original value (at the CCM-DCM boundary). This forces pulse-skipping, and the average frequency is effectively de­creased as the load decreases. This mode of operation improves efficiency at light loads, but the frequency is effec­tively no longer a constant. Note that a minimum pre-load of
0.1mA should be maintained on the output of each channel to ensure regulation in SKIP mode. The resistive divider from
output to ground used to set the output voltage could be designed to serve as part or all of this required pre-load.
Pin 11, SS2: Soft-start pin for Channel 2. See Pin 4. Pin 12, COMP2: Soft-start pin for Channel 2. See Pin 3. Pin 13, FB2: Feedback pin for Channel 2. See Pin 2. Pin 14, SENSE2: Output voltage sense pin for Channel 2.
See Pin 1. Pin 15, ILIM2: Channel 2 Current Limit pin. When the bottom
FET is ON, a 62µA (typical) current flows out of this pin into an external current limit setting resistor connected to the Drain of the lower FET. This is a current source, therefore the drop across this resistor serves to push the voltage on this pin to a more positive value. However, the Drain of the lower FET which is connected to the other side of the same resistor is trying to go more negative as the load current increases. At some value of instantaneous current, the volt­age on this pin will transit from positive to negative. The point where it is zero is the current limiting condition and is de­tected by the Current Limit Comparator in the Block Dia­gram. When current limit condition has been detected, the next ON-pulse of the upper FET will be omitted. The lower FET will again be monitored to determine if the current has fallen below the threshold. If it has, the next ON-pulse will be
LM2647
www.national.com3
Pin Description (Continued)
permitted. If not, the upper FET will be turned OFF and will stay so for several cycles if necessary, until the current returns to normal. Eventually, if the overcurrent condition persists, and the upper FET has not been turned ON, the output will clearly start to fall. Ultimately the output will fall below the under-voltage threshold, and a fault condition will be asserted by the IC.
Pin 16, SW2: The Switching node of the buck regulator of Channel 2. Also serves as the lower rail of the floating driver of the upper FET.
Pin 17, HDRV2: Gate drive pin for the upper FET of Channel 2 (High-side drive). The top gate driver is interlocked with the bottom gate driver to prevent shoot-through/cross­conduction.
Pin 18, BOOT2: Bootstrap pin for Channel 2. This is the upper supply rail for the floating driver of the upper FET. It is bootstrapped by means of a ceramic capacitor connected to the channel Switching node. This capacitor is charged up by the IC to a value of about 5V as derived from the V5 pin (Pin
21). Pin 19, PGND2: Power Ground pin of Channel 2. This is the
return path for the bottom FET gate drive. Both the PGND’s are to be connected on the PCB to the system ground and also to the Signal ground (Pin 7) in accordance with the recommended Layout Guidelines .
Pin 20, LDRV2: Gate drive pin for the Channel 2 bottom FET (Low-side drive). The bottom gate driver is interlocked with
the top gate driver to prevent shoot-through/cross­conduction. It is always latched high when a fault condition is asserted by the IC.
Pin 21, V5: Upper rail of the lower FET drivers of both channels. Also used to charge up the bootstrap capacitors of the upper FET drivers. This is connected to an external 5V supply. The 5V rail may be the same as the rail used to provide power to the VDD pin (Pin 5), but the VDD pin will then require to be well-decoupled so that it does not interact with the V5 pin. A low-pass RC filter consisting of a ceramic
0.1µF capacitor (preferably 0.22µF) and a 10resistor will suffice as shown in the Typical Applications circuit.
Pin 22, VIN: The input to both the Buck regulator power stages. It also is used by the internal ramp generator to implement the line feedforward feature. The VIN pin is also used with the SENSE pin voltage to predict the CCM (con­tinuous conduction mode) duty cycle and to thereby set the minimum allowed DCM duty cycle to 85% of the CCM value (in SKIP mode, see Pin 10). This is a high input impedance pin, drawing only about 100µA (typical) from the input rail.
Pin 23, LDRV1: LDRV pin of Channel 1. See Pin 20. Pin 24, PGND1: PGND pin for Channel 1.See Pin 19. Pin 25, BOOT1: Boot pin of Channel 1. See Pin 18. Pin 26, HDRV1: HDRV pin of Channel 1. See Pin 17. Pin 27, SW1: SW pin of Channel 1. See Pin 16. Pin 28, ILIM1: Channel 2 Current Limit pin. See Pin 15.
LM2647
www.national.com 4
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Voltages from the indicated pins to SGND/PGND unless otherwise indicated (Note 2):
VIN 30V
V5 7V
VDD 7V
BOOT1, BOOT2 36V
BOOT1 to SW1, BOOT2 to SW2 7V
SW1, SW2 30V
ILIM1, ILIM2 30V
SENSE1, SENSE2, FB1, FB2 7V
PGOOD 7V
EN 7V
Power Dissipation (T
A
= 25˚C)
(Note 3) 1.0W
Junction Temperature +150˚C
ESD Rating (Note 4) 2kV
Ambient Storage Temperature Range -65˚C to +150˚C
Soldering Dwell Time, Temperature
Wave Infrared
Vapor Phase
4 sec, 260˚C 10 sec, 240˚C 75 sec, 219˚C
Operating Ratings (Note 1)
VIN 5.5V to 28V
VDD, V5 4.5V to 5.5V
Junction Temperature -5˚C to +125˚C
Electrical Characteristics
Specifications with standard typeface are for TJ= 25˚C, and those with boldface apply over full Operating Junction Tempera­ture range. VDD = V5 = 5V, V
SGND=VPGND
= 0V, VIN = 15V, VEN= 3V, R
FADJ
= 22.1K unless otherwise stated. (Note 5)
Symbol Parameter Conditions
Min
(Note 6)
Typical
(Note 7)
Max
(Note 6)
Units
Reference
V
FB_REG
FB Pin Voltage at Regualtion (either FB Pin)
VDD = 4.5V to 5.5V, VIN = 5.5V to 28V
591 600 609 mV
VFBLine Regulation VDD = 4.5V to 5.5V,
VIN = 5.5V to 28V
0.5
I
FB
FB Pin Current (sourcing) VFBat regulation 20 100 nA
Chip Supply
I
Q_VIN
VIN Quiescent Current V
FB1=VFB2
= 0.7V 100 200 µA
I
SD_VN
VIN Shutdown Current VEN=0V 0 5 µA
I
Q_VDD
VDD Quiescent Current V
FB1=VFB2
= 0.7V 2.5 4 mA
I
SD_VDD
VDD Shutdown Current VEN=0V 8 15 µA
I
Q_V5
V5 Normal Operating Current V
FB1=VFB2
= 0.7V 0.3 0.5 mA
V
FB1=VFB2
= 0.5V 1 1.5
I
SD_V5
V5 Shutdown Current VEN=0V 0 5 µA
I
Q_BOOT
BOOT Quiescent Current V
FB1=VFB2
= 0.7V 2 5 µA
V
FB1=VFB2
= 0.5V 300 500
I
SD_BOOT
BOOT Shutdown Current VEN=0V 1 5 µA
V
UVLO
VDD UVLO Threshold VDD rising from 0V 3.9 4.2 4.5 V
VDD UVLO Hysteresis VDD = V5 falling from V
UVLO
0.5 0.7 0.9 V
Logic
I
EN
EN Input Current VEN=0to5V 0 µA
V
EN_HI
EN Input Logic High 2 1.8 V
V
EN_LO
EN Input Logic Low 1.3 0.8 V
FPWM Pull-down V
FPWM
=2V 100 200 1000 k
V
FPWM_HI
FPWM Input Logic High 2 1.8 V
V
FPWM_LO
FPWM Input Logic Low 1.3 0.8 V
LM2647
www.national.com5
Electrical Characteristics (Continued)
Specifications with standard typeface are for TJ= 25˚C, and those with boldface apply over full Operating Junction Tempera­ture range. VDD = V5 = 5V, V
SGND=VPGND
= 0V, VIN = 15V, VEN= 3V, R
FADJ
= 22.1K unless otherwise stated. (Note 5)
Symbol Parameter Conditions
Min
(Note 6)
Typical
(Note 7)
Max
(Note 6)
Units
Power Good
V
PGOOD_HI
Power Good Upper Threshold as a Percentage of Internal Reference
FB voltage rising above V
FB_REG
110 113 116 %
V
PGOOD_LOW
Power Good Lower Threshold as a Percentage of Internal Reference
FB voltage falling below V
FB_REG
84 87 90 %
Power Good Hysteresis 7 %
t
PG_OK
Power Good Delay From both output voltages “good”
to PGOOD assertion.
10 20 30 µs
t
PG_NOK
From the first output voltage “bad” to PGOOD de-assertion
4 7 10
t
SD
From Enable low to PGOOD low 0.03 0.1
PGOOD Saturation Voltage PGOOD de-asserted (Power Not
Good) and sinking 1.5mA
0.12 0.4 V
PGOOD Leakage Current PGOOD = 5V and asserted 0 1 µA
OV and UV Protection
Fault OVP Latch Threshold as a Percentage of Internal Reference
FB voltage rising above V
FB_REG
125 130 135 %
Fault UVP Latch Threshold as a Percentage of Internal Reference
FB voltage falling below V
FB_REG
65 70 75 %
t
FAULT
Fault Delay From Fault detection (any output)
to Fault assertion
s
Soft-start
I
SS_CHG
Soft-start Charging Current VSS=1V 8 11 14 µA
R
SS_DCHG
Soft-shutdown Resistance (SS pin to SGND, either channel)
V
EN
= 0V, VSS= 1V 1800
I
SS_DCHG
Soft-start Discharge Current In Current Limit 80 115 160 µA
V
SS_RESET
Soft-start pin reset voltage (Note 8)
SS charged to 0.5V, EN low to high 100 mV
SS to COMP Offset Voltage V
SS
= 0.5V and 1V, V
FB1=VFB2
=
0V
600 mV
Error Amplifier
GAIN DC Gain 70 dB
Voltage Slew Rate COMP rising 4.45 V/µs
COMP falling 2.25
BW Unity Gain Bandwidth COMP falling 6.5 MHz
COMP Source Current V
FB
<
V
FB_REG
V
COMP
= 0.5V
2 5mA
COMP Sink Current V
FB
>
V
FB_REG
V
COMP
= 0.5V
7 14 mA
Current Limit and Zero-Cross
I
ILIM
I
LIM
Pin Current (sourcing,
either ILIM pin)
V
ILIM1=VILIM2
=0V 46 62 76 µA
I
ILIM
Threshold Voltage -10 0 10 mV
LM2647
www.national.com 6
Electrical Characteristics (Continued)
Specifications with standard typeface are for TJ= 25˚C, and those with boldface apply over full Operating Junction Tempera­ture range. VDD = V5 = 5V, V
SGND=VPGND
= 0V, VIN = 15V, VEN= 3V, R
FADJ
= 22.1K unless otherwise stated. (Note 5)
Symbol Parameter Conditions
Min
(Note 6)
Typical
(Note 7)
Max
(Note 6)
Units
V
SW_ZERO
Zero-cross Threshold (SW Pin)
LDRV goes low -2.2 mV
Osillator
PWM Frequency R
FADJ
= 22.1k 255 300 345 kHz
R
FADJ
= 12.4k 500
R
FADJ
= 30.9k 200
PWM Ramp Peak-to-peak Amplitude
VIN = 15V 1.6 V
VIN = 24V 2.95
PWM Ramp Valley 0.8 V
Frequency Change with VIN VIN = 5.5V to 24V
±
1%
Frequency Change with VDD VDD = 4.5V to 5.5V
±
2%
Phase Shift Between Channels
Phase from HDRV1 to HDRV2 165 180 195 deg
FREQ Pin Voltage vs. VIN 0.105 V/V
System
Minimum ON Time V
FPWM
=3V 30 ns
VIN = 5.5V 60 75 %
Maxmimum Duty Cycle VIN = 15V 40 50 %
VIN = 28V, VDD= 4.5V 22 28 %
Gate Drivers
HDRV Source Impedance HDRV Pin Current (sourcing)= 1.2A 7
HDRV Sink Impedance HDRV Pin Current (sinking) = 1A 2
LDRV Source Impedance LDRV Pin Current (sourcing) =
1.2A
7
LDRV Sink Impedance LDRV Pin Current (sinking) = 2A 1
Cross-conduction protection delay (deadtime)
HDRV Falling to LDRV Rising 40 ns
LDRV Falling to HDRV Rising 70
Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is guaranteed. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics table.
Note 2: PGND1, PGND2 and SGND are all electrically connected together on the PCB.
Note 3: The maximum allowable power dissipation is calculated by using P
Dmax
=(T
JMAX-TA
)/θJA, where T
JMAX
is the maximum junction temperature, TAis the
ambient temperature, and θ
JA
is the junction-to-ambient thermal resistance of the specified package. The 1.0W rating of the TSSOP-28 package for example results
from using 125˚C, 25˚C, and 97˚C/W for T
JMAX,TA
, and θJArespectively. The 2.85W rating of the 28-pin LLP package results from using 125˚C, 25˚C, and 35˚C/W
for T
JMAX,TA
, and θJArespectively. The rated power dissipation should be derated by 10mW/˚C above 25˚C ambient for the TSSOP package and 29mW/˚C above
25˚C ambient for the LLP package. The θ
JA
value above represents the worst-case condition with no heat sinking. Heat sinking will permit more power to be
dissipated at higher ambient temperatures. For detailed information on soldering plastic TSSOP and LLP packages, refer to http://www.national.com/packaging/.
Note 4: ESD is applied by the human body model, which is a 100pF capacitor discharged through a 1.5 kresistor into each pin.
Note 5: R
FADJ
is the frequency adjust resistor between FREQ pin and Ground.
Note 6: All limits are guaranteed at room temperature (standard face type) and at temperature extremes (bold face type). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
Note 7: Typical numbers are at 25˚C and represent the most likely norm.
Note 8: If the LM2647 starts up with a pre-charged soft start capacitor, it will first discharge the capacitor to V
SS_RESET
and then begin the normal Soft-start process.
LM2647
www.national.com7
Block Diagram
20056301
LM2647
www.national.com 8
Loading...
+ 17 hidden pages