NSC GM-180P-70, GM-180B-85, GM-180B-70, GM-233P-85, GM-233P-70 Datasheet

...
© 2000 National Semiconductor Corporation www.national.com
Geode™ GXm Processor Integrated x86 Solution with MMX Support
April 2000
Geode™ GXm Processor Integrated x86 Solution with MMX Support
General Description
The National Semiconductor®Geode™ GXm processor is an advanced 32-bit x86 compatible processor offering high performance, fully accelerated 2D graphics, a 64-bit synchronous DRAM controller and a PCI bus controller, all on a single chip that is compatible with Intel’s MMX technology.
The GXm processor core is a proven design that offers competitive CPU performance. It has integer and floating point execution units that are based on sixth-generation technology. The integer core contains a single, six-stage execution pipeline and offers advanced features such as operand forwarding, branch target buffers, and extensive write buffering. A 16 KB write-back L1 cache is accessed in a unique fashion that eliminates pipeline stalls to fetch operands that hit in the cache.
In addition to the advanced CPU features, the GXm pro­cessor integrates a host of functions which are typically implemented with external components. A full-function
graphics accelerator provides pixel processing and ren­dering functions.
A separate on-chip video buffer enables >30 fps MPEG1 video playback when used together with the CS5530 I/O companion chip. Graphics and system memory accesses are supported by a tightly-coupled synchronous DRAM (SDRAM) memory controller.This tightly coupledmemory subsystem eliminates the need for an external L2 cache.
The GXm processor includes Virtual System Architec­ture
®
(VSA™ technology) enabling XpressGRAPHICS and XpressAUDIO subsystems as well as generic emula­tion capabilities. Softwarehandler routines forthe Xpress­GRAPHICS and XpressAUDIO subsystems can be included in the BIOS and provide compatible VGAand 16­bit industry standard audio emulation.XpressAUDIO tech­nologyeliminatesmuch of the hardware traditionallyasso­ciated with audio functions.
Geode™ GXm Processor Internal Block Diagram
Write-Back
Unit
FPU
Internal Bus Interface Unit
Graphics Memory Display PCI
SDRAM Port CS5530
PCI Bus
Integer
Cache Unit
Integrated Functions
MMU
(CRT/LCD TFT)
X-Bus
Pipeline Controller Controller Controller
C-Bus
National Semiconductor and Virtual System Architecture are registered trademarks of National Semiconductor Corporation. Geode and VSA aretrademarks of National Semiconductor Corporation. For a complete listing of National Semiconductor trademarks, pleasevisit www.national.com/trademarks.
www.national.com 2 Revision 3.1
Geode™ GXm Processor
Features
General Features
Packaged in: — 352-Terminal Ball Grid Array (BGA) or — 320-Pin Staggered Pin Grid Array (SPGA)
0.35-micron fourlayer metal CMOS process
Split rail design (3.3V I/O and 2.9V core)
32-Bit x86 Processor
Supports the MMX instruction set extension for the acceleration of multimedia applications
Speeds offered up to 266 M Hz
16 KB unified L1 cache
Integrated Floating P oint Unit (FPU)
Re-entrant System Management Mode (SMM) enhanced for VSA
PCI Controller
Fixed, rotating, hybrid, or ping-pong arbitration
Supports up to three PCI bus masters
Synchronous CPU and PCI bus clock frequency
Supports concurrency between PCI master andL1 cache
Power Management
Designed to support CS5530 power management architecture
CPU only Suspend or full 3V Suspend supported: — Clocks to CPU core stopped for CPU Suspend — All on-chip clocks stopped for 3V Suspend — Suspend refresh supported for 3V Suspend
Virtual Systems Architecture Technology
Architecture allows OS independent (software) virtual­ization of hardware functions
Provides compatiblehigh performance legacy VGA core functionality
Note: GUI (GraphicalUser Interface) graphics accel-
eration is pure hardware.
Provides 16-bit XpressAUDIO subsystem
2D Graphics Accelerator
Graphics pipeline performance significantly increased over previous generations by pipelining burst reads/writes
Accelerates BitBL Ts, line draw, text
Supports all 256rasteroperations
Supports transparent BLTs
Runs at core clock frequency
Full VGA and VESA mode support
Special "Driver level”instructions utilize internal scratchpad for enhanced performance
Display Controller
Video Generator (VG) improves memory efficiency for display refresh with SDRAM
Supports a separate MPEG1 video buffer and data path to enable video acceleration in the CS5530
Internal palette RAM for use with the CS5530
Direct interface to CS5530 for CRT and TFT flatpanel support which eliminates need for external RAMDAC
Hardware frame buffer compressor/decompressor
Hardware cursor
Supports up to1280x1024x8 bpp and1024x768x16 bpp
XpressRAM Subsystem
Memory control/interface directly from CPU
64-Bit wide memory bus
Support for: — Two 168-pin unbuffered DIMMs — Up to 16open banks simultaneously — Single or 16-byte reads (burst length of two)
Revision 3.1 3 www.national.com
Table of Contents
Geode™ GXm Processor
1.0 ArchitectureOverview............................................. 8
1.1 INTEGERUNIT ...........................................................8
1.2 FLOATINGPOINTUNIT ....................................................9
1.3 WRITE-BACKCACHEUNIT .................................................9
1.4 MEMORYMANAGEMENTUNIT..............................................9
1.4.1 InternalBusInterfaceUnit ............................................9
1.5 INTEGRATED FUNCTIONS . . . . .............................................9
1.5.1 Graphics Accelerator . . . .............................................9
1.5.2 DisplayController..................................................10
1.5.3 XpressRAMMemorySubsystem ......................................10
1.5.4 PCIController.....................................................10
1.6 GEODEGXM/CS5530SYSTEMDESIGNS ....................................11
2.0 SignalDefinitions................................................ 13
2.1 PINASSIGNMENTS ......................................................13
2.2 SIGNALDESCRIPTIONS ..................................................24
2.2.1 SystemInterfaceSignals ............................................24
2.2.2 PCIInterfaceSignals ...............................................26
2.2.3 MemoryControllerInterfaceSignals ...................................29
2.2.4 VideoInterfaceSignals .............................................30
2.2.5 Power,Ground,andNoConnectSignals................................32
2.2.6 InternalTestandMeasurementSignals ................................32
2.3 SUBSYSTEMSIGNALCONNECTIONS .......................................34
2.4 POWERPLANES.........................................................36
3.0 ProcessorProgramming .......................................... 38
3.1 COREPROCESSORINITIALIZATION........................................38
3.2 INSTRUCTIONSETOVERVIEW.............................................39
3.2.1 LockPrefix .......................................................39
3.3 REGISTERSETS.........................................................40
3.3.1 ApplicationRegisterSet.............................................40
3.3.2 SystemRegisterSet ...............................................44
3.3.3 ModelSpecificRegisterSet..........................................59
3.3.4 TimeStampCounter ...............................................59
3.4 ADDRESSSPACES.......................................................60
3.4.1 I/OAddressSpace.................................................60
3.4.2 MemoryAddressSpace.............................................60
3.5 OFFSET,SEGMENT,ANDPAGINGMECHANISMS .............................61
3.6 OFFSETMECHANISM ....................................................61
3.7 DESCRIPTORSANDSEGMENTMECHANISMS................................62
3.7.1 Real and Virtual 8086 Mode Segment Mechanisms . . . . . . . . ...............62
3.7.2 SegmentMechanisminProtectiveMode................................63
3.7.3 GDTRandLDTRRegisters ..........................................66
3.7.4 DescriptorBitStructure .............................................67
3.7.5 GateDescriptors ..................................................69
3.8 MULTITASKINGANDTASKSTATESEGMENTS................................70
3.9 PAGINGMECHANISM.....................................................72
www.national.com 4 Revision 3.1
Table of Contents (Continued)
Geode™ GXm Processor
3.10 INTERRUPTSANDEXCEPTIONS ...........................................74
3.10.1 Interrupts ........................................................74
3.10.2 Exceptions .......................................................74
3.10.3 InterruptVectors...................................................75
3.10.4 InterruptandExceptionPriorities......................................76
3.10.5 ExceptionsinRealMode ............................................77
3.10.6 ErrorCodes ......................................................77
3.11 SYSTEMMANAGEMENTMODE ............................................78
3.11.1 SMMEnhancements ...............................................79
3.11.2 SMMOperation ...................................................79
3.11.3 TheSMI#Pin .....................................................80
3.11.4 SMMConfigurationRegisters ........................................80
3.11.5 SMMMemorySpaceHeader.........................................80
3.11.6 SMMInstructions ..................................................82
3.11.7 SMMMemorySpace ...............................................83
3.11.8 SMIGeneration ...................................................83
3.11.9 SMIServiceRoutineExecution .......................................83
3.12 SHUTDOWNANDHALT ...................................................86
3.13 PROTECTION ...........................................................86
3.13.1 PrivilegeLevels ...................................................86
3.13.2 I/OPrivilegeLevels ................................................86
3.13.3 PrivilegeLevelTransfers ............................................87
3.13.4 InitializationandTransitiontoProtectedMode............................87
3.14 VIRTUAL8086MODE .....................................................88
3.14.1 MemoryAddressing................................................88
3.14.2 Protection........................................................88
3.14.3 Interrupt Handling . . . . . . ............................................88
3.14.4 EnteringandLeavingVirtual8086Mode................................88
3.15 FLOATINGPOINTUNITOPERATIONS .......................................89
3.15.1 FPU(FloatingPointUnit)RegisterSet..................................89
3.15.2 FPUTagWordRegister .............................................89
3.15.3 FPUStatusRegister ...............................................89
3.15.4 FPUModeControlRegister ..........................................89
4.0 Integrated Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 INTEGRATED FUNCTIONS PROGRAMMING INTERFACE . . . . . . . . ...............92
4.1.1 Graphics Control Register . . . . . . . . . . . . . . . ............................92
4.1.2 ControlRegisters ..................................................94
4.1.3 Graphics Memory . . . . . . ............................................94
4.1.4 L1CacheController ................................................95
4.1.5 DisplayDriverInstructions ...........................................98
4.1.6 CPU_READ/CPU_WRITEInstructions .................................99
4.2 INTERNALBUSINTERFACEUNIT..........................................100
4.2.1 FPUErrorSupport ................................................100
4.2.2 A20MSupport ...................................................100
4.2.3 SMIGeneration ..................................................100
4.2.4 640KBto1MBRegion ............................................100
4.2.5 InternalBusInterfaceUnitRegisters ..................................101
Revision 3.1 5 www.national.com
Table of Contents (Continued)
Geode™ GXm Processor
4.3 MEMORYCONTROLLER .................................................103
4.3.1 MemoryArrayConfiguration ........................................104
4.3.2 MemoryOrganizations.............................................105
4.3.3 SDRAMCommands...............................................106
4.3.4 MemoryControllerRegisterDescription ...............................108
4.3.5 AddressTranslation ...............................................112
4.3.6 MemoryCycles ..................................................115
4.3.7 SDRAMInterfaceClocking..........................................118
4.4 GRAPHICSPIPELINE ....................................................120
4.4.1 BitBLT/VectorEngine ..............................................120
4.4.2 Master/SlaveRegisters ............................................121
4.4.3 PatternGeneration................................................121
4.4.4 SourceExpansion ................................................123
4.4.5 RasterOperations ................................................123
4.4.6 Graphics Pipeline Register Descriptions . . . . ...........................124
4.5 DISPLAYCONTROLLER..................................................129
4.5.1 DisplayFIFO ....................................................130
4.5.2 CompressionTechnology...........................................130
4.5.3 Motion Video Acceleration Support . . . . . . . . ...........................130
4.5.4 HardwareCursor .................................................131
4.5.5 DisplayTimingGenerator...........................................131
4.5.6 DitherandFrame-RateModulation ...................................131
4.5.7 DisplayModes ...................................................131
4.5.8 Graphics Memory Map . . ...........................................135
4.5.9 DisplayControllerRegisters.........................................136
4.5.10 MemoryOrganizationRegisters......................................144
4.5.11 TimingRegisters .................................................146
4.5.12 CursorPositionRegisters...........................................149
4.5.13 ColorRegisters ..................................................150
4.5.14 PaletteAccessRegisters ...........................................151
4.5.15 CS5530DisplayControllerInterface ..................................153
4.6 PCICONTROLLER ......................................................155
4.6.1 X-BusPCISlave..................................................155
4.6.2 X-BusPCIMaster ................................................155
4.6.3 PCIArbiter ......................................................155
4.6.4 GeneratingConfigurationCycles .....................................155
4.6.5 GeneratingSpecialCycles..........................................155
4.6.6 PCIConfigurationSpaceControlRegisters.............................156
4.6.7 PCIConfigurationSpaceRegisters ...................................157
4.6.8 PCICycles ......................................................162
5.0 VirtualSubsystemArchitecture ................................... 165
5.1 VIRTUALVGA ..........................................................165
5.1.1 TraditionalVGAHardware ..........................................165
5.2 GXMVIRTUALVGA......................................................167
5.2.1 DatapathElements................................................167
5.2.2 VideoRefresh ...................................................168
5.2.3 GXmVGAHardware ..............................................168
5.2.4 VGAVideoBIOS .................................................171
5.2.5 VirtualVGARegisterDescriptions ....................................172
www.national.com 6 Revision 3.1
Table of Contents (Continued)
Geode™ GXm Processor
6.0 PowerManagement ............................................. 174
6.1 APMSUPPORT .........................................................174
6.2 CPUSUSPENDCOMMANDREGISTERS ....................................174
6.3 SUSPENDMODULATION .................................................174
6.4 3-VOLTSUSPENDMODE.................................................174
6.5 SUSPENDMODEANDBUSCYCLES .......................................175
6.5.1 InitiatingSuspendwithSUSP# ......................................175
6.5.2 InitiatingSuspendwithHALT ........................................176
6.5.3 RespondingtoaPCIAccessDuringSuspendMode......................177
6.5.4 Stopping the Input Clock ...........................................178
6.6 GXM PROCESSORSERIALBUS ..........................................179
6.6.1 SerialPacketTransmission .........................................179
6.7 POWERMANAGEMENTREGISTERS .......................................179
7.0 ElectricalSpecifications.......................................... 182
7.1 PARTNUMBERS........................................................182
7.2 ELECTRICALCONNECTIONS .............................................182
7.2.1 Power/GroundConnectionsandDecoupling ............................182
7.2.2 Power Sequencing the Core and I/O Voltages ...........................182
7.2.3 NC-DesignatedPins...............................................182
7.2.4 Pull-UpandPull-DownResistors .....................................182
7.2.5 UnusedInputPins ................................................182
7.3 ABSOLUTEMAXIMUMRATINGS...........................................183
7.4 OPERATINGCONDITIONS................................................184
7.5 DCCHARACTERISTICS ..................................................185
7.6 ACCHARACTERISTICS ..................................................186
8.0 PackageSpecifications .......................................... 195
8.1 THERMALCHARACTERISTICS ............................................195
8.1.1 HeatsinkConsiderations ...........................................196
8.2 MECHANICALPACKAGEOUTLINES........................................198
9.0 InstructionSet.................................................. 201
9.1 GENERALINSTRUCTIONSETFORMAT.....................................202
9.1.1 Prefix(Optional) .................................................203
9.1.2 Opcode.........................................................203
9.1.3 modandr/mByte(MemoryAddressing) ...............................205
9.1.4 regField ........................................................206
9.1.5 s-i-bByte(Scale,Indexing,Base) ....................................207
9.2 CPUIDINSTRUCTION....................................................208
9.2.1 Standard CPUID Levels . ...........................................208
9.2.2 ExtendedCPUIDLevels............................................210
9.3 PROCESSORCOREINSTRUCTIONSET ....................................212
9.4 FPUINSTRUCTIONSET..................................................224
9.5 MMXINSTRUCTIONSET .................................................229
9.6 NATIONAL S EMICONDUCTOR EXTENDED MMX INSTRUCTION SET . . . . . . . . . . . . . 234
Revision 3.1 7 www.national.com
Table of Contents (Continued)
Geode™ GXm Processor
Appendix A Support Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.1 ORDERINFORMATION ..................................................236
A.2 DATABOOKREVISIONHISTORY ..........................................236
www.national.com 8 Revision 3.1
Geode™ GXm Processor
1.0 Architecture Overview
The National Semiconductor Geode GXm processor is an x86-compatible 32-bit microprocessor. The decoupled load/store unit (within the memory management unit) allows multiple instructions in a single clock cycle. Other features include single-cycle execution, single-cycle instruction decode, 16 KB write-back cache, and clock ratesupto266MHz.Thesefeaturesaremadepossible by the use of advanced-process technologies and super­pipelining.
The GXm processor has low power consumption at all clock frequencies. Where additional power savings are required, designerscanmake use of Suspend mode,Stop Clock capability, and System Management Mode (SMM).
The GXm processor is divided into major functional blocks (as shown in Figure 1-1):
• Integer Unit
• Floating Point Unit (FPU)
• Write-Back Cache Unit
• Memory Management Unit (MMU)
• Internal Bus Interface Unit
• IntegratedFunctions Instructions are executed in the integer unit and in the
floating point unit. The cache unit stores the most recently used data and instructions and provides fast access to this information for the integer and floating point units.
1.1 INTEGER UNIT
The integer unit consists of:
• Instruction Buffer
• Instruction Fetch
• Instruction Decoder and Execution The superpipelined integer unit fetches, decodes, and
executes x86 instructions through the use of a six-stage integer pipeline.
The instruction fetch pipeline stage generates, from the on-chip cache, a continuous high-speed instruction stream for use by the processor. Up to 128 bits of code are read during a single clock cycle.
Branch prediction logic within the prefetch unit generates a predicted target address for unconditional or conditional branch instructions. When a branch instruction is detected, the instruction fetchstage starts loading instruc­tions at the predicted address within a single clock cycle. Up to 48 bytes of code are queued prior to the instruction decode stage.
The instruction decode stage evaluates the code stream provided bythe instructionfetchstageanddeterminesthe number of bytes in each instruction and the instruction type. Instructions are processed and decoded at a maxi­mum rate of one instruction per clock.
The address calculation function is super-pipelined and contains two stages, AC1 and AC2. If the instruction refers to a memory operand, AC1 calculates a linear memory address for the instruction.
The AC2 stage performs any required memory manage­ment functions, cache accesses, and register file accesses. If a floating point instruction is detected by AC2, the instruction is sent to the floating point unit for processing.
The execution stage, under control of microcode, exe­cutes instructions using the operands provided by the address calculation stage.
Write-back, the last stage of the integer unit, updates the register file within the integer unit or writes to the load/store unit within the memory managementunit.
Figure 1-1. Internal Block Diagram
Write-Back
Unit
FPU
Internal Bus Interface Unit
Graphics Memory Display PCI
SDRAM Port CS5530
PCI Bus
Integer
Cache Unit
Integrated Functions
MMU
(CRT/LCD TFT)
X-Bus
Pipeline Controller Controller Controller
C-Bus
Revision 3.1 9 www.national.com
Architecture Overview (Continued)
Geode™ GXm Processor
1.2 FLOATING POINT UNIT
The FPU (Floating PointUnit)interfaces to the integer unit and the cache unit through a 64-bit bus. The FPU is x87­instruction-set compatible and adheres to the IEEE-754 standard. Because almost all applications that contain FPU instructions also contain integer instructions, the GXm processor’s FPU achieves high performance by completing integer and FPU operations in parallel.
FPU instructions are dispatched to the pipeline within the integer unit. The address calculation stage of the pipeline checks for memory management exceptions and accesses memory operandsforusebytheFPU. Once the instructionsandoperands havebeenprovided to the FPU, the FPU completes instruction execution independently of the integer unit.
1.3 WRITE-BACK CACHE UNIT
The 16 KB write-back unified cache is a data/instruction cache and is configured as four-way set associative. The cache stores up to 16 KB of code and data in 1024 cache lines.
The GXm processor provides the ability to allocate a por­tion of the L1 cache as a scratchpad, which is used to accelerate the Virtual Systems Architecture algorithms as well as for some graphics operations.
1.4 MEMORY MANAGEMENT UNIT
The memory management unit (MMU) translates the lin­ear address supplied by the integer unit into a physical address to be used by the cache unit and the internal bus interface unit. Memory management procedures are x86­compatible, adhering to standard paging mechanisms.
The MMU also contains a load/store unit that is responsi­ble for scheduling cache and external memory accesses. The load/store unit incorporates two performance­enhancing features:
Load-store reordering that gives priority to memory reads required by the integer unit over writes to external memory.
Memory-read bypassing that eliminates unnecessary memory reads by using valid data from the execution unit.
1.4.1 Internal Bus Interface Unit
The internal bus interface unit provides a bridge from the GXm processor to the integrated system functions (i.e., memory subsystem, display controller, graphics pipeline) and the PCI bus interface.
When external memory access is required, the physical address is calculated by the memory management unit and then passed to the internal bus interface unit, which translates the cycle to an X-Bus cycle (the X-Bus is a National Semiconductor proprietary internal bus which provides a common interface for all of the system mod­ules). The X-Bus memory cyclenow is arbitrated between
other pending X-Bus memory requests to the SDRAM controller before completing.
In addition, the internal bus interface unit provides config­uration control for up to 20 different regions within system memory with separate controls for read access, write access, cacheability, and PCI access.
1.5 INTEGRATED FUNCTIONS
The GXm processor integrates the following functions tra­ditionally implemented using external devices:
• High-performance2D graphicsaccelerator
• Separate CRT and TFT data paths from the display controller
• SDRAM memory controller
• PCI bridge
The processor has also been enhanced to support National Semiconductor’s proprietary Vir tual System Architecture (VSA) implementation.
The GXm processor implements a Unified Memory Archi­tecture (UMA). By using National Semiconductor’s Dis­play Compression Technology (DCT), the performance degradation inherent in traditional UMA systems is elimi­nated.
1.5.1 Graphics Accelerator
The graphics accelerator is a full-featured GUI (Graphical User Interface) accelerator. The graphics pipeline imple­ments a bitBLT engine for frame buffer bitBLTs and rect­angular fills. Additional instructions in the integer unit may be processed, as the bitBLT engine assists the CPU in the bitBLT operations that take place between system mem­ory and the frame buffer. This combination of hardware and software is used by the display dr iver to provide very fast transfers in both directions between system memory and the frame buffer. The bitBLT engine also draws ran­domly-oriented vectors, and scanlines for polygon fill. All of the pipeline operations described in the following list can be applied to anybitBLT operation.
Pattern Memory.Render with 8x8 dither, 8x8 mono­chrome, or 8x1 color pattern.
Color Expansion. Expand monochrome bitmaps to full-depth 8- or 16-bit colors.
Transparency. Suppresses drawing of background pixels for transparenttext.
Raster Operations. Boolean operation combines source, destination, and pattern bitmaps.
www.national.com 10 Revision 3.1
Architecture Overview (Continued)
Geode™ GXm Processor
1.5.2 Display Controller
The display port is a direct interface to the CS5530 which drives a TFT flat panel display, LCD panel, or a CRT dis­play.
The display controller (video generator) retrieves image data from the frame buffer region of memory, performs a color-look-up if required, inserts the cursor overlay into the pixel stream, generates display timing, and formats the pixel data for output to a variety of display devices. The display controller contains Display Compression Technology (DCT) that allows the GXm processor to refresh the display from a compressed copy of the frame buffer. DCT typically decreases the screen-refresh band­width requirement by a factor of 15 to 20, further minimiz­ing bandwidth contention.
1.5.3 XpressRAM Memory Subsystem
The memory controller drives a 64-bit SDRAM port directly. The SDRAM memory array contains both the main system memory and the graphicsframebuffer. Up to four module banks of SDRAM are supported. Each mod­ule bank will have two or four component banks depend­ing on the memory size and organization. The maximum configuration is four module banks with four component banks providing a total of 16 open banks. The maximum memory size is 1 GB.
The memory controller handles multiple requests for memory data from the GXm processor, the graphics accelerator and the display controller. The memory con­troller contains extensive buffering logic that helps mini­mize contention for memory bandwidth between graphics and CPU requests. The memory controller cooperates with the internal bus controller to determine the cacheabil­ity of all memory references.
1.5.4 PCI Controller
The GXm processor incorporates a full-function PCI inter­face module that includes the PCI arbiter. All accesses to external I/O devices are sent over the PCI bus, although most memory accesses are serviced by the SDRAM con­troller. The Internal Bus Interface Unit contains address mapping logic that determines if memory accesses are targeted for the SDRAM or for the PCI bus.
Revision 3.1 11 www.national.com
Architecture Overview (Continued)
Geode™ GXm Processor
1.6 GEODE GXM/CS5530 SYSTEM DESIGNS
The GXm Integrated Subsystem with MMX support con­sists of two chips, the GXm Processor and the CS5530 I/O companion. The subsystem provides high perfor­mance using 32-bit x86 processing. The two chips inte­grate video, audio and memory interface functions normally performed by external hardware.
As described in separate manuals, the CS5530 enables the full features of the GXm processor with MMX support. These features include full VGA and VESA video, 16-bit stereo sound, IDE interface, ISA interface, SMM power
management, and AT compatibility logic. In addition, the newer CS5530 provides an Ultra DMA/33 interface, MPEG2 assist, and AC97 Version 2.0 compliant audio.
Figure 1-2 shows a basic block system diagram (refer to Figure 2-4 on page 34 for detailed subsystem intercon­nection signals). It includes the National Semiconductor CS9210 Dual-Scan Flat Panel Display Controller for designs that need to interfaceto a DSTN panel (instead of TFT panel).
Figure 1-2. Geode™ GXm/CS5530 System Block Diagram
YUV Port
(Video)
RGB Port
PCI Interface
SDRAM
MD[63:0]
PCI Bus
Geode™ CS5530
I/O Companion
Graphics Data Video Data Analog RGB Digital RGB (to TFT or DSTN Panel)
CRT
TFT
Panel
USB
(2 Ports)
AC97
Codec
Speakers
CD
ROM
Audio
Micro­phone
GPIO
Port
(Graphics)
Super
ISA Bus
SDRAM
Serial Packet
Clocks
I/O
BIOS
IDE
Devices
14.31818
MHz Crystal
IDE Control
System
Clocks
DC-DC & Battery
CS9210
DSTN
Controller
DSTN Panel
Geode™ GXm
Processor
Geode™
www.national.com 12 Revision 3.1
Architecture Overview (Continued)
Geode™ GXm Processor
The CS9210 converts the digital RGB output of the CS5530 I/O companion chip to the digital output suitable for driving a dual-scan color STN (DSTN) flat panel LCD. It connects to the digital RGB output of a GXm processor or 55x0 and drives the graphics data onto a dual-scan flat
panel LCD. It can drive all standard dual-scan color STN flat panels up to 1024x768 resolution. Figure 1-3 shows an example of a CS9210 interface in a typical GXm Inte­grated Subsystem.
Figure 1-3. CS9210 Interface System Diagram
DRAM Data
Address Control
13
16
Panel Control
6
24
Panel Data
DSTN
Pixel Port
24
Pixel Data
LCD
18
CS5530
CS9210
DSTN
Controller
I/O
DRAM-B
256Kx16 Bit
DRAM-A
256Kx16 Bit
Address Control
13
DRAM Data
16
4
Serial Configuration
Companion
(Control & Data)
Geode™ GXm
Processor
Geode™
Geode™
Revision 3.1 13 www.national.com
Geode™ GXm Processor
2.0 Signal Definitions
This section describes the external interface of the Geode GXm processor. Figure 2-1 shows the signals organized by their functional interface groups (internal test and elec­trical pins are not shown).
2.1 PIN ASSIGNMENTS
The tables in this section use several common abbrevia­tions. Table 2-1 lists the mnemonics and their meanings.
Figure 2-2 on page 14 shows the pin assignment for the 352 BGA with Tables 2-2 and 2-3 listing the pin assign­ments sorted by pin number and alphabetically by signal name, respectively.
Figure 2-3 on page 19 shows the pin assignment for the 320 SPGA with Tables 2-4 and 2-5 listing the pin assign­ments sorted by pin number and alphabetically by signal name, respectively.
In Section 2.2 “Signal Descriptions” starting on Page24 a description of each signal is provided within its associated functional group.
Following the signal descriptions, information regarding subsystem signal connections and split power planes and decoupling is provided.
.
Figure 2-1. Functional Block Diagram
Table 2-1. Pin Type Definitions
Mnemonic Definition
I Standardinput pin. I/O Bidirectional pin. O Totem-pole output. OD Open-drain output structure that allows
multiple devicesto share the pin in a
wired-OR configuration PU Pull-up resistor PD Pull-down resistor s/t/s Sustained tri-state, an active-low tri-state
signal ownedand drivenbyoneand only
one agent at a time.The agent that
drives an s/t/s pin low must drive it high
foratleast one clockbefore lettingitfloat.
A new agent cannot start driving an s/t/s
signal any sooner than one clock after
the previous owner lets it float. A pull-up
resistor is required to sustain the inactive
state until another agent drives it, and
must be provided by the central resource. VCC (PWR) Power pin. VSS (GND) Ground pin # The "#" symbol at theend of a signal
name indicates that the active, or
asserted state occurs when the signal is
at a low voltage level. When "#" is not
present after the signal name, the s ignal
is asserted when at a high voltage level.
SYSCLK
CLKMODE[2:0]
RESET
INTR
IRQ13
SMI#
SUSP#
SUSPA#
SERIALP
AD[31:0]
C/BE[3:0]#
PAR
FRAME#
IRDY# TRDY# STOP#
LOCK#
DEVSEL#
PERR#
SERR# REQ[2:0]# GNT[2:0]#
MD[63:0] MA[12:0] BA[1:0] RASA#, RASB# CASA#, CASB# CS[3:0]# WEA#, WEB# DQM[7:0] CKEA, CKEB SDCLK[3:0] SDCLK_IN SDCLK_OUT
PCLK VID_CLK DCLK CRT_HSYNC CRT_VSYNC
FP_VSYNC
FP_HSYNC ENA_DISP
VID_RDY VID_VAL VID_DATA[7:0] PIXEL[17:0]
Memory Controller Interface
Video Interface Signals
PCI
Interface
Signals
System
Interface
Signals
Signals
Geode™ GXm
Processor
www.national.com 14 Revision 3.1
Signal Definitions (Continued)
Geode™ GXm Processor
Figure 2-2. 35 2 BGA Pin Assignment Diagram
For order information refer to Section A.1 “Order Information” on page236.
1234567891011121314151617181920
21 22 23 24 25 26
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
Index Corner
VSS VSS AD27 AD24 AD21 AD16 VCC2 FRAM#DEVS# VCC3 PERR# AD15 VSS AD11 CBE0# AD6 VCC2 AD4 AD2 VCC3 AD0 AD1 TEST2 MD2 VSS VSS
VSS VSS AD28 AD25 AD22 AD18 VCC2 CBE2#TRDY# VCC3 LOCK# PAR AD14 AD12 AD9 AD7 VCC2 INTR AD3 VCC3 TEST1 TEST3 MD1 MD33 VSS VSS
AD29 AD31 AD30 AD26 AD23 AD19 VCC2 AD17 IRDY# VCC3 STOP#SERR#CBE1# AD13 AD10 AD8 VCC2 AD5 SMI# VCC3 TEST0 IRQ13 MD32 MD34 MD3 MD35
GNT0# TDI REQ2# VSS CBE3# VSS VCC2 VSS VSS VCC3 VSS VSS VSS VSS VSS VSS VCC2 VSS VSS VCC3 VSS MD0 VSS MD4 MD36 TDN
GNT2#SUSPA#REQ0# AD20 MD6 TDP MD5 MD37
TD0 GNT1# TEST VSS VSS MD38 MD7 M D 39
VCC3 VCC3 VCC3 VCC3 VCC3 VCC3 VCC3 VCC3
TMS SUSP#REQ1# VSS VSS MD8 MD40 MD9
FPVSY TCLK RESET VSS VSS MD41 MD10 MD42
VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2
CKM1 FPHSYSERLP VSS VSS MD11 MD43 MD12
CKM2 VIDVALCKM0 VSS VSS MD44 MD13 MD45
VSS PIX1 PIX0 VSS VSS MD14 MD46 MD15
VIDCLK PIX3 PIX2 VSS VSS MD47 CASA#SYSCLK
PIX4 PIX5 PIX6 VSS VSS WEB# W EA# CASB#
PIX7 PIX8 PIX9 VSS VSS DQM0 DQM4 DQM1
VCC3 VCC3 VCC3 VCC3 VCC3 VCC3 VCC3 VCC3
PIX10 PIX11 PIX12 VSS VSS DQM5 CS2# CS0#
PIX13 CRTHS PIX14 VSS VSS RASA#RASB# MA0
VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2
PIX15 PIX16 CRTVS VSS VSS MA1 MA2 MA3
DCLK PIX17 VDAT6 VDAT7 MA4 MA5 MA6 MA7
PCLK FLT# VDAT4 VSS VOLDET VSS VCC2 VSS VSS VCC3 VSS VSS VSS VSS VSS VSS VCC2 VSS VSS VCC3 VSS DQM6 VSS MA8 MA9 MA10
VRDY VDAT5 VDAT3 VDAT0 EDISP MD63 VCC2 MD62 MD 29 VCC3 MD59 M D26 MD56 MD55 MD22 CKEB VCC2 MD51 MD18 VCC3 MD48 DQM3 CS1# MA11 BA0 BA1
VSS VSS VDAT2SCLK3 SCLK1RWCLK V CC2 SCKIN MD61 VCC3 MD28 MD58 MD25 MD24 MD 54 MD21 VCC2 M D 20 MD50 VCC3 M D 17 DQM7 CS3# MA12 VSS VSS
VSS VSS VDAT1SCLK0 SCLK2 MD31 V CC2SCKOUTMD30 VCC3 MD60 MD27 MD57 VSS MD23 MD53 VCC2 MD52 MD19 VCC3 MD49 MD16 DQM2 CKEA VSS VSS
1234567891011121314151617181920
21 22 23 24 25 26
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
Geode™ GXm
352 BGA - Top View
Note: Signal names have been abbreviated in this figure due to space constraints.
= GND terminal = PWR terminal (VCC2 = VCC_CORE; VCC3 = VCC_IO)
Processor
Revision 3.1 15 www.national.com
Signal Definitions (Continued)
Geode™ GXm Processor
Table 2-2. 352 BGA Pin Assignments - Sorted by Pin Number
Pin No. SignalNam e
A1 VSS A2 VSS A3 AD27 A4 AD24 A5 AD21 A6 AD16 A7 VCC2 A8 FRAME# A9 DEVSEL#
A10 VCC3
A11 PERR# A12 AD15 A13 VSS A14 AD11 A15 C/BE0# A16 AD6 A17 VCC2 A18 AD4 A19 AD2 A20 VCC3 A21 AD0 A22 AD1 A23 TEST2 A24 MD2 A25 VSS A26 VSS
B1 VSS B2 VSS B3 AD28 B4 AD25 B5 AD22 B6 AD18 B7 VCC2 B8 C/BE2# B9 TRD Y#
B10 VCC3
B11 LOCK# B12 PAR B13 AD14 B14 AD12 B15 AD9 B16 AD7 B17 VCC2 B18 INTR B19 AD3 B20 VCC3 B21 TEST1 B22 TEST3
B23 MD1 B24 MD33 B25 VSS B26 VSS
C1 AD29 C2 AD31 C3 AD30 C4 AD26 C5 AD23 C6 AD19 C7 VCC2 C8 AD17 C9 IRDY#
C10 VCC3
C11 STOP# C12 SERR# C13 C/BE1# C14 AD13 C15 AD10 C16 AD8 C17 VCC2 C18 AD5 C19 SMI# C20 VCC3 C21 TEST0 C22 IRQ13 C23 MD32 C24 MD34 C25 MD3 C26 MD35
D1 GNT0# D2 TDI D3 REQ2# D4 VSS D5 C/BE3# D6 VSS D7 VCC2 D8 VSS D9 VSS
D10 VCC3
D11 VSS D12 VSS D13 VSS D14 VSS D15 VSS D16 VSS D17 VCC2 D18 VSS
Pin No. SignalName
D19 VSS D20 VCC3 D21 VSS D22 MD0 D23 VSS D24 MD4 D25 MD36 D26 TDN
E1 GNT2# E2 SUSPA# E3 REQ0#
E4 AD20 E23 MD6 E24 TDP E25 MD5 E26 MD37
F1 TDO
F2 GNT1#
F3 TEST
F4 VSS
F23 VSS F24 MD38 F25 MD7 F26 MD39
G1 VCC3 G2 VCC3 G3 VCC3
G4 VCC3 G23 VCC3 G24 VCC3 G25 VCC3 G26 VCC3
H1 TMS H2 SUSP# H3 REQ1#
H4 VSS H23 VSS H24 MD8 H25 MD40 H26 MD9
J1 FP_VSYNC J2 TCLK J3 RESET
J4 VSS J23 VSS J24 MD41 J25 MD10 J26 MD42
Pin No. SignalName
K1 VCC2 K2 VCC2 K3 VCC2
K4 VCC2 K23 VCC2 K24 VCC2 K25 VCC2 K26 VCC2
L1 CLKMODE1 L2 FP_HSYNC L3 SERIALP
L4 VSS L23 VSS L24 MD11 L25 MD43 L26 MD12
M1 CLKMODE2 M2 VID_VAL M3 CLKMODE0
M4 VSS M23 VSS M24 MD44 M25 MD13 M26 MD45
N1 VSS N2 PIXEL1 N3 PIXEL0
N4 VSS N23 VSS N24 MD14 N25 MD46 N26 MD15
P1 VID_CLK
P2 PIXEL3
P3 PIXEL2
P4 VSS
P23 VSS P24 MD47 P25 CASA# P26 SYSCLK
R1 PIXEL4
R2 PIXEL5
R3 PIXEL6
R4 VSS R23 VSS R24 WEB# R25 WEA# R26 CASB#
Pin
No. SignalN ame
T1 PIXEL7 T2 PIXEL8 T3 PIXEL9
T4 VSS T23 VSS T24 DQM0 T25 DQM4 T26 DQM1
U1 VCC3 U2 VCC3 U3 VCC3
U4 VCC3 U23 VCC3 U24 VCC3 U25 VCC3 U26 VCC3
V1 PIXEL10
V2 PIXEL11
V3 PIXEL12
V4 VSS V23 VSS V24 DQM5 V25 CS2# V26 CS0#
W1 PIXEL13 W2 CRT_HSYNC W3 PIXEL14
W4 VSS W23 VSS W24 RASA# W25 RASB# W26 MA0
Y1 VCC2 Y2 VCC2 Y3 VCC2
Y4 VCC2 Y23 VCC2 Y24 VCC2 Y25 VCC2 Y26 VCC2
AA1 PIXEL15 AA2 PIXEL16 AA3 CRT_VSYNC
AA4 VSS AA23 VSS AA24 MA1 AA25 MA2 AA26 MA3
Pin No. SignalN ame
www.national.com 16 Revision 3.1
Signal Definitions (Continued)
Geode™ GXm Processor
AB1 DCLK AB2 PIXEL17 AB3 VID_DATA6
AB4 VID_DATA7 AB23 MA4 AB24 MA5 AB25 MA6 AB26 MA7
AC1 PCLK
AC2 FLT#
AC3 VID_DATA4
AC4 VSS
AC5 VOLDET
AC6 VSS
AC7 VCC2
AC8 VSS
AC9 VSS AC10 VCC3 AC11 VSS AC12 VSS AC13 VSS AC14 VSS AC15 VSS
Pin No. SignalNam e
AC16 VSS AC17 VCC2 AC18 VSS AC19 VSS AC20 VCC3 AC21 VSS AC22 DQM6 AC23 VSS AC24 MA8 AC25 MA9 AC26 MA10
AD1 VID_RDY AD2 VID_DATA5 AD3 VID_DATA3 AD4 VID_DATA0 AD5 ENA_DISP AD6 MD63 AD7 VCC2 AD8 MD62
AD9 MD29 AD10 VCC3 AD11 MD59 AD12 MD26
Pin No. SignalName
AD13 MD56 AD14 MD55 AD15 MD22 AD16 CKEB AD17 VCC2 AD18 MD51 AD19 MD18 AD20 VCC3 AD21 MD48 AD22 DQM3 AD23 CS1# AD24 MA11 AD25 BA0 AD26 BA1
AE1 VSS AE2 VSS AE3 VID_DATA2 AE4 SDCLK 3 AE5 SDCLK 1 AE6 RW_CLK AE7 VCC2 AE8 SDCLK _IN AE9 MD61
Pin No. SignalName
AE10 VCC3 AE11 MD28 AE12 MD58 AE13 MD25 AE14 MD24 AE15 MD54 AE16 MD21 AE17 VCC2 AE18 MD20 AE19 MD50 AE20 VCC3 AE21 MD17 AE22 DQM7 AE23 CS3# AE24 MA12 AE25 VSS AE26 VSS
AF1 VSS AF2 VSS AF3 VID_DATA1 AF4 SDCLK0 AF5 SDCLK2 AF6 MD31
Pin
No. SignalN ame
AF7 VCC2 AF8 SDCLK_OUT AF9 MD30
AF10 VCC3
AF11 MD60 AF12 MD27 AF13 MD57 AF14 VSS AF15 MD23 AF16 MD53 AF17 VCC2 AF18 MD52 AF19 MD19 AF20 VCC3 AF21 MD49 AF22 MD16 AF23 DQM2 AF24 CKEA AF25 VSS AF26 VSS
Pin No. SignalN ame
Table 2-2. 352 BGA Pin Assignments - Sorted by Pin Number (Continued)
Revision 3.1 17 www.national.com
Signal Definitions (Continued)
Geode™ GXm Processor
Table 2-3. 352 BGA Pin Assignments - Sorted Alphabetically by Signal Name
Signal Name Type Pin No.
AD0 I/O A21 AD1 I/O A22 AD2 I/O A19 AD3 I/O B19 AD4 I/O A18 AD5 I/O C18 AD6 I/O A16 AD7 I/O B16 AD8 I/O C16 AD9 I/O B15 AD10 I/O C15 AD11 I/O A14 AD12 I/O B14 AD13 I/O C14 AD14 I/O B13 AD15 I/O A12 AD16 I/O A6 AD17 I/O C8 AD18 I/O B6 AD19 I/O C6 AD20 I/O E4 AD21 I/O A5 AD22 I/O B5 AD23 I/O C5 AD24 I/O A4 AD25 I/O B4 AD26 I/O C4 AD27 I/O A3 AD28 I/O B3 AD29 I/O C1 AD30 I/O C3 AD31 I/O C2 BA0 O AD25 BA1 O AD26 CASA# O P25 CASB# O R26 C/BE0# I/O A15 C/BE1# I/O C13 C/BE2# I/O B8 C/BE3# I/O D5 CKEA O AF24 CKEB O AD16 CLKMODE0 I M3 CLKMODE1 I L1 CLKMODE2 I M1 CRT_HSYNC O W2 CRT_VSYNC O AA3 CS0# O V26 CS1# O AD23 CS2# O V25 CS3# O AE23 DCLK I AB1 DEVSEL# s/t/s A9 (PU)
DQM0 O T24 DQM1 O T26 DQM2 O AF23 DQM3 O AD22 DQM4 O T25 DQM5 O V24 DQM6 O AC22 DQM7 O AE22 ENA_DISP O AD5 FLT# I AC2 FP_HSYNC O L2 FP_VSYNC O J1 FRAME# s/t/s A8 (PU) GNT0# O D1 GNT1# O F2 GNT2# O E1 INTR I B18 IRDY# s/t/s C9 (PU) IRQ13 O C22 LOCK# s/t/s B11 (PU) MA0 O W26 MA1 O AA24 MA2 O AA25 MA3 O AA26 MA4 O AB23 MA5 O AB24 MA6 O AB25 MA7 O AB26 MA8 O AC24 MA9 O AC25 MA10 O AC26 MA11 O AD24 MA12 O AE24 MD0 I/O D22 MD1 I/O B23 MD2 I/O A24 MD3 I/O C25 MD4 I/O D24 MD5 I/O E25 MD6 I/O E23 MD7 I/O F25 MD8 I/O H24 MD9 I/O H26 MD10 I/O J25 MD11 I/O L24 MD12 I/O L26 MD13 I/O M25 MD14 I/O N24 MD15 I/O N26 MD16 I/O AF22 MD17 I/O AE21 MD18 I/O AD19 MD19 I/O AF19
Signal Name Type PinNo.
MD20 I/O AE18 MD21 I/O AE16 MD22 I/O AD15 MD23 I/O AF15 MD24 I/O AE14 MD25 I/O AE13 MD26 I/O AD12 MD27 I/O AF12 MD28 I/O AE11 MD29 I/O AD9 MD30 I/O AF9 MD31 I/O AF6 MD32 I/O C23 MD33 I/O B24 MD34 I/O C24 MD35 I/O C26 MD36 I/O D25 MD37 I/O E26 MD38 I/O F24 MD39 I/O F26 MD40 I/O H25 MD41 I/O J24 MD42 I/O J26 MD43 I/O L25 MD44 I/O M24 MD45 I/O M26 MD46 I/O N25 MD47 I/O P24 MD48 I/O AD21 MD49 I/O AF21 MD50 I/O AE19 MD51 I/O AD18 MD52 I/O AF18 MD53 I/O AF16 MD54 I/O AE15 MD55 I/O AD14 MD56 I/O AD13 MD57 I/O AF13 MD58 I/O AE12 MD59 I/O AD11 MD60 I/O AF11 MD61 I/O AE9 MD62 I/O AD8 MD63 I/O AD6 PAR I/O B12 PCLK O AC1 PERR# s/t/s A11 (PU) PIXEL0 O N3 PIXEL1 O N2 PIXEL2 O P3 PIXEL3 O P2 PIXEL4 O R1 PIXEL5 O R2
Signal Name Type Pin No.
PIXEL6 O R3 PIXEL7 O T1 PIXEL8 O T2 PIXEL9 O T3 PIXEL10 O V1 PIXEL11 O V2 PIXEL12 O V3 PIXEL13 O W1 PIXEL14 O W3 PIXEL15 O AA1 PIXEL16 O AA2 PIXEL17 O AB2 RASA# O W24 RASB# O W25 REQ0# I E3 (PU) REQ1# I H3 (PU) REQ2# I D3 (PU) RESET I J3 RW_CLK O AE6 SDCLK_IN I AE8 SDCLK_OUT O AF8 SDCLK0 O AF4 SDCLK1 O AE5 SDCLK2 O AF5 SDCLK3 O AE4 SERIALP O L3 SERR# OD C12 (PU) SMI# I C19 STOP# s/t/s C11 (PU) SUSP# I H2 (PU) SUSPA# O E2 SYSCLK I P26 TCLK I J2 (PU) TDI I D2 (PU) TDN O D26 TDO O F1 TDP O E24 TEST I F3 (PD) TEST0 O C21 TEST1 O B21 TEST2 O A23 TEST3 O B22 TMS I H1 (PU) TRDY# s/t/s B9 (PU) VCC2 PWR A7 VCC2 PWR A17 VCC2 PWR B7 VCC2 PWR B17 VCC2 PWR C7 VCC2 PWR C17 VCC2 PWR D7 VCC2 PWR D17 VCC2 PWR K1
Signal Name Type Pin No.
www.national.com 18 Revision 3.1
Signal Definitions (Continued)
Geode™ GXm Processor
Note: PU/PD indicatespin is
internally connected to a 20-kohm pull-up/­down resistor.
VCC2 PWR K2 VCC2 PWR K3 VCC2 PWR K4 VCC2 PWR K23 VCC2 PWR K24 VCC2 PWR K25 VCC2 PWR K26 VCC2 PWR Y1 VCC2 PWR Y2 VCC2 PWR Y3 VCC2 PWR Y4 VCC2 PWR Y23 VCC2 PWR Y24 VCC2 PWR Y25 VCC2 PWR Y26 VCC2 PWR AC7 VCC2 PWR AC17 VCC2 PWR AD7 VCC2 PWR AD17 VCC2 PWR AE7 VCC2 PWR AE17 VCC2 PWR AF7 VCC2 PWR AF17 VCC3 PWR A10 VCC3 PWR A20 VCC3 PWR B10 VCC3 PWR B20 VCC3 PWR C10 VCC3 PWR C20 VCC3 PWR D10 VCC3 PWR D20 VCC3 PWR G1 VCC3 PWR G2 VCC3 PWR G3 VCC3 PWR G4 VCC3 PWR G23 VCC3 PWR G24
Signal Name Type Pin No.
VCC3 PWR G25 VCC3 PWR G26 VCC3 PWR U1 VCC3 PWR U2 VCC3 PWR U3 VCC3 PWR U4 VCC3 PWR U23 VCC3 PWR U24 VCC3 PWR U25 VCC3 PWR U26 VCC3 PWR AC10 VCC3 PWR AC20 VCC3 PWR AD10 VCC3 PWR AD20 VCC3 PWR AE10 VCC3 PWR AE20 VCC3 PWR AF10 VCC3 PWR AF20 VID_CLK O P1 VID_DATA0 O AD4 VID_DATA1 O AF3 VID_DATA2 O AE3 VID_DATA3 O AD3 VID_DATA4 O AC3 VID_DATA5 O AD2 VID_DATA6 O AB3 VID_DATA7 O AB4 VID_RDY I AD1 VID_VAL O M2 VOLDET O AC5 VSS GND A1 VSS GND A2 VSS GND A13 VSS GND A25 VSS GND A26 VSS GND B1 VSS GND B2
Signal Name Type PinNo.
VSS GND B25 VSS GND B26 VSS GND D4 VSS GND D6 VSS GND D8 VSS GND D9 VSS GND D11 VSS GND D12 VSS GND D13 VSS GND D14 VSS GND D15 VSS GND D16 VSS GND D18 VSS GND D19 VSS GND D21 VSS GND D23 VSS GND F4 VSS GND F23 VSS GND H4 VSS GND H23 VSS GND J 4 VSS GND J23 VSS GND L4 VSS GND L23 VSS GND M4 VSS GND M23 VSS GND N1 VSS GND N4 VSS GND N23 VSS GND P4 VSS GND P23 VSS GND R4 VSS GND R23 VSS GND T4 VSS GND T23 VSS GND V4 VSS GND V23
Signal Name Type Pin No.
VSS GND W4 VSS GND W23 VSS GND AA4 VSS GND AA23 VSS GND AC4 VSS GND AC6 VSS GND AC8 VSS GND AC9 VSS GND AC11 VSS GND AC12 VSS GND AC13 VSS GND AC14 VSS GND AC15 VSS GND AC16 VSS GND AC18 VSS GND AC19 VSS GND AC21 VSS GND AC23 VSS GND AE1 VSS GND AE2 VSS GND AE25 VSS GND AE26 VSS GND AF1 VSS GND AF2 VSS GND AF14 VSS GND AF25 VSS GND AF26 WEA# O R25 WEB# O R24
Signal Name Type Pin No.
Table 2-3. 352 BGA Pin Assignments - Sor ted Alphabetically by Signal Name (Continued)
Revision 3.1 19 www.national.com
Signal Definitions (Continued)
Geode™ GXm Processor
Figure 2-3. 320 SPGA Pin Assignment Diagram
For order information refer to Section A.1 “Order Information” on page236.
1234567891011121314151617181920
21 22 23 24 25 26
A
B C D
E
F G H
J K L
M
N
P
Q R
S T
U
V
AA AB AC AD AE AF
Index Corner
27 28 29 30 31 32 33 34 35 36 37
AG AH
AJ
AK
AL
AM
W
Y
X
Z
AN
A B C D E F G H J K L M N P Q R S T U V
AA AB AC AD AE AF AG AH AJ AK AL AM
W
Y
X
Z
AN
1234567891011121314151617181920
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
VCC3 AD25 VSS VCC2 AD16 VCC3 STOP# SERR# VSS AD11 AD8 VCC3 AD2 VCC2 VSS TST0 VCC3 VSS
VSS AD27 CBE3# AD21 AD19 CBE2# T RDY# LOCK# CBE1# AD13 AD9 AD6 AD3 SMI# AD1 TST2 MD33 MD2
VCC3 AD31 AD26 AD23 VCC2 AD18 FRAM E# VSS PAR VCC3 AD10 VSS AD4 AD0 VCC2 IRQ13 MD1 MD34 VCC3
AD30 AD29 AD24 AD22 AD20 AD17 IRDY# PERR# AD14 AD12 AD7 INTR TST1 TST3 MD0 MD32 MD3 MD35
REQ0# REQ2# AD28 VSS VCC2 VCC2 VSS DEVSEL# AD15 VSS CBE0# AD5 VSS VCC2 VCC2 VSS MD4 MD36 TDN
GNT0# TDI MD5 TDP
VSS CLKMODE2 VSS VSS MD37 VSS
GNT2# SUSPA#
TDO VSS TEST
REQ1# GNT1#
VCC2 VCC2 V CC2
RESET SUSP#
VCC3 TMS V SS
FPVSYN TCK
SERIALP VSS NC
CKMD1 FPHSYN
CKMD0 VID_VAL PIX0
PIX1 PIX2
VSS VCC3 VSS
PIX3 VID_CLK
PIX6 PIX5 PIX4
NC PIX9
PIX8 VSS PIX7
NC PIX10
VCC3 PIX11 VSS
PIX12 PIX13
VCC2 VCC2 V CC2
CRTHSYN DCLK
PIX14 VSS VCC2
PIX15 PIX16
VSS PIX17 VSS
CRTVSYN VDAT6
MD6 MD38
VCC2 VSS MD7
MD39 MD8
VCC2 VCC2 VCC2
MD40 MD9
VSS MD41 VCC3
MD10 MD42
MD11 VSS MD43
MD44 MD12
MD14 MD13 MD45
MD15 MD46
VSS VCC3 VSS
SYSCLK MD47
WEA# WEB# CASA#
DQM0 CASB#
DQM1 VSS DQM4
CS2# DQM5
VSS CS0# VCC3
RASB# RASA#
VCC2 VCC2 VCC2
VCC2 VSS MA1
MA2 MA0
MA4 MA3
VSS MA5 VSS
MA8 MA6MA10
PCLK FLT# VDAT5 VSS VCC2 MD31 VSS MD60 MD57 VSS MD22 MD52 VSS VCC2 VCC2 VSS BA1 MA9 MA7
VRDY VSS VDAT0 SDCLK0 SDCLK2 SDCLKIN MD29 MD27 MD56 MD55 MD21 MD20 MD50 MD16 DQM3 CS3#
VSS BA0
VCC2 VDAT4 VDAT2 SDCLK1 VCC2 RWCLKSDCLKOUT VSS MD58 VCC3 MD23 VSS MD19 MD49 VCC2 DQM6 CKEA MA11 VCC3
VDAT7 VDAT3 ENDIS SDCLK3 MD63 MD30 MD61 MD59 MD25 MD24 MD53 MD51 M D18 MD48 DQM7 DQM2 MA12 VOLDET
VSS VCC2 VDAT1 VSS VCC2 MD62 VCC3 MD28 MD26 VSS MD54 CKEB VCC3 MD17 VCC2 VSS CS1# VCC3 VSS
Note: Signal names have been abbreviated in this figure due to space constraints.
= Denotes GND terminal = Denotes PWR terminal (VCC2 = VCC_CORE; VCC3 = VCC_IO)
320 SPGA - Top View
Processor
Geode™ GXm
www.national.com 20 Revision 3.1
Signal Definitions (Continued)
Geode™ GXm Processor
Table 2-4. 320 SPGA Pin Assignments - Sorted by Pin Number
Pin No. Signal Name
A3 VCC3 A5 AD25 A7 VSS
A9 VCC2 A11 AD16 A13 VCC3 A15 STOP# A17 SERR# A19 VSS A21 AD11 A23 AD8 A25 VCC3 A27 AD2 A29 VCC2 A31 VSS A33 TEST0 A35 VCC3 A37 VSS
B2 VSS
B4 AD27
B6 C/BE3#
B8 AD21 B10 AD19 B12 C/BE2# B14 TRDY# B16 LOCK# B18 C/BE1# B20 AD13 B22 AD9 B24 AD6 B26 AD3 B28 SMI# B30 AD1 B32 TEST2 B34 MD33 B36 MD2
C1 VCC3 C3 AD31 C5 AD26 C7 AD23 C9 VCC2
C11 AD18
C13 FRAME# C15 VSS C17 PAR C19 VCC3 C21 AD10 C23 VSS
C25 AD4 C27 AD0 C29 VCC2 C31 IRQ13 C33 MD1 C35 MD34 C37 VCC3
D2 AD30 D4 AD29 D6 AD24
D8 AD22 D10 AD20 D12 AD17 D14 IRDY# D16 PERR# D18 AD14 D20 AD12 D22 AD7 D24 INTR D26 TEST1 D28 TEST3 D30 MD0 D32 MD32 D34 MD3 D36 MD35
E1 REQ0#
E3 REQ2#
E5 AD28
E7 VSS
E9 VCC2 E11 VCC2 E13 VSS E15 DEVSEL# E17 AD15 E19 VSS E21 C/BE0# E23 AD5 E25 VSS E27 VCC2 E29 VCC2 E31 VSS E33 MD4 E35 MD36 E37 TDN
F2 GNT0#
F4 TDI F34 MD5 F36 TDP
Pin No. Signal Name
G1 VSS G3 CLKMODE2
G5 VSS G33 VSS G35 MD37 G37 VSS
H2 GNT2#
H4 SUSPA#
H34 MD6 H36 MD38
J1 TDO J3 VSS
J5 TEST J33 VCC2 J35 VSS J37 MD7
K2 REQ1#
K4 GNT1# K34 MD39 K36 MD8
L1 VCC2 L3 VCC2
L5 VCC2 L33 VCC2 L35 VCC2 L37 VCC2
M2 RESET
M4 SUSP# M34 MD40 M36 MD9
N1 VCC3 N3 TMS
N5 VSS N33 VSS N35 MD41 N37 VCC3
P2 FP_VSYNC
P4 TCLK P34 MD10 P36 MD42
Q1 SERIALP
Q3 VSS
Q5 NC
Q33 MD11 Q35 VSS Q37 MD43
R2 CLKMODE1
R4 FP_HSYNC
Pin No. Signal Name
R34 MD44 R36 MD12
S1 CLKMODE0 S3 VID_VAL
S5 PIXEL0 S33 MD14 S35 MD13 S37 MD45
T2 PIXEL1
T4 PIXEL2 T34 MD15 T36 MD46
U1 VSS U3 VCC3
U5 VSS U33 VSS U35 VCC3 U37 VSS
V2 PIXEL3
V4 VID_CLK V34 SYSCLK V36 MD47
W1 PIXEL6 W3 PIXEL5
W5 PIXEL4 W33 WEA# W35 WEB# W37 CASA#
X2 NC
X4 PIXEL9 X34 DQM0 X36 CASB#
Y1 PIXEL8
Y3 VSS
Y5 PIXEL7 Y33 DQM1 Y35 VSS Y37 DQM4
Z2 NC
Z4 PIXEL10 Z34 CS2# Z36 DQM5
AA1 VCC3 AA3 PIXEL11
AA5 VSS AA33 VSS AA35 CS0# AA37 VCC3
Pin No. Signal Name
AB2 PIXEL12
AB4 PIXEL13 AB34 RASB# AB36 RASA#
AC1 VCC2
AC3 VCC2
AC5 VCC2 AC33 VCC2 AC35 VCC2 AC37 VCC2
AD2 CRT_HSYNC
AD4 DCLK AD34 MA2 AD36 MA0
AE1 PIXEL14
AE3 VSS
AE5 VCC2 AE33 VCC2 AE35 VSS AE37 MA1
AF2 PIXEL15
AF4 PIXEL16
AF34 MA4 AF36 MA3
AG1 VSS AG3 PIXEL17
AG5 VSS AG33 VSS AG35 MA5 AG37 VSS
AH2 CRT_VSYNC
AH4 VID_DATA6 AH32 MA10 AH34 MA8 AH36 MA6
AJ1 PCLK AJ3 FTL# AJ5 VID_DATA5 AJ7 VSS
AJ9 VCC2 AJ11 MD31 AJ13 VSS AJ15 MD60 AJ17 MD57 AJ19 VSS AJ21 MD22 AJ23 MD52 AJ25 VSS
Pin No. Signal Name
Revision 3.1 21 www.national.com
Signal Definitions (Continued)
Geode™ GXm Processor
AJ27 VCC2 AJ29 VCC2 AJ31 VSS AJ33 BA1 AJ35 MA9 AJ37 MA7
AK2 VID_RDY AK4 VSS AK6 VID_DATA0
AK8 SDCLK0 AK10 SDCLK2 AK12 SDCLK_IN AK14 MD29 AK16 MD27 AK18 MD56 AK20 MD55 AK22 MD21
Pin No. Signal Name
AK24 MD20 AK26 MD50 AK28 MD16 AK30 DQM3 AK32 CS3# AK34 VSS AK36 BA0
AL1 VCC2 AL3 VID_DATA4 AL5 VID_DATA2 AL7 SDCLK1
AL9 VCC2 AL11 RW_CLK AL13 SDCLK_OUT AL15 VSS AL17 MD58 AL19 VCC3
Pin No. Signal Name
AL21 MD23 AL23 VSS AL25 MD19 AL27 MD49 AL29 VCC2 AL31 DQM6 AL33 CKEA AL35 MA11 AL37 VCC3
AM2 VID_DATA7 AM4 VID_DATA3 AM6 ENA_DISP
AM8 SDCLK3 AM10 MD63 AM12 MD30 AM14 MD61 AM16 MD59
Pin No. Signal Name
AM18 MD25 AM20 MD24 AM22 MD53 AM24 MD51 AM26 MD18 AM28 MD48 AM30 DQM7 AM32 DQM2 AM34 MA12 AM36 VOLDET
AN1 VSS AN3 VCC2 AN5 VID_DATA1 AN7 VSS AN9 VCC2
AN11 MD62
AN13 VCC3
Pin No. Signal Name
AN15 MD28 AN17 MD26 AN19 VSS AN21 MD54 AN23 CKEB AN25 VCC3 AN27 MD17 AN29 VCC2 AN31 VSS AN33 CS1# AN35 VCC3 AN37 VSS
Pin No. Signal Name
Table 2-4. 320 SPGA Pin Assignments - Sorted by Pin Number (Continued)
www.national.com 22 Revision 3.1
Signal Definitions (Continued)
Geode™ GXm Processor
Table 2-5. 320 SPGA Pin Assignments - Sorted Alphabetically by Signal Name
Signal Name Type Pin. No.
AD0 I/O C27 AD1 I/O B30 AD2 I/O A27 AD3 I/O B26 AD4 I/O C25 AD5 I/O E23 AD6 I/O B24 AD7 I/O D22 AD8 I/O A23 AD9 I/O B22 AD10 I/O C21 AD11 I/O A21 AD12 I/O D20 AD13 I/O B20 AD14 I/O D18 AD15 I/O E17 AD16 I/O A11 AD17 I/O D12 AD18 I/O C11 AD19 I/O B10 AD20 I/O D10 AD21 I/O B8 AD22 I/O D8 AD23 I/O C7 AD24 I/O D6 AD25 I/O A5 AD26 I/O C5 AD27 I/O B4 AD28 I/O E5 AD29 I/O D4 AD30 I/O D2 AD31 I/O C3 BA0 O AK36 BA1 O AJ33 CASA# O W37 CASB# O X36 C/BE0# I/O E21 C/BE1# I/O B18 C/BE2# I/O B12 C/BE3# I/O B6 CKEA O AL33 CKEB O AN23 CLKMODE0 I S1 CLKMODE1 I R2 CLKMODE2 I G3 CRT_HSYNC O AD2 CRT_VSYNC O AH2 CS0# O AA35 CS1# O AN33 CS2# O Z34 CS3# O AK32 DCLK I AD4 DEVSEL# s/t/s E15 (PU)
DQM0 O X34 DQM1 O Y33 DQM2 O AM32 DQM3 O AK30 DQM4 O Y37 DQM5 O Z36 DQM6 O AL31 DQM7 O AM30 ENA_DISP O AM6 FLT# I AJ3 FP_HSYNC O R4 FP_VSYNC O P2 FRAME# s/t/s C13 (PU) GNT0# O F2 GNT1# O K4 GNT2# O H2 INTR I D24 IRDY# s/t/s D14 (PU) IRQ13 O C31 LOCK# s/t/s B16 (PU) MA0 O AD36 MA1 O AE37 MA2 O AD34 MA3 O AF36 MA4 O AF34 MA5 O AG35 MA6 O AH36 MA7 O AJ37 MA8 O AH34 MA9 O AJ35 MA10 O AH32 MA11 O AL35 MA12 O AM34 MD0 I/O D30 MD1 I/O C33 MD2 I/O B36 MD3 I/O D34 MD4 I/O E33 MD5 I/O F34 MD6 I/O H34 MD7 I/O J37 MD8 I/O K36 MD9 I/O M36 MD10 I/O P34 MD11 I/O Q33 MD12 I/O R36 MD13 I/O S35 MD14 I/O S33 MD15 I/O T34 MD16 I/O AK28 MD17 I/O AN27 MD18 I/O AM26 MD19 I/O AL25
Signal Name Type Pin. No.
MD20 I/O AK24 MD21 I/O AK22 MD22 I/O AJ21 MD23 I/O AL21 MD24 I/O AM20 MD25 I/O AM18 MD26 I/O AN17 MD27 I/O AK16 MD28 I/O AN15 MD29 I/O AK14 MD30 I/O AM12 MD31 I/O AJ11 MD32 I/O D32 MD33 I/O B34 MD34 I/O C35 MD35 I/O D36 MD36 I/O E35 MD37 I/O G35 MD38 I/O H36 MD39 I/O K34 MD40 I/O M34 MD41 I/O N35 MD42 I/O P36 MD43 I/O Q37 MD44 I/O R34 MD45 I/O S37 MD46 I/O T36 MD47 I/O V36 MD48 I/O AM28 MD49 I/O AL27 MD50 I/O AK26 MD51 I/O AM24 MD52 I/O AJ23 MD53 I/O AM22 MD54 I/O AN21 MD55 I/O AK20 MD56 I/O AK18 MD57 I/O AJ17 MD58 I/O AL17 MD59 I/O AM16 MD60 I/O AJ15 MD61 I/O AM14 MD62 I/O AN11 MD63 I/O AM10 NC Q5 NC X2 NC Z2 PAR I/O C17 PCLK O AJ1 PERR# s/t/s D16 (PU) PIXEL0 O S5 PIXEL1 O T2 PIXEL2 O T4
Signal Name Type Pin. No.
PIXEL3 O V2 PIXEL4 O W5 PIXEL5 O W3 PIXEL6 O W1 PIXEL7 O Y5 PIXEL8 O Y1 PIXEL9 O X4 PIXEL10 O Z4 PIXEL11 O AA3 PIXEL12 O AB2 PIXEL13 O AB4 PIXEL14 O AE1 PIXEL15 O AF2 PIXEL16 O AF4 PIXEL17 O AG3 RASA# O AB36 RASB# O AB34 REQ0# I E1 (PU) REQ1# I K2 (PU) REQ2# I E3 (PU) RESET I M2 RW_CLK O AL11 SDCLK_IN I AK12 SDCLK_OUT O AL13 SDCLK0 O AK8 SDCLK1 O AL7 SDCLK2 O AK10 SDCLK3 O AM8 SERIALP O Q1 SERR# OD A17 (PU) SMI# I B28 STOP# s/t/s A15 (PU) SUSP# I M4 (PU) SUSPA# O H4 SYSCLK I V34 TCLK I P4 (PU) TDI I F4 (PU) TDN O E37 TDO O J1 TDP O F36 TEST I J5 (PD) TEST0 O A33 TEST1 O D26 TEST2 O B32 TEST3 O D28 TMS I N3 (PU) TRDY# s/t/s B14 (PU) VCC2 PWR A9 VCC2 PWR A29 VCC2 PWR C9 VCC2 PWR C29 VCC2 PWR E9 VCC2 PWR E11
Signal Name Type Pin. No.
Revision 3.1 23 www.national.com
Signal Definitions (Continued)
Geode™ GXm Processor
Note: PU/PD indicatespin is
internally connected to a 20-kohm pull-up/ down resistor
VCC2 PWR E27 VCC2 PWR E29 VCC2 PWR J33 VCC2 PWR L1 VCC2 PWR L3 VCC2 PWR L5 VCC2 PWR L33 VCC2 PWR L35 VCC2 PWR L37 VCC2 PWR AC1 VCC2 PWR AC3 VCC2 PWR AC5 VCC2 PWR AC33 VCC2 PWR AC35 VCC2 PWR AC37 VCC2 PWR AE5 VCC2 PWR AE33 VCC2 PWR AJ9 VCC2 PWR AJ27 VCC2 PWR AJ29 VCC2 PWR AL1 VCC2 PWR AL9 VCC2 PWR AL29 VCC2 PWR AN3 VCC2 PWR AN9 VCC2 PWR AN29 VCC3 PWR A3 VCC3 PWR A13 VCC3 PWR A25
Signal Name Type Pin. No.
VCC3 PWR A35 VCC3 PWR C1 VCC3 PWR C19 VCC3 PWR C37 VCC3 PWR N1 VCC3 PWR N37 VCC3 PWR U3 VCC3 PWR U35 VCC3 PWR AA1 VCC3 PWR AA37 VCC3 PWR AL19 VCC3 PWR AL37 VCC3 PWR AN13 VCC3 PWR AN25 VCC3 PWR AN35 VID_CLK O V4 VID_DATA0 O AK6 VID_DATA1 O AN5 VID_DATA2 O AL5 VID_DATA3 O AM4 VID_DATA4 O AL3 VID_DATA5 O AJ5 VID_DATA6 O AH4 VID_DATA7 O AM2 VID_RDY I AK2 VID_VAL O S3 VOLDET O AM36 VSS GND A7 VSS GND A19
Signal Name Type Pin. No.
VSS GND A31 VSS GND A37 VSS GND B2 VSS GND C15 VSS GND C23 VSS GND E7 VSS GND E13 VSS GND E19 VSS GND E25 VSS GND E31 VSS GND G1 VSS GND G5 VSS GND G33 VSS GND G37 VSS GND J3 VSS GND J35 VSS GND N5 VSS GND N33 VSS GND Q3 VSS GND Q35 VSS GND U1 VSS GND U5 VSS GND U33 VSS GND U37 VSS GND Y3 VSS GND Y35 VSS GND AA5 VSS GND AA33 VSS GND AE3
Signal Name Type Pin. No.
VSS GND AE35 VSS GND AG1 VSS GND AG5 VSS GND AG33 VSS GND AG37 VSS GND AJ7 VSS GND AJ13 VSS GND AJ19 VSS GND AJ25 VSS GND AJ31 VSS GND AK4 VSS GND AK34 VSS GND AL15 VSS GND AL23 VSS GND AN1 VSS GND AN7 VSS GND AN19 VSS GND AN31 VSS GND AN37 WEA# O W33 WEB# O W35
Signal Name Type Pin. No.
Table 2-5. 320 SPGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)
www.national.com 24 Revision 3.1
Signal Definitions (Continued)
Geode™ GXm Processor
2.2 SIGNAL DESCRIPTIONS
2.2.1 System Interface Signals
Signal Name
BGA
Pin No.
SPGA
Pin No. Type Description
SYSCLK P26 V34 I System Clock
System Clock runs synchronouslywiththe PCI bus.The internal clock of the GXm processor is generated by an internal PLL which multipliestheSYSCLKinputandcanrun up to eight times faster. The SYSCLK to core clock multiplier is configured using the CLKMOD[2:0] inputs.
The SYSCLK input is a fixed frequency which can only be stopped or varied when the G Xm processoris in a full 3V Sus­pend. (Section 6.4 “3-Volt SuspendMode” on page 174 for details regarding this mode.)
CLKMODE[2:0] M1,L1,M3G3,R2,
S1
I Clock Mode
Thesesignalsareusedtosetthecoreclockmultiplier.ThePCI clock "SYSCLK" is multiplied by the value programmed by CLK­MODE[2:0] to generate the GXm processor’s core clock. CLKMODE2isvalid only forGXmprocessor revision 4.0 and up. The value read from DIR1 (Device ID Register 1, refer to page 51) affects the definition of the CLKMODE pins.
If DIR1 = 30h-33h then CLKMODE[1:0]: 00 = SYSCLK multiplied by 4 (Test mode only) 01 = SYSCLK multiplied by 6 10 = SYSCLK multiplied by 7 11 = SYSCLK multiplied by 5
If DIR1 = 34h-4Fh then CLKMODE[1:0]: 00 = SYSCLK multiplied by 4 (Test mode only) 01 = SYSCLK multiplied by 6 10 = SYSCLK multiplied by 7 11 = SYSCLK multiplied by 8
If DIR1 > or = 50h then CLKMODE[2:0]: 000 = SYSCLK multiplied by 4 (Test mode only) 001 = SYSCLK multiplied by 10 010 = SYSCLK multiplied by 9 011 = SYSCLK multiplied by 5 100 = SYSCLK multiplied by 4 101 = SYSCLK multiplied by 6 110 = SYSCLK multiplied by 7 111 = SYSCLK multiplied by 8
RESET J3 M2 I Reset
RESET aborts all operationsin progress and places the GXm processor into a reset state. RESET forces the CPU and peripheralfunctionstobeginexecutingataknownstate. All data in the on-chip cache is invalidated.
RESET is an asynchronous input but must meet specified setup and hold times to guarantee recognition at a particular clock edge. This input is typically generated during the Power-On­Reset sequence.
Note: Warm Reset does not require an input on the GXm pro-
cessor since the function is virtualized using SMM.
Revision 3.1 25 www.national.com
Signal Definitions (Continued)
Geode™ GXm Processor
INTR B18 D24 I (Maskable) Interrupt Request
INTR is a level-sensitiveinputthatcauses the GXm processor to Suspend execution of the currentinstruction stream and begin execution of an interrupt service routine. The INTR input can be masked through the Flags Register IF bit. (See Table3-4 on page 43 for bit definitions.)
IRQ13 C22 C31 O Interrupt Request Level 13
IRQ13 is asserted if an on-chip floating point error occurs. When a floating point error occurs,the GXm processor asserts
the IRQ13 pin. The floating point interrupt handler then performs an OUT instruction to I/O address F0h or F1h. The GXmproces­sor accepts either of these cycles and clearsthe IRQ13 pin.
Refer to Section 3.4.1 “I/O Address Space” on page 60 for fur­ther information on IN/OUT instructions.
SMI# C19 B28 I System Management Interrupt
SMI# is a level-sensitiveinterrupt. SMI# puts the GXm processor into System Management Mode (SMM).
SUSP# H2
(PU)
M4
(PU)
I Suspend Request
This signal is used to request that the GXm processor enter Sus­pend mode. After recognition of an active SUSP# input, thepro­cessor completes execution of the current instruction, any pending decoded instructions and associated bus cycles. SUSP# is ignored following RESET# and is enabledby setting the SUSP bit in CCR2. (See Table 16 on page 44 for CCR2 bit definitions.)
SincetheGXmprocessor includessystemlogic functionsaswell as the CPU core, there are specialmodesdesignedto support the different power management states associated with APM, ACPI, and portable designs. The part can be configured to stop only the CPU core clocks, or all clocks. When all clocks are stopped, the external clock can also be stopped.(See Section
6.0 “PowerManagement” onpage174 for moredetailsregarding power management states.)
This pin is internally connected to a 20-kohm pull-up resistor. SUSP#ispulledupwhennotactive.
SUSPA# E2 H4 O Suspend Acknowledge
Suspend Acknowledge indicates that the GXm processor has entered low-power Suspend mode as a result of SUSP# asser­tion or execution of a HALTinstruction.SUSPA# is enabled by setting the SUSP bit in CCR2. (See Table 16 on page 44 for CCR2 bit definitions.)
The SYSCLK input may be stopped after SUSPA# has been asserted to further reduce power consumption if the system is configured for 3V Suspend mode. (Section 6.4 “3-VoltSuspend Mode” on page 174 for details regarding this mode.)
SERIALP L3 Q1 O Serial Packet
Serial Packet is the singlewire serial-transmission signal to the CS5530 chip. The clock used for this interface is the PCI clock (SYSCLK). This interface carries packets of miscellaneous infor­mation to the chipset to be used by the VSA software handlers.
2.2.1 System Interface Signals (Continued)
Signal Name
BGA
Pin No.
SPGA
Pin No. Type Description
www.national.com 26 Revision 3.1
Signal Definitions (Continued)
Geode™ GXm Processor
2.2.2 PCI Interface Signals
Signal Name
BGA
Pin No.
SPGA
Pin No Type Description
AD[31:0] Refer
toTable
2-3
Refer
toTable
2-5
I/O Multiplexed Address and Data
Addressesanddata are multiplexed onthesame PCI pins. Abus transaction consists of an address phase in the cycle in which FRAME# is asserted followed by one or more data phases. Dur­ing the address phase, AD[31:0] contain a physical 32-bit address. For I/O,this is a byte address, for configuration and memory it is a DWORD address. During data phases, AD[7:0] contain the least significant byte (LSB) and AD[31:24]contain the most significant byte (MSB). Write data is stable and valid when IRDY# is asserted and read data is stable and valid when TRDY# is asserted. Data is transferred during those SYSCLKS where both IRDY# and TRDY# are asserted.
C/BE[3:0]# D5,
B8,
C13,
A15
B6, B12, B18,
E21
I/O Multiplexed Command and Byte Enables
Bus command and byte enables are multiplexed on the same PCI pins. During the address phase of a transactionwhen FRAME# is active, C/BE[3:0]# define the bus command. During the data phase C/BE[3:0]# are used as byte enables. The byte enables are valid for the entire data phase and determinewhich byte lanes carry meaningful data. C/BE0#appliesto byte 0 (LSB) and C/BE3# appliesto byte 3 (MSB).
The command encoding and types are listedbelow. 0000 = Interrupt Acknowledge
0001 = Special Cycle 0010 = I/O Read 0011 = I/O Write 0100 = Reserved 0101 = Reserved 0110 = Memory Read 0111 = Memory Write 1000 = Reserved 1001 = Reserved 1010 = Configuration Read 1011 = Configuration Write 1100 = Memory ReadMultiple 1101 = Dual Address Cycle (Reserved) 1110 = Memory ReadLine 1111 = Memory Write and Invalidate
PAR B12 C17 I/O Parity
Paritygeneration is required by all PCIagents:themasterdrives PARfor addressandwrite-dataphases, the target drivesPAR for read-data phases. Parity is even across AD[31:0] and C/BE[3:0]#.
For address phases, PAR is stable and valid one SYSCLK after the address phase. It has the same timing as AD[31:0] but delayedby one SYSCLK.
For data phases, PAR is stable and valid one SYSCLK after either IRDY# is asserted on a write transaction or after TRDY#is asserted on a read transaction. Once PAR is valid, it remains valid until one SYSCLK after the completion of the data phase. (Also see PERR#.)
Revision 3.1 27 www.national.com
Signal Definitions (Continued)
Geode™ GXm Processor
FRAME# A8
(PU)
C13
(PU)
s/t/s Frame
Cycle Frameis driven by the current master to indicate the beginning and duration of an access. FRAME# is asserted to indicate a bus transaction is beginning. While FRAME# is asserted, data transfers continue. When FRAME# is deasserted, the transaction is in the final data phase.
This pin is internally connected to a 20-kohm pull-up resistor.
IRDY# C9
(PU)
D14
(PU)
s/t/s Initiator Ready
Initiator Ready is asserted to indicate that the bus master is able to complete the current data phaseof the transaction. IRDY# is used in conjunction with TRDY#. A data phase is completed on any SYSCLK in which both IRDY# and TRDY# are sampled asserted. During a write, IRDY# indicates valid data is present on AD[31:0]. Duringaread,itindicatesthe master is prepared to accept data. Wait cycles are inserted until bothIRDY# and TRDY# are asserted together.
This pin is internally connected to a 20-kohm pull-up resistor.
TRDY# B9
(PU)
B14
(PU)
s/t/s Target Ready
TRDY# is asserted to indicate that the target agent is able to complete the current data phase of the transaction.TRDY# is usedinconjunction withIRDY#. A data phaseiscomplete on any SYSCLK in which both TRDY# and IRDY# are sampled asserted. During a read, TRDY# indicates that valid data is present on AD[31:0]. During a write, it indicates the target is pre­pared to accept data. Wait cycles are inserted until both IRDY# and TRDY#are asserted together.
This pin is internally connected to a 20-kohm pull-up resistor.
STOP# C11
(PU)
A15
(PU)
s/t/s Target Stop
STOP# is asserted to indicatethat the current target is request­ing the mastertostopthecurrent transaction. This signalisused with DEVSEL# to indicateretry, disconnect or target abort. If STOP# is sampled active while a master, FRAME# will be deas­serted and the cycle stoppedwithinthree SYSCLK cycles. As an input, STOP# can be asserted in the following cases. 1) If a PCI master tries to access memory that has been locked by another master. This condition is detectedif FRAME# and LOCK# are asserted during an addressphase. 2) STOP# will also be asserted if the PCI write buffers are full or ifapreviously buffered cycle has not completed. 3) Finally, STOP# can be asserted on read cycles that cross cache line boundaries. This is conditional based upon the programming of bit 1 in PCI Control Function 2 Register. (See Table 4-37 on page 156 forprogramming details.)
This pin is internally connected to a 20-kohm pull-up resistor.
2.2.2 PCI Interface Signals (Continued)
Signal Name
BGA
Pin No.
SPGA
Pin No Type Description
www.national.com 28 Revision 3.1
Signal Definitions (Continued)
Geode™ GXm Processor
LOCK# B11
(PU)
B16
(PU)
s/t/s Lock Operation
LOCK# indicates an atomic operation that may require multiple transactions to complete. When LOCK# is asserted, nonexclu­sivetransactions may proceedtoanaddressthatisnotcurrently locked(atleast 16 bytes must be locked). A grant to start a trans­action on PCI does not guarantee control of LOCK#. Control of LOCK# is obtained under it own protocol in conjunction with GNT#. It is possible fordifferent agents to use PCI while a single master retains ownership of LOCK#. The arbiter can implement a complete system lock. In this mode, if LOCK# is active, no other master can gain access to the systemuntil the LOCK# is deasserted.
This pin is internally connected to a 20-kohm pull-up resistor.
DEVSEL# A9
(PU)
E15
(PU)
s/t/s Device Select
DEVSEL# indicates that the drivingdevice has decoded its address as the target of the current access. As an input, DEVSEL# indicates whether any device on the bus has been selected. DEVSEL# will also be driven by any agent that has the ability to accept cycles on a subtractive decode basis. As a mas­ter,if no DEVSEL# is detected withinand up to the subtractive decode clock, a master abort cyclewill result expectfor special cycles which do not expecta DEVSEL# returned.
This pin is internally connected to a 20-kohm pull-up resistor.
PERR# A11
(PU)
D16
(PU)
s/t/s Parity Error
PERR# is used for repor ting of data parity errors during all PCI transactions except a Special Cycle. The PERR# line is driven two SYSCLKs after the data in which the error was detected. This is one SYSCLK after the PAR that is attached to the data. The minimum duration of PERR# is one SYSCLK for each data phase in which a data parity error is detected. PERR# mustbe driven highforoneSYSCLKbefore being in TRI-STATE mode. A target asserts PERR# onwrite cycles if it has claimed the cycle with DEVSEL#. The masterasserts PERR# on read cycles.
This pin is internally connected to a 20-kohm pull-up resistor.
SERR# C12
(PU)
A17
(PU)
OD System Error
System Error may be asserted by any agent for repor ting errors other than PCI parity. The intent is to have the PCI c entral agent assert NMI to the processor. When the Parity Enable bit is set in the Memory Controller Configuration register, SERR# will be asserted upon detecting a parity error on read operations from DRAM.
REQ[2:0]# D3,
H3,
E3
(PU)
E3,
K2,
E1
(PU)
I Request Lines
Request indicates to the arbiter that an agent desires use of the bus. Each master has its own REQ# line. REQ# priorities are based on the arbitration scheme chosen.
Each of these pins are internallyconnected to a 20-kohm pull-up resistor.
2.2.2 PCI Interface Signals (Continued)
Signal Name
BGA
Pin No.
SPGA
Pin No Type Description
Revision 3.1 29 www.national.com
Signal Definitions (Continued)
Geode™ GXm Processor
GNT[2:0]# E1,
F2,
D1
H2, K4,
F2
O Grant Lines
Grant indicatesto therequesting master that it has been granted access to the bus. Each master has its own GNT# line. GNT# can be pulled away at any time a higher REQ#is receivedor if the master does not begin a cycle within a minimum period of time (16 SYSCLKs).
2.2.2 PCI Interface Signals (Continued)
Signal Name
BGA
Pin No.
SPGA
Pin No Type Description
2.2.3 Memory Controller Interface Signals
Signal Name
BGA
Pin No.
SPGA
Pin No. Type Description
Note: The memory controller interface supports two typesof memory configurations: SDRAM modules on the sys-
tem board and JEDEC DIMMconnectors. Refer to Section 4.3 “Memory Controller” on page 103 for detailed information regarding signal connections.
MD[63:0] Refer
toTable
2-3
Refer
toTable
2-5
I/O Memory Data Bus
The data bus lines driven to/from system memory.
MA[12:0] Refer
toTable
2-3
Refer
toTable
2-5
O Memory Address Bus
The multiplexed row/column address lines driven to the system memory.
Supports 256 Mbit SDRAM.
BA[1:0] AD26,
AD25
AJ33, AK36
O Bank Address Bits
These bits are used to select the component bank within the SDRAM.
CS[3:0]# AE23,
V25,
AD23,
V26
AK32,
Z34,
AN33,
AA35
O Chip Selects
The chip selects are used to select the module bank within the system memory. Eachchipselect corresponds to a specific mod­ule bank.
If CS# is high, the bank(s) do not respond to RAS#, CAS#, WE# until the bank is selected again.
RASA#, RASB#
W24,
W25
AB36,
AB34
O Row Address Strobe
RAS#, CAS#, WE# and CKE are encoded to support the differ­ent SDRAM commands. RASA# is used with CS[1:0]#. RASB# is used with CS[3:2]#.
CASA#, CASB#
P25,
R26
W37,
X36
O Column Address Strobe
RAS#, CAS#, WE# and CKE are encoded to support the differ­ent SDRAM commands. CASA# is used with CS[1:0]#. CASB# is used with CS[3:2]#.
WEA#, WEB#
R25,
R24
W33,
W35
O Write Enable
RAS#, CAS#, WE# and CKE are encoded to support the differ­ent SDRAM commands. WEA# is used with CS[1:0]#. WEB# is used with CS[3:2]#.
www.national.com 30 Revision 3.1
Signal Definitions (Continued)
Geode™ GXm Processor
DQM[7:0] Refer
toTable
2-3
Refer
toTable
2-5
O Data Mask Control Bits
During memory read cycles, these outputs control whether the SDRAM output buffers are driven on the MD busornot.AllDQM signals are asserted during read cycles.
During memory write cycles, these outputs control whether or not MD data will be written into the SDRAM.
DQM[7:0] connect directly to the DQM7-0 pins of eachconnec­tor.
CKEA, CKEB
AF24,
AD16
AL33, AN23
O Clock Enable
For normal operation CKE is held high. CKE goes low during Suspend.
SDCLK[3:0] AE4,
AF5, AE5,
AF4
AM8,
AK10,
AL7, AK8
O SDRAM Clocks
The SDRAM samples all the control,address, and data using these clocks.
SDCLK_IN AE8 AK12 I SDRAM Clock Input
The GXm processor samples the memory read data on this clock. Works in conjunction with the SDCLK_OUT signal.
SDCLK_OUT AF8 AL13 O SDRAM Clock Output
This output is routed back to SDCLK_IN. The board designer should vary the length of the board trace to control skew between SDCLK_IN and SDCLK.
2.2.3 Memory Controller Interface Signals (Continued)
Signal Name
BGA
Pin No.
SPGA
Pin No. Type Description
2.2.4 Video Interface Signals
Signal Name
BGA
Pin No
SPGA
Pin No Type Description
PCLK AC1 AJ1 O Pixel Port Clock
Pixel Port Clock represents the pixel dotclock or a 2x multiple of the dotclock for some 16-bit-per-pixel modes. It determines the data transfer rate from the GXm processor to the CS5530.
VID_CLK P1 V4 O Video Clock
Video Clock represents the video port clock to the CS5530. This pin is only used if the Video Port is enabled.
DCLK AB1 AD4 I DOT Clock
The DCLK input is driven from the CS5530and represents the pixel dot clock. In some cases, such as when displaying 16 BPP data with an eight-bit-graphics pixel port, this clock will actually be a 2x multiple of the dotclock.
CRT_HSYNC W2 AD2 O CRT Horizontal Sync
CRT Horizontal Sync establishes the line rateand horizontal retrace interval for an attached CRT. The polarity is programma­ble and depends on the display mode.
Loading...
+ 214 hidden pages