MICROCIRCUIT DATA SHEET
MJLM140-05-K REV 0B0
(Absolute Maximum Ratings)
(Note 1)
DC Input Voltage
35V
Internal Power Dissipation
(Note 2)
Internally Limited
Maximum Junction Temperature
150 C
Storage Temperature Range
-65 C to +150 C
Lead Temperature
300 C(Soldering, 10 seconds)
ESD Susceptibility
(Note 3)
2kV
Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur.
Operating Conditions are conditions under which the device functions but the
specification might not be guaranteed. For guaranteed specifications and test
conditions see the Electrical Characteristics.
Note 2: The maximum allowable power dissipation at any ambient temperature is a function of
the maximum junction temperature for operation (TjMAX = 150 C), the
junction-to-ambient thermal resistance (ThetaJA), and the ambient temperature (TA).
PDMAX = (TjMAX - TA)/ThetaJA. If this dissipation is exceeded, the die temperature
will rise above TjMAX and the electrical specifications do not apply. If the die
temperature rises above 150 C, the device will go into thermal shutdown. The
junction-to-ambient thermal resistance (ThetaJA) is 39 C/W. When using a heatsink,
ThetaJA is the sum of the 4 C/W junction-to-case thermal resistance (ThetaJC) and the
case-to-ambient thermal resistance (ThetaCA) of the heatsink.
Note 3: Human body model, 100pF discharged through 1.5K Ohms
Recommended Operating Conditions
(Note 1)
Temperature Range (TA)
(Note 2)
-55 C to +125 C
Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur.
Operating Conditions are conditions under which the device functions but the
specification might not be guaranteed. For guaranteed specifications and test
conditions see the Electrical Characteristics.
Note 2: The maximum allowable power dissipation at any ambient temperature is a function of
the maximum junction temperature for operation (TjMAX = 150 C), the
junction-to-ambient thermal resistance (ThetaJA), and the ambient temperature (TA).
PDMAX = (TjMAX - TA)/ThetaJA. If this dissipation is exceeded, the die temperature
will rise above TjMAX and the electrical specifications do not apply. If the die
temperature rises above 150 C, the device will go into thermal shutdown. The
junction-to-ambient thermal resistance (ThetaJA) is 39 C/W. When using a heatsink,
ThetaJA is the sum of the 4 C/W junction-to-case thermal resistance (ThetaJC) and the
case-to-ambient thermal resistance (ThetaCA) of the heatsink.
3