NSC DP83848HSQ, DP83848H Datasheet

DP83848H PHYTER® Mini - Extreme Temperature Single 10/100 Ethernet Transceiver
© 2006 National Semiconductor Corporation
www.national.com
DP83848H PHYTER® Mini - Extreme Temperature Single 10/100 Ethernet Transceiver
Features
Low-power 3.3V, 0.18µm CMO S techn ol ogy
3.3V MAC Interface
Auto-MDIX for 10/100 Mb/s
Energy Detection Mode
MII Interface and MII serial management interface (MDC
and MDIO)
IEEE 802.3u Auto-Negotiation and Parallel Detection
IEEE 802.3u ENDEC, 10BASE-T transceivers and filters
IEEE 802.3u PCS, 100BASE-TX transceivers and filters
Integrated ANSI X3.263 co mp lia nt TP-PM D ph ys ic al s ub -
layer with adaptive equalization and Baseline Wander compensation
Error-free Operation up to 137 meters
ESD protection - 4KV Human body model
LED support for Link
Supports system clock from oscillator
Single register access for complete PHY status
10/100 Mb/s packet BIST (Built in Self Test)
40 pin LLP package (6mm) x (6mm) x (0.8mm)
Applications
Peripheral devices
Mobile devices
Factory and building automation
Basestations
General Description
The DP83848H PHYTER® Mini Extreme addresses the high quality, high reliability and small form factor required for rugged operation in space sensitive and thermally demanding environments. This device is ideally suited for industrial and motor control, building/factory automation, automotive and test equipment applications.
The DP83848H is designed from ground up for extreme temperature performance, with a thermally efficient pack­age ensuring reliable operation over an operating range of
-40C to 125C. Rigorously tested at both low temperature and high temperature extremes, the device is ideal for out­door environment s and dem anding factory floor co nditio ns.
The device offers performance beyond the IEEE specifica­tions, with superior interoperability and industry leading performance. The DP83848H offers Auto-MDIX to remove cabling complications, superior ESD protection of greater than 4KV HBM for greater reliability, and superior cable length operation (greater than 137m) to provide a high level of performance in all applications.
A number of system cost-reducing features have been integrated that are not commonly found in other Ethernet Physical layer products (PHYs). For example, the DP83848H offers a 25MHz clock out that eliminates the need and hence the space and cost, of an additional Media Access Control (MAC) clock source component.
DP83848H is offered in a small 6mm x 6mm LLP 40-pin package.
System Diagram
PHYTER® is a registered trademark of National Semiconductor Corporation.
Status
10BASE-T
or
100BASE-TX
MII
Typical Ethernet Application
Magnetics
RJ-45
Clock
LED
DP83848H
10/100 Ethernet
Transceiver
Media Access Controller
MPU/CPU
Source
2 www.national.com
N
A
T
I
O
N
A
L
S
E
M
I
C
O
N
D
U
C
T
O
R
C
O
N
F
I
D
E
N
T
I
A
L
SERIAL
MANAGEMENT
TX_CLK
TXD[3:0]
TX_EN
MDIO
MDC
COL
CRS
RX_ER
RX_DV
RXD[3:0]
RX_CLK
Auto-Negotiation
State Machine
Clock
RX_DATA
RX_CLK
TX_DATA TX_CLK
REFERENCE CLOCK
TD±
RD±
LED
Generation
MII INTERFACE
Figure 1. DP83848H Functional Block Diagram
MII
Registers
Transmit Block
10BASE-T &
100BASE-TX
10BASE-T &
100BASE-TX
Receive Block
Auto-MDIX
DAC
ADC
LED
Driver
MII
3 www.national.com
DP83848H
Table of Contents
1.0 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.2 MAC Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.3 Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1.4 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1.5 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1.6 Strap Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.7 10 Mb/s and 100 Mb/s PMD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.8 Special Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.9 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.10 Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Auto-Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.1.1 Auto-Negotiation Pin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Auto-Negotiation Register Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Auto-Negotiation Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Auto-Negotiation Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.5 Enabling Auto-Negotiation via Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Auto-Negotiation Complete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Auto-MDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.3 PHY Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.3.1 MII Isolate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.4.1 LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 LED Direct Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Half Duplex vs. Full Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.6 Internal Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.7 BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.0 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 MII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.1.1 Nibble-wide MII Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Collision Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 802.3u MII Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.2.1 Serial Management Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Serial Management Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Serial Management Preamble Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.0 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 100BASE-TX TRANSMITTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.1.1 Code-group Encoding and Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Scrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 NRZ to NRZI Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4 Binary to MLT-3 Convertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 100BASE-TX RECEIVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.2.1 Analog Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Digital Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2.1 Digital Adaptive Equalization and Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2.2 Base Line Wander Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Signal Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.4 MLT-3 to NRZI Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.5 NRZI to NRZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.6 Serial to Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.7 Descrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.8 Code-group Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.9 4B/5B Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
www.national.com 4
DP83848H
4.2.10 100BASE-TX Link Integrity Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.11 Bad SSD Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 10BASE-T TRANSCEIVER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
4.3.1 Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Smart Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 Collision Detection and SQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.4 Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.5 Normal Link Pulse Detection/Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.6 Jabber Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.7 Automatic Link Polarity Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.8 Transmit and Receive Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.9 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.10 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.0 Design Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 TPI Network Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
5.2 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
5.3 Clock In (X1) Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
5.4 Power Feedback Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
5.5 Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
5.6 Energy Detect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
6.0 Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
6.2 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
7.0 Register Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
7.1.1 Basic Mode Control Register (BMCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.2 Basic Mode Status Register (BMSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.3 PHY Identifier Register #1 (PHYIDR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.4 PHY Identifier Register #2 (PHYIDR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.5 Auto-Negotiation Advertisement Register (ANAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.6 Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page) . . . . . . . . . . . . . . . . 42
7.1.7 Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page) . . . . . . . . . . . . . . . . . 43
7.1.8 Auto-Negotiate Expansion Register (ANER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.9 Auto-Negotiation Next Page Transmit Register (ANNPTR) . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 Extended Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
7.2.1 PHY Status Register (PHYSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.2 False Carrier Sense Counter Register (FCSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.3 Receiver Error Counter Register (RECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.4 100 Mb/s PCS Configuration and Status Register (PCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2.5 LED Direct Control Register (LEDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.6 PHY Control Register (PHYCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2.7 10Base-T Status/Control Register (10BTSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.8 CD Test and BIST Extensions Register (CDCTRL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.9 Energy Detect Control (EDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.0 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1 DC Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
8.2 AC Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
8.2.1 Power Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2.2 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.2.3 MII Serial Management Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.4 100 Mb/s MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.5 100 Mb/s MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2.6 100BASE-TX Transmit Packet Latency Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2.7 100BASE-TX Transmit Packet Deassertion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2.8 100BASE-TX Transmit Timing (tR/F & Jitter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.2.9 100BASE-TX Receive Packet Latency Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2.10 100BASE-TX Receive Packet Deassertion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2.11 10 Mb/s MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2.12 10 Mb/s MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2.13 10BASE-T Transmit Timing (Start of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5 www.national.com
DP83848H
8.2.14 10BASE-T Transmit Timing (End of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.15 10BASE-T Receive Timing (Start of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2.16 10BASE-T Receive Timing (End of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2.17 10 Mb/s Heartbeat Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.18 10 Mb/s Jabber Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.19 10BASE-T Normal Link Pulse Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2.20 Auto-Negotiation Fast Link Pulse (FLP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2.21 100BASE-TX Signal Detect Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.22 100 Mb/s Internal Loopback Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.23 10 Mb/s Internal Loopback Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2.24 Isolation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2.25 25 MHz_OUT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6 www.national.com
DP83848H
List of Figures
Figure 1. DP83848H Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2. PHYAD Strapping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3. AN0 Strapping and LED Loading Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. Typical MDC/MDIO Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 5. Typical MDC/MDIO Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 6. 100BASE-TX Transmit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 7. 100BASE-TX Receive Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 8. EIA/TIA Attenuation vs. Frequency for 0, 50, 100, 130 & 150 meters of CAT 5 cable . . . . . . . . . . .25
Figure 9. 100BASE-TX BLW Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 10. 10BASE-T Twisted Pair Smart Squelch Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 11. 10/100 Mb/s Twisted Pair Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 12. Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Figure 13. Power Feeback Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7 www.national.com
DP83848H
List of Tables
Table 1. Auto-Negotiation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 2. PHY Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 3. LED Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 4. Typical MDIO Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Table 5. 4B5B Code-Group Encoding/Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 6. 25 MHz Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 7. 25 MHz Crystal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 8. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 9. Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 10. Basic Mode Control Register (BMCR), address 0x00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 11. Basic Mode Status Register (BMSR), address 0x01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 12. PHY Identifier Register #1 (PHYIDR1), address 0x02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 13. PHY Identifier Register #2 (PHYIDR2), address 0x03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 14. Negotiation Advertisement Register (ANAR), address 0x04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 15. Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page), address 0x05 . . . . . . . .42
Table 16. Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page), address 0x05 . . . . . . . . .43
Table 17. Auto-Negotiate Expansion Register (ANER), address 0x06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Table 18. Auto-Negotiation Next Page Transmit Register (ANNPTR), address 0x07 . . . . . . . . . . . . . . . . . . . 44
Table 19. PHY Status Register (PHYSTS), address 0x10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Table 20. False Carrier Sense Counter Register (FCSCR), address 0x14 . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 21. Receiver Error Counter Register (RECR), address 0x15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 22. 100 Mb/s PCS Configuration and Status Register (PCSR), address 0x16 . . . . . . . . . . . . . . . . . . . .48
Table 23. LED Direct Control Register (LEDCR), address 0x18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 24. PHY Control Register (PHYCR), address 0x19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 25. 10Base-T Status/Control Register (10BTSCR), address 0x1A . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Table 26. CD Test and BIST Extensions Register (CDCTRL1), address 0x1B . . . . . . . . . . . . . . . . . . . . . . . . .53
Table 27. Energy Detect Control (EDCR), address 0x1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
www.national.com 8
DP83848H
Pin Layout
PFBIN2 DGND X1 X2 IOVDD33 MDC MDIO RESET_N LED_LNK 25MHz_OUT
RBIAS
PFBOUT
AVDD33
AGND
PFBIN1
TD +
TD -
AGND
RD +
RD -
IOVDD33
TX_CLK
TX_EN
TXD_0 TXD_1 TXD_2
TXD_3 RESERVED RESERVED RESERVED
RX_CLK
RX_DV
CRS/LED_CFG
RX_ER/MDIX_EN
COL/PHYAD0
RXD_0/PHYAD1
RXD_1/PHYAD2
RXD_2/PHYAD3
RXD_3/PHYAD4
IOGND
1 2 3 4 5 6 7 8 9 10
20
19
18
17
16
15
14
13
12
11
30 29 28 27 26 25 24 23 22 21
31
32
33
34
35
36
37
38
39
40
Top View
Order Number DP83848H
NS Package Number NSQAU040
9 www.national.com
DP83848H
1.0 Pin Descriptions
The DP83848H pins are classified into the following inter­face categories (each interface is described in the sections that follow):
— Serial Management Interface — MAC Data Interface — Clock Interface — LED Interface —Reset — Strap Options — 10/100 Mb/s PMD Interface — Special Connect Pins — Power and Ground pins
Note: Strapping pin option. Please see Se ction 1.6 for strap definitions.
All DP83848H signal pins are I/O cells regardless of the particular use. The defi nition s below defi ne the func tiona lity of the I/O cells for each pin.
1.1 Serial Managemen t Interface
1.2 MAC Data Interface
Type: I Input Type: O Output Type: I/O Input/Output Type: PD,PU Internal Pulldown/Pullup Type: S Strapping Pin (All strap pins have weak in-
ternal pu ll-ups or pull- downs. If the default strap value is needed to b e changed then an external 2.2 k resistor should be used. Please see Section 1.6 for details.)
Signal Name Type Pin # Description
MDC I 25 MANAGEMENT DATA CLOCK: Synchronous clock to the M DIO
management data input/output serial interface which may be asynchronous to transmit and receive clocks. The maximum clock rate is 25 MHz with no minimum clock rate.
MDIO I/O 24 MANAGEMENT DATA I/O: Bi-dir ectional management instru c-
tion/data signal th at may be s ourc ed by th e st atio n m ana gem en t entity or the PHY. This pin requires a 1.5 k pullup resistor.
Signal Name Type Pin # Description
TX_CLK O 2 MII TRANSMIT CLOCK: 25 MHz Transmit clock output in 100
Mb/s mode or 2.5 MHz in 10 Mb/s mode de rived from t he 25 MHz reference clock.
TX_EN I, PD 3 MII TRANSMIT ENABLE: Active high input indicates the pres-
ence of valid data inputs on TXD[3:0]. TXD_0 TXD_1
TXD_2 TXD_3
I
I, PD
4 5 6 7
MII TRANSMIT DATA: Transmit dat a MII input pins , TXD[3:0],
that accept data sync hronous to the TX_CL K (2.5 MHz in 10 Mb/s
mode or 25 MHz in 100 Mb/s mode).
RX_CLK O 31 MII RECEIVE CLOCK: Provides th e 25 MHz recover ed receive
clocks for 100 Mb/s mode and 2.5 MHz for 10 Mb/s mode. RX_DV O, PD 32 MII RECEIVE DATA VALID: Asserted high to indic ate tha t vali d
data is present on the corresponding RXD[3:0]. RX_ER S, O, PU 34 MII RECEIVE ERROR: Asserted high synchronously to RX_CLK
to indicate that an invalid symbol has been detected within a re-
ceived packet in 100 Mb/s mode. RXD_0 RXD_1 RXD_2
RXD_3
S, O, PD 36
37 38 39
MII RECEIVE DATA: Nibble wide receiv e data signals d riven syn-
chronously to the RX_CL K , 25 MH z for 1 00 M b/s mod e, 2. 5 MHz
for 10 Mb/s mode). RXD[3:0] signals contain valid data when
RX_DV is asserted.
CRS/LED_CFG S, O, PU 33 MII CARRIER SENSE: Asserted high to indicate the receive me-
dium is non-idle.
www.national.com 10
DP83848H
1.3 Clock Interface
1.4 LED Interface
See Table 3 for LED Mode Selection.
1.5 Reset
COL S, O, PU 35 MII COLLISION DETECT: Asserted high to indica te de tec t io n of
a collision condition (simultaneous transmit and receive activity) in 10 Mb/s and 100 Mb/s Half Duplex Modes.
While in 10BASE-T Half Dup lex mode with hea rtbeat enabled t his pin is also asserted f or a duration of a pproximately 1µs at the end of transmission to indicate heartbeat (SQE test).
In Full Duplex Mode, for 10 Mb/s or 100 Mb/s operation, this sig­nal is always logic 0. There is no heartbeat function during 10 Mb/s full duplex operation.
Signal Name Type Pin # Description
Signal Name Type Pin # Description
X1 I 28 CRYSTAL/OSCILLATOR INPUT: This pin is the primary clock
reference input for t he DP83848H a nd must be c onnected to a 25 MHz 0.005% (+
50 ppm) clock source. The DP83848H supports either an external crystal res onator connected across pins X1 and X2, or an external CMOS-level oscillator source connected to pin X1 only.
X2 O 27 CRYSTAL OUTPUT: This pin is the primary clock reference out-
put to connect to an external 25 MHz crystal resonator device. This pin must be l eft unc on nec ted if an external CMOS osc il la t or clock source is used.
25MHz_OUT O 21 25 MHz CLOCK OUTPUT:
This pin provides a 25 MHz clock output to the system. This allows other devices to use the reference clock from the
DP83848H without requiring additional clock sources.
Signal Name Type Pin # Description
LED_LINK S, O, PU 22 LINK LED: In Mode 1, this pin indicates the status of the LINK.
The LED will be ON when Link is good. LINK/ACT LED: In Mode 2, this pin indicates trans mit and receive
activity in addition to the status of the Link. The LED will be ON when Link is good. It will blink when the transmitter or receiver is active.
Signal Name Type Pin # Description
RESET_N I, PU 23 RESET: Active Low input that initializes or re-initializes the
DP83848H. Asserting th is pin low for at least 1 µs will f orce a reset process to occur. All internal registers will re-initialize to their de­fault states as specified fo r each bit in the Register Blo ck sectio n. All strap options are re-initialized as well.
11 www.national.com
DP83848H
1.6 Strap Options
DP83848H uses many functional pins as strap options. The values of these pins are sampled during reset and used to strap the device into specific modes of operation. The strap option pin assignments are defined below. The functional pin name is indicated in parentheses.
A 2.2 k resistor should be used for pull-down or pull-up to change the default strap option. If the default option is required, then there is no need for external pull-up or pull down resistors. Since these pins may have alternate func­tions after reset is deasserted, they should not be con­nected directly to VCC or GND.
Signal Name Type Pin # Description
PHYAD0 (COL) PHYAD1 (RXD_0) PHYAD2 (RXD_1) PHYAD3 (RXD_2) PHYAD4 (RXD_3)
S, O, PU S, O, PD
35 36 37 38 39
PHY ADDRESS [4:0]: The DP83848H provides five PHY ad­dress pins, the state of w hi ch ar e la tch ed in to th e PH YCTR L reg ­ister at system Hardware-Reset.
The DP83848H supports PHY Address strapping values 0 (<00000>) through 31 (<11111 >). A PHY Address of 0 puts the part into the MII Isolate Mode. The MII isolate mod e must be se ­lected by strapping Phy Addres s 0; changing to Addres s 0 by reg­ister write will not p ut the Phy in the MII is olate mode. Plea se refer to section 2.3 for additional information.
PHYAD0 pin has weak internal pull-up resistor. PHYAD[4:1] pins have weak internal pull-down resistors.
AN0 (LED_LINK) S, O, PU 22 This input pin controls the advertised operating mode of the
DP83848H accordin g to the followin g table. The value on thi s pin is set by connecting it to GND (0) or V
CC
(1) through 2.2 kΩ resis-
tors. This pin should NEVER be connected directly to GND or
VCC.
The value set at this input is latched into the DP83848H at Hard­ware-Reset.
The float/pull-down status of this pin is latched into the Basic Mode Control Register and the Auto_Negotiation Advertisement Register during Hardware-Reset.
The default is 1 since this pin has an internal pull-up.
LED_CFG (CRS) S, O, PU 33 LED CONFIGURATION: This strapping option determines the
mode of operation of the LED pins . Default is Mode 1. Mode 1 and Mode 2 can be controlled via the s trap opti on. All m odes are con­figurable via register ac cess.
SeeTable 3 for LED Mode Selection.
MDIX_EN (RX_ER) S, O, PU 34 MDIX ENABLE: Default is to enable MDIX. This strapping option
disables Auto-MDIX. An external pull-down will disable Auto­MDIX mode.
AN0 Advertised Mode
0 10BASE-T Half-Duplex
100BASE-TX, Half-Duplex
1 10BASE-T, Half/Full-Duplex
100BASE-TX, Half/Full-Duplex
www.national.com 12
DP83848H
1.7 10 Mb/s and 100 Mb/s PMD Interface
1.8 Special Connections
1.9 Power Supply Pins
Signal Name Type Pin # Description
TD-, TD+ I/O 14, 15 Differential common driver transmit output (PMD Output Pair).
These differential outputs are automatically configured to either 10BASE-T or 100BASE-TX signaling.
In Auto-MDIX mode of operati on, this pair can be used as th e Re­ceive Input pair.
These pins require 3.3V bias for operation.
RD-, RD+ I/O 11, 12 Differential receive input (PMD Input Pair). These differential in-
puts are automatically configured to accept either 100BASE-TX or 10BASE-T signaling.
In Auto-MDIX mode of operation, this pair can be used as the Transmit Output pair.
These pins require 3.3V bias for operation.
Signal Name Type Pin # Description
RBIAS I 20 Bias Resist or Con nectio n. A 4 .87 kΩ 1% resistor should be con-
nected from RBIAS to GND.
PFBOUT O 19 Power Feedback Output. Parallel caps, 10µ F (Tantalum pre-
ferred) and 0.1µF, should be placed close to the PFBOUT. Con­nect this pin to PFBIN1 (pin 16) and PFBIN2 (pin 30). See Section 5.4 for proper placement pin.
PFBIN1 PFBIN2
I1630Power Feedback Input. These pins are fed with power from
PFBOUT pi n. A small capaci tor of 0.1µF should be connected close to each pin.
Note: Do not supply power to these pins other than from PFBOUT.
RESERVED I/O 8,9,10 RESERVED: These pins must be left unconnected.
Signal Name Pin # Description
IOVDD33 1, 26 I/O 3.3V Supply IOGND 40 I/O Ground DGND 29 Digital Ground AVDD33 18 Analog 3.3V Supply AGND 13, 17 Analog Ground
13 www.national.com
DP83848H
1.10 Package Pin Assignments
NSQAu040
Pin #
Pin Name
1IO_VDD 2TX_CLK 3 TX_EN 4TXD_0 5TXD_1 6TXD_2 7TXD_3 8 RESERVED
9 RESERVED 10 RESERVED 11 RD­12 RD+ 13 AGND 14 TD ­15 TD + 16 PFBIN1 17 AGND 18 AVDD33 19 PFBOUT 20 RBIAS 21 25MHz_OUT 22 LED_LINK/AN0 23 RESET_N 24 MDIO 25 MDC 26 IOVDD33 27 X2 28 X1 29 DGND 30 PFBIN2 31 RX_CLK 32 RX_DV 33 CRS/LED_CFG 34 RX_ER/MDIX_EN 35 COL/PHYAD0 36 RXD_0/PHYAD1 37 RXD_1/PHYAD2 38 RXD_2/PHYAD3 39 RXD_3/PHYAD4 40 IOGND
www.national.com 14
DP83848T
2.0 Configuration
This section include s infor mat ion on t he vari ous co nfigura ­tion options available with the DP83848H. The configura­tion options described below include:
— Auto-Negotiation — PHY Address and LED — Half Duplex vs. Full Duplex — Isolate mode — Loopback mode —BIST
2.1 Auto-Negotiation
The Auto-N egotiation fu nction provid es a mechanism for exchanging configuration information between two ends of a link segment and automatically selecting the highest performance mode of operation supported by both devices. Fast Link Pulse (FLP) Bursts provide the signal­ling used to communicate Auto-Negotiation abilities between two devices at each end of a link segment. For further detail regarding Auto-Negotiation, refer to Clause 28 of the IEEE 802.3u specification. The DP83848H sup­ports four different Ethernet protocols (10 Mb/s Half Duplex, 10 Mb/s Full Duplex, 100 Mb/s Half Duplex, and 100 Mb/s Full Duplex), so the inclusion of Auto-Negotia­tion ensures that the highest performance protocol will be selected based on the advertised ability of the Link Part­ner. The Auto-Negotiation function within the DP83848H can be controlled either by internal register access or by the use of the AN0 pin.
2.1.1 Auto-Negotiation Pin Control
The state of AN0 determine s the spe cif ic mode adverti se d by DP83848H as given in Table 1. The state of AN 0 , upo n power-up/reset, determines the state of bits [8:5] of the ANAR register.
The Auto-Negotiation function selected at power-up or reset can be changed at any time by writing to the Basic Mode Control Register (BMCR) at address 0x00h
2.1.2 Auto-Negotiation Register Control
When Auto-Negotiation is enabled, the DP83848H trans­mits the abilities programmed into the Auto-Negotiation Advertisement register (ANAR) at address 04h via FLP Bursts. Any combination of 10 Mb/s, 100 Mb/s, Half­Duplex, and Full Duplex modes may be selected.
Auto-Negotiation Priority Resolution: — (1) 100BASE-TX Full Duplex (Highest Priority)
— (2) 100BASE-TX Half Duplex — (3) 10BASE-T Full Duplex — (4) 10BASE-T Half Duplex (Lowest Priority) The Basic Mode Control Register (BMCR) at address 00h
provides control for enabling, disabling, and restarting the Auto-Negotiation process. When Auto-Negotiation is dis­abled, the Speed Selection bit in the BMCR controls switching between 10 Mb/s or 100 Mb/s operation, and the Duplex Mode bit controls switching between full duplex operation and half duplex operation. The Speed Selection and Duplex Mode bits have no effect on the mode of operation when the Auto-Negotiation Enable bit is set.
The Link Speed can be examined through the PHY Status Register (PHYSTS) at address 10h after a Link is achieved.
The Basic Mode Status Register (BMSR) indicates the set of available abilities for technology types, Auto-Negotia­tion ability, and Extended Register Capability. These bits are permanently set to indicate the full functionality of the DP83848H (only the 100BASE-T4 bit is not set since the DP83848H does not support that function).
The BMSR also provides status on: — Completion of Auto-Negotiation — Occurence of a remote fault as advertised by the Link
Partner — Establishment of a valid link — Support for Management Frame Preamble suppr ession The Auto-Negotiation Advertisement Register (ANAR)
indicates the Auto-Neg otia tio n ab ili ties to be advertised by the DP83848H. All available abilities are transmitted by default, but any ability can be s uppressed by writing to the ANAR. Updating the ANAR to suppress an ability is one way for a management ag en t to cha nge (restrict) the tech­nology that is used.
The Auto-Negotiation Link Partner Ability Register (ANLPAR) at address 05h is used to receive the base link code word as well as all next page code words during the negotiation. Furthermore, the ANLPAR will be updated to either 0081h or 0021h for parallel detection to either 100 Mb/s or 10 Mb/s respectively.
The Auto-Negotiation Expansion Register (ANER) indi­cates additional Auto-Negotiation status. The ANER pro­vides status on:
— Occurance of a Parallel Detect Fault — Next Page function support by the Link Partner — Next page support function by DP83848H — Reception of the current page that is exchanged by
Auto-Negotiation — Auto-Negotiation support by the Link Partner
Table 1. Auto-Negotiation Modes
AN0 Advertised Mode
0 10BASE-T Half-Duplex
100BASE-TX, Half-Duplex
1 10BASE-T, Half/Full-Duplex
100BASE-TX, Half/Full-Duplex
15 www.national.com
DP83848H
2.1.3 Auto-Negotiation Parall el Detection
The DP83848H supports the Parallel Detection function as defined in the IEEE 802.3u specifi ca tio n. Para lle l Detec tion requires both the 10 Mb/s and 100 Mb/s receivers to moni­tor the receive signal and report link status to the Auto­Negotiation function. Auto-Negotiation uses this informa­tion to configure th e correct t echno logy i n the e vent that th e Link Partner does not support Auto-Negotiation but is transmitting link signals that the 100BASE-TX or 10BASE­T PMAs recognize as valid link signa ls .
If the DP83848H completes Auto-Negotiation as a result of Parallel Detection, bit 5 or bit 7 within the ANLPAR register will be set to reflect the mode of operation present in the Link Partner. Note that bits 4:0 of the ANLPAR will also be set to 00001 based on a successful parallel detection to indicate a valid 802.3 selector field. Software may deter­mine that negotiation completed via Parallel Detection by reading a zero in the Link Partn er Au to-Neg oti ati on Ab le b it once the Auto-Negotiatio n Com pl ete b it i s s et. I f co nfi gure d for parallel detect mode and any condition other than a sin­gle good link occurs then the parallel detect fault bit will be set.
2.1.4 Auto-Negotiat ion Restart
Once Auto-Negotiation has completed, it may be restarted at any time by setting bit 9 (Res tart Auto-Ne gotiat ion) of th e BMCR to one. If the mode confi gured b y a su ccessfu l Auto­Negotiation loses a valid link, then the Auto-Negotiation process will resume and attempt to determine the configu­ration for the link. This function ensures that a valid config­uration is maintained if the cable becomes disconnected.
A renegotiation requ es t fro m any en tity, such as a manage­ment agent, will cause the DP83848H to halt any transmit data and link pulse activity until the break_link_timer expires (~1500 ms). Consequently, the Link Partner will go into link fail and normal Auto-Negotiation resumes. The DP83848H will resume Auto-Negotiation after the break_link_timer has expired by issuing FLP (Fast Link Pulse) bursts.
2.1.5 Enabling Auto-Negotiation via Software
It is important t o no te t hat if the DP83848H has be en initial­ized upon power-up as a non-auto-negotiating device (forced technology), and it is then requ ire d that Auto-Nego­tiation or re-Auto-Negotiation be initiated via software, bit 12 (Auto-Negotiation Enable) of the Basic Mode Control Register (BMCR) must first be cleared and then set for any Auto-Negotiation function to take effect.
2.1.6 Auto-Negotiation Complete Time
Parallel detection and Auto-Negotiation take approximately 2-3 seconds to co mp let e. In addition, Auto-Negotia tio n w i th next page should take approximately 2-3 seconds to com­plete, depending on the number of next pages sent.
Refer to Clause 28 of the IEEE 802.3u standard for a full description of the individual timers related to Auto-Negotia­tion.
2.2 Auto-MDIX
When enabled, this function utilizes Auto-Negotiation to determine the proper configuration for transmission and reception of data and subsequently selects the appropriate MDI pair for MD I/ MD IX o per a ti on. T h e fu nc t io n us es a r an ­dom seed to control switching of the crossover circuitry. This implementati on co mpl ie s with the corres po ndi ng IEEE
802.3 Auto-Negotiation and Crossover Specifications. Auto-MDIX is enabled by default and can be configu r ed vi a
strap or via PHYCR (0x19h) register, bits [15:14]. Neither Auto-Negotiation nor Auto-MDIX is required to be
enabled in forcing crossover of the MDI pairs. Forced crossover can be achieved through the FORCE_MDIX bit, bit 14 of PHYCR (0x19h) register.
Note: Auto-MDIX will not work in a forced mode of opera­tion.
www.national.com 16
DP83848T
2.3 PHY Address
The 5 PHY address inputs pins are shared with the RXD[3:0] pins and COL pin as shown below.
The DP83848 H can be set to res pond to an y of 32 po ssi­ble PHY addresses via strap pins. The information is latched into the PHYCR register (address 19h, bits [4:0]) at device power-up and hardware reset. The PHY Address pins are shared with the RXD and COL pins. Each DP83848H or port sharin g an MD I O bu s in a syst em must have a unique physical address.
The DP83848H support s PHY Address strapping values 0 (<00000>) through 31 (<11111>). S trapp in g PHY Ad dress 0 puts the p art into I solate Mode . It s hould al so be note d that selecting PHY Address 0 via an MDIO write to PHYCR will not put the device in Isolate Mode. See Section 2.3.1 for more information.
For further detail relating to the latch-in timing require­ments of the PHY Address pins, as well as the oth er hard ­ware configuration pins, refer to the Reset summary in Section 6.0.
Since the PHYAD[0] pin has weak internal pull-up resistor and PHYAD[4:1] pins have weak internal pull-down resis­tors, the default setting for the PHY address is 00001 (01h).
Refer to Figure 2 for an example of a PHYAD connection to external components. In this example, the PHYAD strapping results in address 00011 (03h).
2.3.1 MII Isolate Mode
The DP83848H can be put into MII Isolate mode by writ­ing to bit 10 of the BMCR register or by strapping in Phys­ical Address 0. It should be noted that selecting Physical Address 0 via an MDIO write to PHYCR will not put the device in the MII isolate mode.
When in the MII isolate mode, the DP83848H does not respond to packet dat a p resent a t TXD[3:0], T X_EN in put s and presents a high imp edanc e on the TX_C LK, RX_ CLK, RX_DV, RX_ER, RXD[3:0], COL, and CRS outputs. When in Isolate mode, the DP83848H will continue to respond to all management transactions.
While in Isolate mode, the PMD output pair will not trans­mit packet data but will continue to source 100BASE-TX scrambled idles or 10BASE-T normal link pulses.
The DP83848 H can Auto -Nego tiate or parall el dete ct to a specific technology depending on the receive signal at the PMD input pair. A valid link can be established for the receiver even when the DP83848H is in Isolate mode.
Table 2. PHY Address Mapping
Pin # PHYAD Function RXD Function
35 PHYAD0 COL 36 PHYAD1 RXD_0 37 PHYAD2 RXD_1 38 PHYAD3 RXD_2 39 PHYAD4 RXD_3
Figure 2. PHYAD Strapping Example
COL
RXD_0
RXD_1
RXD_2
RXD_3
VCC
2.2k
PHYAD0 = 1
PHYAD1 = 1
PHYAD2 = 0PHY AD3 = 0
PHYAD4= 0
17 www.national.com
DP83848H
2.4 LED Interface
The DP83848H supports a configurable Light Emitting Diode (LED) pin for configuring the link. The PHY Control Register (PHYCR) for the LED can also be selected through address 19h, bit [5].
See Table 3 for LED Mode selection.
The LED_LINK pin in Mode 1 indicates the link status of the port. In 100BASE-T mode, link is established as a result of input receive amplitude compliant with the TP­PMD specifications which will result in internal generation of signal detect. A 10 Mb/s Link is est abli shed as a result of the reception of at least seven consecutive normal Link Pulses or the reception of a valid 10BASE-T packet. This will cause the as se rtion of LED_LINK. L E D_LIN K w il l d ea s­sert in accordance with the Link Loss Timer as specified in the IEEE 802.3 specification.
The LED_LINK p in in Mo de 1 w ill be OF F w h en no LI NK is present.
The LED_LINK pin in Mode 2 will be ON to indicate Link is good and BLINK to indicate activity is present on either transmit or receive activity.
Since the LED_LINK pin is also used as a strap option, the polarity of the LED is dependent on whether the pin is pulled up or down.
2.4.1 LED
Since the Auto-Negotiation (AN0) strap option shares the LED_LINK output pin, the external components required for strapping and LED usage must be considered in order to avoid contention.
Specifically, when the LED output is used to drive the LED directly, the active state of the output driver is dependent on the logic level sampled by the AN0 input upon power­up/reset. For example, if the AN0 input is resistively pulled low then the corresponding output will be configured as an active high driver. Conversely, if the AN0 input is resistively pulled high, then the corresponding output will be config­ured as an active low driver.
Refer to Figure 3 for an example of AN0 connection to external components. In this example, the AN0 strapping results in Auto-Negotiation with 10/100 Half/Full-Duplex advertised.
The adaptive nature of the LED output helps to simplify potential implementation issues of this dual purpose pin..
2.4.2 LED Direct Control
The DP83848H provides another option to directly control thel LED output through the LED Direct Control Register (LEDCR), address 18h. The register does not provide read access to the LED.
Table 3. LED Mode Select
Mode LED_CFG[0]
(bit 5)
or (pin40)
LED_LINK
1 1 ON for Good Link
OFF for No Link
2 0 ON for Good Link
BLINK for Activity
LED_LINK
VCC
110
AN0 = 1
2.2k
Figure 3. AN0 Strapping and LED Loading Example
www.national.com 18
DP83848T
2.5 Half Duplex vs. Full Duplex
The DP83848H supports both half and full duplex opera­tion at both 10 Mb/s and 100 Mb/s speeds.
Half-duplex relies on th e CSMA/CD pro tocol to handle col­lisions and network access. In Half-Duplex mode, CRS responds to both transmit and receive activity in order to maintain compliance with the IEEE 802.3 specification.
Since the DP83848H is designed to support simultaneous transmit and receive ac tivity it is cap abl e of sup porting full­duplex switched applications with a throughput of up to 200 Mb/s per port when operating in 100BASE-TX mode. Because the CSMA/CD protocol does not apply to full­duplex operation, the DP83848H disables its own internal collision sensing and reporting functions and modifies the behavior of Carrier Sense (CRS) such that it indicates only receive activity. This allows a full-duplex capable MAC to operate properly.
All modes of operation (100BASE-TX and 10BASE- T) ca n run either half-duplex or full-duplex. Additionally, other than CRS and Collision rep orti ng, al l rem ai nin g MII signal­ing remains the same regardless of the selected duplex mode.
It is important to understand that while Auto-Negotiation with the use of Fast Link Pulse code words can interpret and configure to full-duplex operation, parallel detection can not recognize the difference between full and half­duplex from a fixed 10 Mb/s or 100 Mb/s link partner over twisted pair. As specif ied in the 802.3u specification , if a far-end link partner is configured to a forced full duplex 100BASE-TX ability, the parallel detection state machine in the partner would be unable to detect the full duplex capability of the far-end link partner. This link segment would negotiate to a half duplex 100BASE-TX configura­tion (same scenario for 10 Mb/s).
2.6 Internal Loopback
The DP83848H includes a Loopback Test mode for facili­tating system diagnostics. The Loopback mode is selected through bit 14 (Loopback) of the Basic Mode Control Register (BMCR). Writing 1 to this bit enables MII transmit data to be routed to the MII receive outputs. Loopback status may be checked in bit 3 of the PHY Sta­tus Register (PHYSTS). While in Loop bac k m ode the data will not be transmitted onto the media. To ensure that the
desired operating mode is maintained, Auto-Negotiation should be disabled before selecting the Loopback mode.
2.7 BIST
The DP83848H incorporates an internal Built-in Self Test (BIST) circuit to accommodate in-circuit testing or diag­nostics. The BIST circuit can be utilized to test the integ­rity of the transmit and receive data paths. BIST testing can be performed with the part in the internal loopback mode or externally looped back using a loopback cable fixture.
The BIST is implemented with independent transmit and receive paths, with the transmit block generating a contin­uous stream of a pseudo ran dom seq uen ce . The us er ca n select a 9 bit or 15 bit pseudo random sequence from the PSR_15 bit in the PHY Control Register (PHYCR). The received data is compared to the generated pseudo-ran­dom data by the BIST Linear Feedback Shift Register (LFSR) to determine the BIST pass/fail status.
The pass/fail status of the BIST is stored in the BIST sta­tus bit in the PHYCR register. The status bit defaults to 0 (BIST fail) and will transition on a successful comparison. If an error (mis-compare) occurs, the status bit is latched and is cleared upon a subsequent write to the Start/Stop bit.
For transmit VOD testing, the Packet BIST Continuous Mode can be used to allow continuous data transmission, setting BIST_CONT_MODE, bit 5, of CDCTRL1 (0x1Bh).
The number of BIST errors can be monitored through the BIST Error Count in the CDCTRL1 (0x1Bh), bits [15:8].
19 www.national.com
DP83848H
3.0 Functional Description
The DP83848H supports MII mode of operation using the MII interface pins. The MII mode uses 25 MHz clock.
In the MII mode, the IEEE 802.3 serial management inter­face is operational for device configuration and status. The serial management interface of the MII allows for the con­figuration and control of multiple PHY devices, gathering of status, error information, and the determination of the type and capabilities of the attached PHY(s).
3.1 MII Interface
The DP83848H incorporates the Media Independent Inter­face (MII) as specified in Clause 22 of the IEEE 802.3u standard. This interface may be used to connect PHY devices to a MAC in 10/100 Mb/s systems. This section describes the nibble wide MII data interface.
The nibble wide MII data interface c ons is t s of a receive bus and a transmit bus each with control signals to facilitate data transfer between the PHY and the upper layer (MAC).
3.1.1 Nibble-wide MII Data Interface
Clause 22 of the IEEE 802.3u specification defines the Media Independent Interface. This interface includes a dedicated recei ve bu s an d a d edicated transmit b us . These two data buses, along with various control and status sig­nals, allow for the simultaneous exchange of data between the DP83848H and the upper layer agent (MAC).
The receive interface consists of a nibble wide data bus RXD[3:0], a receive error signal RX_ER, a receive data valid flag RX_DV, and a receive clock RX_CLK for syn­chronous transfer of the data. The receive clock operates at either 2.5 MHz to su pport 10 Mb/s operation mo des or at 25 MHz to support 100 Mb/s operational modes.
The transmit interface consists of a nibble wide data bus TXD[3:0], a transmit enable control signal TX_EN, and a transmit cloc k TX_CL K which runs at ei ther 2. 5 MHz or 25 MHz.
Additionally, the MII includes the carrier sense signal CRS, as well as a collision detect signal COL. The CRS signal asserts to ind icate the re ception of d ata from the ne twork or as a function of transmit data in Half Duplex mode. The COL signal asse rt s as an ind ic atio n of a collision which can occur during half-duplex operation when both a transmit and receive operation occur simultaneously.
3.1.2 Collision Detect
For Half Duplex, a 10BASE-T or 100BASE-TX collision is detected when the receive and transmit channels are active simu ltaneously. Collisions are reported by the COL signal on the MII.
If the DP83848H is transmitting in 10 Mb/s mode when a collision is dete ct ed, the c ollision is not repo rted un til s eve n bits have been received while in the collision state. This prevents a collision being reported incorrectly due to noise on the network. The COL signal remains set for the dura­tion of the collision.
If a collision occ urs du ring a rec eiv e o pera tio n, it is immedi­ately reported by the COL signal.
When heartbeat is enabled (only applicable to 10 Mb/s operation), approximately 1µs after the transmission of each packet, a Si gn al Q u ali ty Error (SQE) signal of approx ­imately 10 bit times is generated (internally) to indicate successful transmiss io n. SQ E is repo rted as a pul se on th e COL signal of the MII.
3.1.3 Carrier Sense
Carrier Sense (CRS) is asserted due to receive activity, once valid data is detected via the squelch function during 10 Mb/s operation. During 100 Mb/s operation CRS is asserted when a valid link (SD) and two non-contiguous zeros are detected on the line.
For 10 or 100 Mb/s Half Duple x op era tio n, C RS is a sserte d during either packet trans mission or re ception.
For 10 or 100 Mb/s Full Duplex operation, CRS is asserted only due to receive activity.
CRS is deasserted following an end of packet.
3.2 802.3u MII Serial Management Interface
3.2.1 Serial Management Register Access
The serial management MII specification defines a set of thirty-two 16-bit status and control registers that are acces­sible through the management interface pins MDC and MDIO. The DP83848H implements all the required MII reg­isters as well as several optional registers. These registers are fully described in Sect ion 7.0. A description of the serial management access protocol follows.
3.2.2 Serial Management Access Protocol
The serial control interface consists of two pins, Manage­ment Data Clock (MDC) and Management Data Input/Out­put (MDIO). MDC has a maximum clock rate of 25 MHz and no minimum rate. The MDIO line is bi-directional and may be shared by up to 32 devices. The MDIO frame for­mat is shown below in Table 4.
The MDIO pin requires a pull-up resistor (1.5 k) which, during IDLE and turnaro und, will pull M DIO hi gh. In o rder to initialize the MDIO int erface , the st atio n manag ement entit y sends a sequence of 32 contiguous logic ones on MDIO to provide the DP83848H with a sequence that can be used to establish sy nchr oniz ati on. Th is pr eamb le may be gene r­ated either by driving MDIO high for 32 consecutive MDC clock cycles, or by simply allowing the MDIO pull-up resis­tor to pull the MDIO pin high during which time 32 MDC clock cycles are provided. In addition, 32 MDC clock cycles should be used to re-sync the device if an invalid start, opcode, or turnaround bit is detected.
The DP83848H waits until it has received this preamble sequence before responding to any other transaction. Once the DP83848H serial management port has been ini­tialized no further preamble sequencing is required until after a power-on/reset, invalid Start, invalid Opcode, or invalid turnaround bit has occurred.
The St art co de is in dic ate d by a <01> p atte rn. Th is assures the MDIO line transitions from the default idle line state.
www.national.com 20
DP83848T
Turnaround is defined as an idle bit time inserted between the Register Address field and the Data field. To avoid contention during a read transaction, no device shall actively drive the MDIO signal during the first bit of Turn­around. The addressed DP83848H drives the MDIO with a zero for the second bit of turnaround and follows this with the required data. Figure 4 shows the timing relation­ship between MDC and the MDIO as driven/received by the Station (STA) and the DP83848H (PHY) for a typical register read access.
For write transactions, the station management entity writes data to the addressed DP83848H thus eliminating the requirement for MDIO Turnaround. The Turnaround time is filled by the management entity by inserting <10>. Figure 5 shows the timing relationship for a typical MII register write access.
3.2.3 Serial Management Preamble Suppression
The DP83848H supports a Preamble S uppression mode as indicated by a one in bit 6 of the Basic Mode Status Register (BMSR, addre ss 01 h.) If the station mana gem en t entity (i.e. MAC or other management controller) deter­mines that all PHYs in the system support Preamble Sup­pression by returning a one in this bit, then the station management entity need not generate preamble for each management transaction.
The DP83848H requires a single initializa tion sequence of 32 bits of preamble following hardware/software reset. This requirement is generally met by the mandatory pull­up resistor on MDIO in conjunction with a continuous MDC, or the management access made to determine whether Preamble Suppression is supported.
While the DP83848H requires an initial preamble sequence of 32 bits for management initialization, it does not require a full 32-bit sequence between each subse­quent transaction. A minimum of one idle bit between management transactions is required as specified in the IEEE 802.3u specification.
Table 4. Typical MDIO Frame Format
MII Management
Serial Protocol
<idle><start><op code><device addr><reg addr><turnaround><data><idle>
Read Operation <idle><01><10><AAAAA><RRRRR><Z0><xxxx xxxx xxxx xxxx><idle> Write Operation <idle><01><01><AAAAA><RRRRR><10><xxxx xxxx xxxx xxxx><idle>
Figure 4. Typical MDC/MDIO Read Operation
Figure 5. Typical MDC/MDIO Write Operation
MDC
MDIO
00011 110000000
(STA)
Idle Start
Opcode
(Read)
PHY Address
(PHYAD = 0Ch)
Register Address
(00h = BMCR)
TA
Register Data
Z
MDIO
(PHY)
Z
Z
Z
0 0 011000100000000
Z
Idle
Z
Z
MDC
MDIO
00011110000000
(STA)
Idle Start
Opcode
(Write)
PHY Address
(PHYAD = 0Ch)
Register Address
(00h = BMCR)
TA
Register Data
Z
0 0 0 000 00000000
Z
Idle
1000
ZZ
21 www.national.com
DP83848H
4.0 Architecture
This section describes the operations within each trans­ceiver module, 100BASE-TX and 10BASE-T. Each opera­tion consists of several functional blocks and described in the following:
— 100BASE-TX Transmitter — 100BASE-TX Receiver — 10BASE-T Transceiver Module
4.1 100BASE-TX TRANSMITTER
The 100BASE-TX transmitter consists of several functional blocks which conver t sync hronous 4-bit ni bble d at a, as p ro­vided by the MII, to a scrambled MLT-3 125 Mb/s serial data stream. Because the 100BASE-TX TP-PMD is inte­grated, the differential output pins, PMD Output Pair, can be directly routed to the magnetics.
The block diagram in Figure 6. provides an overview of each functional block within the 100BASE-TX transmit sec­tion.
The Transmitter section consists of the following functional blocks:
— Code-group Encoder and Injection block — Scrambler block (bypass option) — NRZ to NRZI encoder block — Binary to MLT-3 converter / Common Driver The bypass option for the functional blocks within the
100BASE-TX transmitter provides flexibility for applications where data conversion is not always required. The DP83848H implements the 100BASE-TX transmit state machine diagram as specified in the IEEE 802.3u Stan­dard, Clause 24.
Figure 6. 100BASE-TX Transmit Block Diagram
4B5B CODE-GROUP
ENCODER &
INJECTOR
SCRAMBLER
NRZ TO NRZI
ENCODER
5B PARALLEL
TO SERIAL
PMD OUTPUT PAIR
TX_CLK
TXD[3:0] /
TX_EN
BINARY TO
MLT-3 /
COMMON
DRIVER
125MHZ CLOCK
BP_SCR
MUX
100BASE-TX
LOOPBACK
MLT[1:0]
DIVIDE
BY 5
www.national.com 22
DP83848T
Table 5. 4B5B Code-Group Encoding/Decoding
DATA CODES
0 11110 0000 1 01001 0001 2 10100 0010 3 10101 0011 4 01010 0100 5 01011 0101 6 01110 0110 7 01111 0111 8 10010 1000
9 10011 1001 A 10110 1010 B 10111 1011 C 11010 1100 D 11011 1101 E 11100 1110 F 11101 1111
IDLE AND CONTROL CODES
H 00100 HALT code-group - Error code
I 11111 Inter-Packet IDLE - 0000 (
Note 1)
J 11000 First Start of Packet - 0101 (Note 1) K 10001 Second Start of Packet - 0101 (Note 1) T 01101 First End of Packet - 0000 (Note 1) R 00111 Second End of Packet - 0000 (Note 1)
INVALID CODES
V 00000 V 00001 V 00010 V 00011 V 00101 V 00110 V 01000 V 01100
Note: Control code-groups I, J, K, T and R in data fields will be mapped as invalid codes, together with RX_ER as­serted.
Loading...
+ 50 hidden pages