NSC DP83848CVV, DP83848C Datasheet

© 2007 National Semiconductor Corporation www.national.com
1
DP83848C PHYTER
®
— Commercial Temperature Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver
Febuary 2007
DP83848C PHYTER® - Commercial Temperature
Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver
General Description
The DP83848C is a robust fully featured 10/100 single port Physical Layer device offering low power con­sumption, including several intelligent power down states. These low power modes increase overall prod­uct reliability due to decre ased powe r dissi pat ion. Sup­porting multiple intelligent power modes allows the application to use the absolute minimum amount of power needed for operation.
The DP83848C includes a 25MHz clock out. This means that the application can be designed with a minimum of external parts, which in turn results in the lowest possible total cost of the solution.
The DP83848C easily interfaces to twisted pair media via an external transformer. Both MII and RMII are supported ensuring ease and flexibility of design.
The DP83848C features integrated sublayers to sup­port both 10BASE-T and 100BASE-TX Ethernet pro to­cols, which ensures compatibility and interoperability with all other standards based Ethernet solutions.
The DP83848C is offered in a small form factor (48 pi n LQFP) so that a minimum of board space is needed.
Applications
High End Peripheral Devices
Industrial Controls and Factory Automation
General Embedded Applications
System Diagram
PHYTER® is a registered trademark of National Semiconductor.
Status
10BASE-T
or
100BASE-TX
MII/RMII/SNI
25 MHz
Magnetics
RJ-45
Clock
LEDs
DP83848C
10/100 Mb/s
Media Access Controller
MPU/CPU
Source
Typical Application
Features
Low-power 3.3V, 0.18µm CMOS technology
Low power consumption < 270mW Typical
3.3V MAC Interface
Auto-MDIX for 10/100 Mb/s
Energy Detection Mode
25 MHz clock out
SNI Interface (configurable)
RMII Rev. 1.2 Interface (configurable)
MII Serial Management Interface (MDC and MDIO)
IEEE 802.3u MII
IEEE 802.3u Auto-Negotiation and Parallel Detection
IEEE 802.3u ENDEC, 10BASE-T transceivers and filters
IEEE 802.3u PCS, 100BASE-TX transceivers and filters
Integrated ANSI X3.263 compliant TP-PMD physical sub-
layer with adaptive equalization and Baseline Wander com­pensation
Error-free Operation up to 137 meters
Programmable LED support Link, 10 /100 Mb/s Mode, Activ-
ity, and Collision Detect
Single register access for complete PHY status
10/100 Mb/s packet BIST (Built in Self Test)
48-pin LQFP package (7mm) x (7mm)
2 www.national.com
DP83848C
SERIAL
MANAGEMENT
TX_CLK
TXD[3:0]
TX_EN
MDIO
MDC
COL
CRS/CRS_DV
RX_ER
RX_DV
RXD[3:0]
RX_CLK
Auto-Negotiation
State Machine
Clock
RX_DATA
RX_CLK
TX_DATA TX_CLK
REFERENCE CLOCK
TD±
RD±
LEDS
Generation
MII/RMII/SNI INTERFACES
Figure 1. DP83848C Functional Block Diagram
MII
Registers
Transmit Block
10BASE-T & 100BASE-TX
10BASE-T & 100BASE-TX
Receive Block
Auto-MDIX
DAC
ADC
LED
Drivers
MII/RMII/SNI
3 www.national.com
DP83848C
Table of Contents
1.0 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.2 MAC Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.3 Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.4 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.5 Reset and Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.6 Strap Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.7 10 Mb/s and 100 Mb/s PMD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.8 Special Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.9 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.10 Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 Auto-Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.1.1 Auto-Negotiation Pin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Auto-Negotiation Register Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Auto-Negotiation Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Auto-Negotiation Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Enabling Auto-Negotiation via Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.6 Auto-Negotiation Complete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Auto-MDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.3 PHY Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.3.1 MII Isolate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.4.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 LED Direct Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Half Duplex vs. Full Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.6 Internal Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.7 BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.0 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 MII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.1.1 Nibble-wide MII Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Collision Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Reduced MII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.3 10 Mb Serial Network Interface (SNI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.4 802.3u MII Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.4.1 Serial Management Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Serial Management Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Serial Management Preamble Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.0 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 100BASE-TX TRANSMITTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
4.1.1 Code-group Encoding and Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Scrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 NRZ to NRZI Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 Binary to MLT-3 Convertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 100BASE-TX RECEIVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
4.2.1 Analog Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Digital Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2.1 Digital Adaptive Equalization and Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2.2 Base Line Wander Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Signal Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 MLT-3 to NRZI Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.5 NRZI to NRZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.6 Serial to Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.7 Descrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.8 Code-group Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 www.national.com
DP83848C
4.2.9 4B/5B Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.10 100BASE-TX Link Integrity Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.11 Bad SSD Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 10BASE-T TRANSCEIVER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
4.3.1 Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Smart Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Collision Detection and SQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.5 Normal Link Pulse Detection/Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.6 Jabber Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.7 Automatic Link Polarity Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.8 Transmit and Receive Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.9 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.10 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.0 Design Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 TPI Network Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
5.2 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
5.3 Clock In (X1) Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
5.4 Power Feedback Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
5.5 Power Down/Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
5.5.1 Power Down Control Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5.2 Interrupt Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 Energy Detect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
6.0 Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
6.2 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
7.0 Register Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
7.1.1 Basic Mode Control Register (BMCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.2 Basic Mode Status Register (BMSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.3 PHY Identifier Register #1 (PHYIDR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.1.4 PHY Identifier Register #2 (PHYIDR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.1.5 Auto-Negotiation Advertisement Register (ANAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.1.6 Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page) . . . . . . . . . . . . . . . . 46
7.1.7 Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page) . . . . . . . . . . . . . . . . . 47
7.1.8 Auto-Negotiate Expansion Register (ANER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.1.9 Auto-Negotiation Next Page Transmit Register (ANNPTR) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 Extended Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
7.2.1 PHY Status Register (PHYSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.2 MII Interrupt Control Register (MICR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.3 MII Interrupt Status and Misc. Control Register (MISR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.4 False Carrier Sense Counter Register (FCSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.5 Receiver Error Counter Register (RECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.6 100 Mb/s PCS Configuration and Status Register (PCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.7 RMII and Bypass Register (RBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2.8 LED Direct Control Register (LEDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2.9 PHY Control Register (PHYCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2.10 10Base-T Status/Control Register (10BTSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.11 CD Test and BIST Extensions Register (CDCTRL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.12 Energy Detect Control (EDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.0 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.1 DC Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
8.2 AC Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
8.2.1 Power Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2.2 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2.3 MII Serial Management Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.4 100 Mb/s MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.5 100 Mb/s MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2.6 100BASE-TX Transmit Packet Latency Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2.7 100BASE-TX Transmit Packet Deassertion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5 www.national.com
DP83848C
8.2.8 100BASE-TX Transmit Timing (tR/F & Jitter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2.9 100BASE-TX Receive Packet Latency Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.10 100BASE-TX Receive Packet Deassertion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.11 10 Mb/s MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2.12 10 Mb/s MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2.13 10 Mb/s Serial Mode Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2.14 10 Mb/s Serial Mode Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2.15 10BASE-T Transmit Timing (Start of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2.16 10BASE-T Transmit Timing (End of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2.17 10BASE-T Receive Timing (Start of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2.18 10BASE-T Receive Timing (End of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2.19 10 Mb/s Heartbeat Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2.20 10 Mb/s Jabber Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2.21 10BASE-T Normal Link Pulse Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2.22 Auto-Negotiation Fast Link Pulse (FLP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2.23 100BASE-TX Signal Detect Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.24 100 Mb/s Internal Loopback Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.25 10 Mb/s Internal Loopback Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2.26 RMII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2.27 RMII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2.28 Isolation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.2.29 25 MHz_OUT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.0 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6 www.national.com
DP83848C
List of Figures
Figure 1. DP83848C Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2. PHYAD Strapping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3. AN Strapping and LED Loading Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 4. Typical MDC/MDIO Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 5. Typical MDC/MDIO Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 6. 100BASE-TX Transmit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 7. 100BASE-TX Receive Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. EIA/TIA Attenuation vs. Frequency for 0, 50, 100, 130 & 150 meters of CAT 5 cable . . . . . . . . . . . 2 8
Figure 9. 100BASE-TX BLW Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 10. 10BASE-T Twisted Pair Smart Squelch Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 11. 10/100 Mb/s Twisted Pair Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 12. Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 13. Power Feeback Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 www.national.com
DP83848C
List of Tables
Table 1. Auto-Negotiation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 2. PHY Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 3. LED Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 4. Supported packet sizes at +/-50ppm +/-100ppm for each clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 5. Typical MDIO Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Table 5. 4B5B Code-Group Encoding/Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 6. 25 MHz Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 7. 50 MHz Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 8. 25 MHz Crystal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 9. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 10. Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 11. Basic Mode Control Register (BMCR), address 0x00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 12. Basic Mode Status Register (BMSR), address 0x01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Table 13. PHY Identifier Register #1 (PHYIDR1), address 0x02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 14. PHY Identifier Register #2 (PHYIDR2), address 0x03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 15. Negotiation Advertisement Register (ANAR), address 0x04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 16. Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page), address 0x05 . . . . . . . .46
Table 17. Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page), address 0x05 . . . . . . . . .47
Table 18. Auto-Negotiate Expansion Register (ANER), address 0x06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 19. Auto-Negotiation Next Page Transmit Register (ANNPTR), address 0x07 . . . . . . . . . . . . . . . . . . .48
Table 20. PHY Status Register (PHYSTS), address 0x10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 21. MII Interrupt Control Register (MICR), address 0x11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Table 22. MII Interrupt Status and Misc. Control Register (MISR), address 0x12 . . . . . . . . . . . . . . . . . . . . . .52
Table 23. False Carrier Sense Counter Register (FCSCR), address 0x14 . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Table 24. Receiver Error Counter Register (RECR), address 0x15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Table 25. 100 Mb/s PCS Configuration and Status Register (PCSR), address 0x16 . . . . . . . . . . . . . . . . . . . .54
Table 26. RMII and Bypass Register (RBR), addresses 0x17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 27. LED Direct Control Register (LEDCR), address 0x18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 28. PHY Control Register (PHYCR), address 0x19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table 29. 10Base-T Status/Control Register (10BTSCR), address 0x1A . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Table 30. CD Test and BIST Extensions Register (CDCTRL1), address 0x1B . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 31. Energy Detect Control (EDCR), address 0x1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
8 www.national.com
DP83848C
Pin Layout
Top View
NS Package Number VBH48A
DGND
IOGNDX1X2
IOVDD33
MDC
MDIO
RESET_N
LED_LINK/AN0
LED_SPEED/AN1
LED_ACT/COL/AN_EN
25MHz_OUT
RBIAS PFBOUT AVDD33 RESERVED RESERVED AGND PFBIN1 TD + TD ­AGND RD + RD -
TX_CLK
TX_EN
TXD_0
TXD_1
TXD_2
TXD_3/SNI_MODE
PWR_DOWN/INT
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
DP83848C
1
2
3
4
5
6
7
8
9
10
11
38 39
40 41
42 43
44 45
46
47 48
35
34
33
32
313029
28
272625
23
22 21
20 19
18 17 16 15 14
13
o
PFBIN2
RX_CLK
RX_DV/MII_MODE
CRS/CRS_DV/LED_CFG
RX_ER/MDIX_EN
COL/PHYAD0 RXD_0/PHYAD1 RXD_1/PHYAD2 RXD_2/PHYAD3 RXD_3/PHYAD4
IOGND
IOVDD33
24
37
36
12
9 www.national.com
DP83848C
1.0 Pin Descriptions
The DP83848C pins are classified into the following inter­face categories (each interface is described in the sections that follow):
— Serial Management Interface — MAC Data Interface — Clock Interface — LED Interface — Reset and Power Down — Strap Options — 10/100 Mb/s PMD Interface — Special Connect Pins — Power and Ground pins Note: Strapping pin opti on. Please see Section 1.6 for strap
definitions.
All DP83848C signal pins are I/O cells regardless of the particular use. The defi nition s below defi ne the func tiona lit y of the I/O cells for each pin.
1.1 Serial Management Interface
1.2 MAC Data Interface
Type: I Input Type: O Output Type: I/O Input/Output Type OD Open Drain Type: PD,PU Internal Pulldown/Pullup Type: S Strapping Pin (All strap pins have weak in-
ternal pu ll-ups or pull- downs. If the default strap value is needed to b e changed then an external 2.2 k resistor should be used. Please see
Section 1.6 for details.)
Signal Name Type Pin # Description
MDC I 31 MANAGEMENT DATA CLOCK: Synchronous clock to the M DIO
management data input/output serial interface which may be asynchronous to transmit and receive clocks. The maximum clock rate is 25 MHz with no minimum clock rate.
MDIO I/O 30 MANAGEMENT DATA I/O: Bi-directional management instruc-
tion/data signal th at may be s ourc ed by th e st atio n m ana gem en t entity or the PHY. This pin requires a 1.5 k pullup resistor.
Signal Name Type Pin # Description
TX_CLK O 1 MII TRANSMIT CLOCK: 25 MHz Transmit clock output in 100
Mb/s mode or 2.5 MHz in 10 Mb/s mode de rived from t he 25 MHz reference clock.
Unused in RMII mode. Th e device uses the X1 reference clock in ­put as the 50 MHz reference for both transmit and receive.
SNI TRANSMIT CLOCK: 10 MHz Transmit clock ou tput in 10 Mb SNI mode. The MAC should source T X_EN and TXD_0 using this clock.
TX_EN I, PD 2 MII TRANSMIT ENABLE: Active high input indicates the pres-
ence of valid data inputs on TXD[3:0]. RMII TRANSMIT ENABLE: Active high input indicates the pres-
ence of valid data on TXD[1:0]. SNI TRANSMIT ENABLE: Active high input indi cates the pr es-
ence of valid data on TXD_0. TXD_0 TXD_1 TXD_2
TXD_3
I
S, I, PD
3 4 5 6
MII TRANSMIT DATA: Transmit da ta MII input pin s, TXD[3:0],
that accept data sync hronous to the TX_CL K (2.5 MHz in 10 Mb/s
mode or 25 MHz in 100 Mb/s mode).
RMII TRANSMIT DATA: Transmit data RMII input pins, TXD[1:0],
that accept data synchronous to the 50 MHz reference clock.
SNI TRANSMIT DATA: Transmit data SNI input pin, TXD_0, that
accept data synchro nous to the TX_C LK (10 MHz in 10 M b/s SNI
mode).
10 www.national.com
DP83848C
RX_CLK O 38 MII RECEIVE CLOCK: Provides the 25 MHz recovere d receive
clocks for 100 Mb/s mode and 2.5 MHz for 10 Mb/s mode.
Unused in RMII mode. Th e device uses the X1 reference clock in -
put as the 50 MHz reference for both transmit and receive.
SNI RECEIVE CLOCK: Provides the 10 MHz recovered receive
clocks for 10 Mb/s SNI mode. RX_DV S, O, PD 39 MII RECEIVE DATA VALID: Asserted high to indicat e tha t vali d
data is present on the corresponding RXD[3:0]. MII mode by de
-
fault with internal pulldown.
RMII Synchronous Receive Data Valid: This signal provides the
RMII Receive Data Val id indicatio n independen t of Carrier Sen se.
This pin is not used in SNI mode. RX_ER S, O, PU 41 MII RECEIVE ERROR: Asserted high synchronously to RX _CLK
to indicate that an invalid symbol has been detected within a re
-
ceived packet in 100 Mb/s mode.
RMII RECEIVE ERROR: Assert high synchronously to X1 when-
ever it detect s a media err or and RXDV is asserte d in 100 Mb/s
mode.
This pin is not required to be used by a MAC, in either MII or RMII
mode, since the Phy is required to corru pt data on a receive error .
This pin is not used in SNI mode. RXD_0
RXD_1 RXD_2 RXD_3
S, O, PD 43
44 45 46
MII RECEIVE DATA: Nibble wide receiv e data signals d riven syn-
chronously to the RX_CL K , 25 MH z for 1 00 M b/s mod e, 2. 5 MHz
for 10 Mb/s mode). RXD[3:0] signals contain valid data when
RX_DV is asserted.
RMII RECEIVE DATA: 2-bits receive data signals, RXD[1: 0], driv-
en synchronously to the X1 clock, 50 MHz.
SNI RECEIVE DATA: Receive data signal, RXD_0, driven syn-
chronously to the R X_CLK. RXD_0 con tains valid data when CRS
is asserted. RXD[3:1] are not used in this mode. CRS/CRS_DV S, O, PU 40 MII CARRIER SENSE: Asserted high to indicate the receive me-
dium is non-idle.
RMII CARRIER SENSE/RECEIVE DATA VALID: This signal
combines the RMII Carrier and Receive Data Valid indications.
For a detailed description of this signal, see the RMII Specifica
-
tion.
SNI CARRIER SENSE: Asserted high to indi cate the rece ive me -
dium is non-idle. It is used to frame valid receive data on the
RXD_0 signal. COL S, O, PU 42 MII COLLISION DETECT: Asserted high to indicate detecti on of
a collision condition (simultaneous transmit and receive activity)
in 10 Mb/s and 100 Mb/s Half Duplex Modes.
While in 10BASE-T Half Duplex mode w ith heartbeat enabled this
pin is also asserted for a duration of approximately 1µs at the end
of transmission to indicate heartbeat (SQE test).
In Full Duplex Mode, for 10 Mb/s or 100 Mb/s operation, this sig-
nal is always logic 0. There is no heartbeat function during 10
Mb/s full duplex operation.
RMII COLLISION DETECT: Per the RMII Specification, no COL
signal is required. The MAC will recover CRS from the CRS_DV
signal and use that along with its TX_EN signal to determine col
-
lision.
SNI COLLISION DETECT: Asserted high to indic ate detec tion of
a collision condition (simultaneous transmit and receive activity)
in 10 Mb/s SNI mode.
Signal Name Type Pin # Description
11 www.national.com
DP83848C
1.3 Clock Interface
1.4 LED Interface
See Table 3 for LED Mode Selection.
Signal Name Type Pin # Description
X1 I 34 CRYSTAL/OSCILLATOR INPUT: This pin is the primary clock
reference input fo r the DP83848C and must be co nnected to a 25
MHz 0.005% (
+50 ppm) clock source. The DP83848C supports either an external crys tal resonator connecte d across pins X1 and X2, or an external CMOS -level oscil lator sourc e connec ted to pin X1 only.
RMII REFERENCE CLOCK: This pin is the primary clock refer­ence input for the RMII mode and mu st be connected to a 50 MHz
0.005% (
+50 ppm) CMOS-level oscillator source.
X2 O 33 CRYSTAL OUTPUT: This pin is the primary clock reference out-
put to connect to an external 25 MHz crystal resonator device. This pin must be le ft unconnected if an external CMOS osc illator clock source is used.
25MHz_OUT O 25 25 MHz CLOCK OUTPUT:
In MII mode, this pin provides a 25 MHz clock output to the sys­tem.
In RMII mode, this pin prov ides a 50 MHz cloc k outpu t to the sys ­tem.
This allows other devices to use the reference clock from the DP83848C without requiring additional clock sources.
Signal Name Type Pin # Description
LED_LINK S, O, PU 28 LINK LED: In Mode 1, this pin indicates the status of the LINK.
The LED will be ON when Link is good. LINK/ACT LED: In Mode 2 and Mode 3, this pi n indicates tra nsmit
and receive activity in addition to the status of the Link. The LED will be ON when Link is good. It will blink when the transmitter or receiver is active.
LED_SPEED S, O, PU 27 SPEED LED: The LED is ON when dev ice is in 100 Mb/s and OFF
when in 10 Mb/s. F unctionality of this LED is independ ent of mode selected.
LED_ACT/COL S, O, PU 26 ACTIVITY LED: In Mode 1, th is pin is th e Activit y LED whic h is
ON when activity is present on either Transmit or Receive. COLLISION/DUPLEX LED: In Mode 2, this pin by default indi-
cates Collision detection. For Mode 3, this LED output may be programmed to indicate Full-duplex status instead of Collision.
12 www.national.com
DP83848C
1.5 Reset a nd Power Down
1.6 Strap Options
The DP83848C uses many of the functional pins as strap options. The values of these pins are sampled during reset and used to strap the device into specific modes of opera
­tion. The strap option pin assignments are defined below. The functional pin name is indicated in parentheses.
A 2.2 k resistor should be used for pull-down or pull-up to change the default strap option. If the default option is required, then there is no need for external pull-up or pull down resistors. Since these pins may have alternate func
­tions after reset is deasserted, they should not be con­nected directly to VCC or GND.
Signal Name Type Pin # Description
RESET_N I, PU 29 RESET: Active Low input that initializes or re-initializes the
DP83848C. Asserting this pin low for at least 1 µs will force a reset process to occur. All internal registers will re-initialize to their de
­fault states as spe ci fie d for each bit in the Register Bl oc k section. All strap options are re-initialized as well.
PWR_DOWN/INT I, OD, PU 7 See Section 5.5 for detailed description.
The default function of this pin is POWER DOWN. POWER DOWN: The pin is an active low input in this mode and
should be asserted low to put the device in a Power Down mode. INTERRUPT: The pin is an open drain output in this mode and will
be asserted low when a n in terru pt co nd itio n oc c urs . Alth oug h the pin has a weak internal pull-up, some applications may require an external pull-up resi ster. Reg ister a ccess i s requi red for th e pin to be used as an in terrupt mech anism. Se e
Section 5.5.2 Interrupt
Mechanism for more details on the interrupt mechanisms.
Signal Name Type Pin # Description
PHYAD0 (COL) PHYAD1 (RXD_0) PHYAD2 (RXD_1) PHYAD3 (RXD_2) PHYAD4 (RXD_3)
S, O, PU S, O, PD
42 43 44 45 46
PHY ADDRESS [4:0]: The DP83848C provides five PHY ad­dress pins, the state of w hi ch ar e la tch ed in to th e PH YCTR L reg ­ister at system Hardware-Reset.
The DP83848C supports PHY Address strapping values 0 (<00000>) through 31 (<11111 >). A PHY Address of 0 puts the part into the MII Isolate Mode. The MII isolate mod e must be se
­lected by strapping Phy Addres s 0; changing to Addres s 0 by reg­ister write will not p ut the Phy in the MII is olate mode. Plea se refer to section 2.3 for additional information.
PHYAD0 pin has weak internal pull-up resistor. PHYAD[4:1] pins have weak internal pull-down resistors.
13 www.national.com
1.6 Strap Options (Continued)
DP83848C
AN_EN (LED_ACT/COL) AN_1 (LED_SPEED) AN_0 (LED_LINK)
S, O, PU 26
27 28
Auto-Negotiation Enable: When high, this enables Auto-Negoti ­ation with the capability set by ANO and AN1 pins. When low, this puts the part into Forced Mode w ith the capabili ty set by AN0 an d AN1 pins.
AN0 / AN1: These input pins control the forced or advertised op­erating mode of the DP83848C according to the following table. The value on these pins is set by connecting the input pins to GND (0) or V
CC
(1) through 2.2 kΩ resistors. These pins should
NEVER be connected directly to GND or VCC.
The value set at this input is latched into the DP83848C at Hard­ware-Reset.
The float/pull-down stat us of thes e pin s are la tched into the Basic Mode Control Register and the Auto_Negotiation Advertisement Register during Hardware-Reset.
The default is 111 since these pins have internal pull-ups.
MII_MODE (RX_DV) SNI_MODE (TXD_3)
S, O, PD 39
6
MII MODE SELECT: This strapping option pair determines the operating mode o f the MA C Da ta Interf ace. De fault o peratio n (No pull-ups) will enable normal MII Mode of operation. Strapping MII_MODE high will cause the device to be in RMII or SNI mode of operation, determined by the status of the SNI_MODE strap. Since the pins include internal pull-downs, the default values are
0. The following table details the configurations:
LED_CFG (CRS) S, O, PU 40 LED CONFIGURATION: This strapping option determines the
mode of operation of the LED pins . Default is Mode 1. Mode 1 and Mode 2 can be controlled via the s trap opti on. All m odes are con
­figurable via register access.
SeeTable 3 for LED Mode Selection.
MDIX_EN (RX_ER) S, O, PU 41 MDIX ENABLE: Default is to enable MDIX. Thi s s trapp ing option
disables Auto-MDIX. An external pull-down will disable Auto­MDIX mode.
Signal Name Type Pin # Description
AN_EN AN1 AN0 Forced Mode
0 0 0 10BASE-T, Half-Duplex 0 0 1 10BASE-T, Full-Duplex 0 1 0 100BASE-TX, Half-Duplex 0 1 1 100BASE-TX, Full-Duplex
AN_EN AN1 AN0 Advertised Mode
1 0 0 10BASE-T, Half/Full-Duplex 1 0 1 100BASE-TX, Half/Full-Duplex 1 1 0 10BASE-T Half-Duplex
100BASE-TX, Half-Duplex
1 1 1 10BASE-T, Half/Full-Duplex
100BASE-TX, Half/Full-Duplex
MII_MODE SNI_MODE MAC Interface
Mode
0 X MII Mode 1 0 RMII Mode 1 1 10 Mb SNI Mode
14 www.national.com
DP83848C
1.7 10 Mb/s and 100 Mb/s PMD Interface
1.8 Special Connections
1.9 Power Supply Pins
Signal Name Type Pin # Description
TD-, TD+ I/O 16, 17 Differential common driver transmit output (PMD Output Pair).
These differential outputs are automatically configured to either 10BASE-T or 100BASE-TX signaling.
In Auto-MDIX mode of opera tion, this pair c an be used as the Re­ceive Input pair.
These pins require 3.3V bias for operation.
RD-, RD+ I/O 13, 14 Differential receive input (PMD Input Pair). These differential in-
puts are automatically configured to accept either 100BASE-TX or 10BASE-T signaling.
In Auto-MDIX mode of operation, this pair can be used as the Transmit Output pair.
These pins require 3.3V bias for operation.
Signal Name Type Pin # Description
RBIAS I 24 Bias Resistor Connection. A 4.87 kΩ 1% resistor should be con-
nected from RBIAS to GND.
PFBOUT O 23 Power Feedback Output. Parallel caps, 10µ F (Tantalum pre-
ferred) and 0.1µF, should be placed close to the PFBOUT. Con­nect this pin to PFBIN1 (pin 18) and PFBIN2 (pin 37). See Section 5.4 for proper placement pin.
PFBIN1 PFBIN2
I 18
37
Power Feedback Input. These pins are fed with power from PFBOUT pin. A small capacitor of 0.1
µF should be connected
close to each pin.
Note: Do not supply power to these pins other than from PFBOUT.
RESERVED I/O 8 , 9, 10, 11, 12RESERVED: These pins must be left unconnected.
RESERVED I/O 20, 21 RESERVED: These pins must be p ulled-u p throug h 2.2 k resis-
tors to AVDD33 supply.
Signal Name Pin # Description
IOVDD33 32, 48 I/O 3.3V Supply IOGND 35, 47 I/O Ground DGND 36 Digital Ground AVDD33 22 Analog 3.3V Supply AGND 15, 19 Analog Ground
15 www.national.com
DP83848C
1.10 Package Pin Assignments
VBH48A Pin # Pin Name
1 TX_CLK 2 TX_EN 3 TXD_0 4 TXD_1 5 TXD_2 6 TXD_3/SNI_MODE 7 PWR_DOWN/INT 8 RESERVED
9 RESERVED 10 RESERVED 11 RESERVED 12 RESERVED 13 RD ­14 RD + 15 AGND 16 TD ­17 TD + 18 PFBIN1 19 AGND 20 RESERVED 21 RESERVED 22 AVDD33 23 PFBOUT 24 RBIAS 25 25MHz_OUT 26 LED_ACT/COL/AN_EN 27 LED_SPEED/AN1 28 LED_LINK/AN0 29 RESET_N 30 MDIO 31 MDC 32 IOVDD33 33 X2 34 X1 35 IOGND 36 DGND 37 PFBIN2 38 RX_CLK 39 RX_DV/MII_MODE 40 CRS/CRS_DV/LED_CFG
41 RX_ER/MDIX_EN 42 COL/PHYAD0 43 RXD_0/PHYAD1 44 RXD_1/PHYAD2 45 RXD_2/PHYAD3 46 RXD_3/PHYAD4 47 IOGND 48 IOVDD33
VBH48A Pin # Pin Name
16 www.national.com
DP83848C
2.0 Configuration
This section in clude s inform ation on the vari ous con figura ­tion options available with the DP83848C. The configura­tion options described below include:
— Auto-Negotiation — PHY Address and LEDs — Half Duplex vs. Full Duplex — Isolate mode — Loopback mode —BIST
2.1 Auto-Negotiation
The Auto-Negotiation function provides a mechanism for exchanging configuration information between two ends of a link segment and automatically selecting the highest per
­formance mode of operation supported by both devices. Fast Link Pulse (FLP) Bursts provide the signalling used to communicate Auto-Negotiation abilities between two devices at each end of a link segment. For further detail regarding Auto-Negotiation, refer to Clause 28 of the IEEE
802.3u specification. The DP83848C supports four differ
­ent Ethernet protocols (10 Mb/s Half Duplex, 10 Mb/s Full Duplex, 100 Mb/s Half Duplex, and 100 Mb/s Full Duplex), so the inclusion of Auto-Negotiation ensures that the high
­est performance protocol will be selected based on the advertised ability of the Link Partner. The Auto-Negotiation function within the DP83848C can be controlled either by internal register access or by the use of the AN_EN, AN1 and AN0 pins.
2.1.1 Auto-Negotiation Pin Control
The state of AN_EN, AN0 an d AN1 det ermine s wheth er the DP83848C is forced into a specific mode or Auto-Negotia­tion will advertise a specific ability (or set of abilities) as given in
Tabl e 1. These pins allow configuration options to
be selected without requiring internal register access. The state of AN_E N, AN0 and A N1, upon po wer-up/ reset,
determines the state of bits [8:5] of the ANAR register. The Auto-Negotiation function selected at power-up or
reset can be chan ged at any time by writin g to the Basic Mode Control Register (BMCR) at address 0x00h.
2.1.2 Auto-Negotiation Register Control
When Auto-Negotiation is enabled, the DP83848C trans­mits the abilities programmed into the Auto-Negotiation Advertisement register (ANAR) at address 04h via FLP Bursts. Any combination of 10 Mb/s, 100 Mb/s, Half­Duplex, and Full Duplex modes may be selected.
Auto-Negotiation Priority Resolution: — (1) 100BASE-TX Full Duplex (Highest Priority)
— (2) 100BASE-TX Half Duplex — (3) 10BASE-T Full Duplex — (4) 10BASE-T Half Duplex (Lowest Priority) The Basic Mode Control Register (BMCR) at address 00h
provides control for enabling, disabling, and restarting the Auto-Negotiation process. When Auto-Negotiation is dis
­abled, the Speed Selection bit in the BMCR controls switching between 10 Mb/s or 100 Mb/s operation, and the Duplex Mode bit controls switching between full duplex operation and half duplex operation. The Speed Selection and Duplex Mode bits have no effect on the mode of oper
­ation when the Auto-Negotiation Enable bit is set.
The Link Speed can be examined through the PHY Status Register (PHYSTS) at address 10h after a Link is achieved.
The Basic Mode Status Register (BMSR) indicates the set of available abilities for technology types, Auto-Negotiation ability, and Extended Register Capability. These bits are permanently set to indicate the full functionality of the DP83848C (only the 100BASE-T4 bit is not set since the DP83848C does not support that function).
The BMSR also provides status on: — Whether or not Auto-Negotiation is complete — Whether or not the Link Partner is advertising that a re-
mote fault has occurred — Whether or not valid link has been established — Support for Management Frame Preamble suppression The Auto-Negotiation Advertisement Register (ANAR)
indicates the Auto-Negotiation abilities to be advertised by the DP83848C. All available abilities are transmitted by default, but any ability can be suppressed by writing to the
Table 1. Auto-Negotiation Modes
AN_EN AN1 AN0 Forced Mode
0 0 0 10BASE-T, Half-Duplex 0 0 1 10BASE-T, Full-Duplex 0 1 0 100BASE-TX, Half-Duplex 0 1 1 100BASE-TX, Full-Duplex
AN_EN AN1 AN0 Advertised Mode
1 0 0 10BASE-T, Half/Full-Duplex 1 0 1 100BASE-TX, Half/Full-Duplex 1 1 0 10BASE-T Half-Duplex
100BASE-TX, Half-Duplex
1 1 1 10BASE-T, Half/Full-Duplex
100BASE-TX, Half/Full-Duplex
17 www.national.com
DP83848C
ANAR. Updating the ANAR to suppress an ability is one way for a management agent to change (restrict) the tech
-
nology that is used. The Auto-Negotiation Link Partner Ability Register
(ANLPAR) at address 05h is used to receive the base link code word as well as all next page code words during the negotiati on. Furthermore, the ANLPAR will be updat ed to either 0081h or 0021h for parallel detection to either 100 Mb/s or 10 Mb/s respectively.
The Auto-Negotiation Expansion Register (ANER) indi­cates additional Auto-Negotiation status. The ANER pro­vides status on:
— Whether or not a Parallel Detect Fault has occurred — Whether or not the Link Partne r supp orts the Next Pag e
function
— Whether or not the DP83848C supports the Next Page
function
— Whether or not the current page being exchanged by
Auto-Negotiation has been receiv ed
— Whether or not the Link Partner supports Auto-Negotia-
tion
2.1.3 Auto-Negotiation Parallel Detection
The DP83848C supports the Parallel Detection function as defined in the IEEE 802.3u specifi ca tio n. Para lle l Detec tion requires both the 10 Mb/s and 100 Mb/s receivers to moni
­tor the receive signal and report link status to the Auto­Negotiation function. Auto-Negotiation uses this informa
­tion to configure th e correct t echno logy i n the e vent th at the Link Partner does not support Auto-Negotiation but is transmitting link signals that the 100BASE-TX or 10BASE­T PMAs recognize as valid link signa ls .
If the DP83848C completes Auto-Negotiation as a result of Parallel Detection, bits 5 and 7 within the ANLPAR register will be set to reflect the mode of operation present in the Link Partner. Note that bits 4:0 of the ANLPAR will also be set to 00001 based on a successful parallel detection to indicate a valid 802.3 selector field. Software may deter
­mine that negotiation completed via Parallel Detection by reading a zero in the Link Partn er Au to-Neg oti ati on Ab le b it once the Auto-Negotiatio n Com pl ete b it i s s et. I f co nfi gure d for parallel detect mode and any condition other than a sin
­gle good link occurs then the parallel detect fault bit will be set.
2.1.4 Auto-Negotiation Restart
Once Auto-Negotiation has completed, it may be restarted at any time by setting bit 9 (Res tart Auto-Negot iat ion) of the BMCR to one. If the mode confi gured b y a su cces sful Aut o­Negotiation loses a valid link, then the Auto-Negotiation process will resume and attempt to determine the configu
­ration for the link. This function ensures that a valid config­uration is maintained if the cable becomes disconnected.
A renegotiation reques t fro m a ny en tity, such as a ma nag e­ment agent, will cause the DP83848C to halt any transmit data and link pulse activity until the break_link_timer expires (~1500 ms). Consequently, the Link Partner will go into link fail and normal Auto-Negotiation resumes. The DP83848C will resume Auto-Negotiation after the break_link_timer has expired by issuing FLP (Fast Link Pulse) bursts.
2.1.5 Enabling Auto-Negotiation via Software
It is important t o no te t hat if the DP83848C has been initial­ized upon power-up as a non-auto-negotiating device (forced technology), and it is then requ ire d that Auto-Nego­tiation or re-Auto-Negotiation be initiated via software, bit
12 (Auto-Negotiation Enable) of the Basic Mode Control Register (BMCR) must first be cleared and then set for any Auto-Negotiation function to take effect.
2.1.6 Auto-Negotiation Complete Time
Parallel detection and Auto-Negotiation take approximately 2-3 seconds to co mp let e. In addition, Auto-Negotiation with next page should take approximately 2-3 seconds to com
-
plete, depending on the number of next pages sent. Refer to Clause 28 of the IEEE 802.3u standard for a full
description of the individual timers related to Auto-Negotia­tion.
2.2 Auto-MDIX
When enabled, this function utilizes Auto-Negotiation to determine the proper configuration for transmission and reception of data and subsequently selects the appropriate MDI pair for MD I/ MD IX o per a ti on. T h e fu nc t io n us es a r an
­dom seed to control switching of the crossover circuitry. This implementati on compl ie s with the corres po ndi ng IEEE
802.3 Auto-Negotiation and Crossover Specifications. Auto-MDIX is enabled by default and can be configu r ed vi a
strap or via PHYCR (0x19h) register, bits [15:14]. Neither Auto-Negotiation nor Auto-MDIX is required to be
enabled in forcing crossover of the MDI pairs. Forced crossover can be achieved through the FORCE_MDIX bit, bit 14 of PHYCR (0x19h) register.
Note: Auto-MDIX will not work in a forced mode of opera­tion.
18 www.national.com
DP83848C
2.3 PHY Address
The 5 PHY address inputs pins are shared with the RXD[3:0] pins and COL pin as shown below.
The DP83848C can be set to res pond to any of 32 po ssibl e PHY addresses via strap pins. The information is latched into the PHYCR register (address 19h, bits [4:0]) at device power-up and hardware reset. The PHY Address pins are shared with the RXD and COL pins. Each DP83848C or port sharing an MDIO bus in a system must have a unique physical address.
The DP83848C supports PHY Address strapping values 0 ( <000 00> ) th r ou gh 31 ( < 1 1111 > ) . St r a pp ing PHY Address 0 puts the part into Isol a t e Mod e. It should also be noted that selecting PHY Address 0 via an MDIO write to PHYCR will not put the device in Is olate Mode. Se e
Section 2.3.1for
more information. For further detail relatin g to the la tch- in timi ng requi rement s
of the PHY Address pins, as well as the other hardware configuration pins, refer to the Reset summary in Section 6.0.
Since the PHYAD[0] pin has weak internal pull-up resistor and PHYAD[4:1] pins have weak internal pull-down resis
­tors, the default setting for the PHY address is 00001 (01h).
Refer to Figure 2 for an example o f a PHYAD connectio n to external c omponents. In this exam ple, the PHYAD strap­ping results in address 00011 (03h).
2.3.1 MII Isolate Mode
The DP83848C can be put into MII Isolate mode by writing to bit 10 of t he BMCR regi ster or by st rapping in P hysical Address 0. It should be noted that selecting Physical Address 0 via an MDIO write to PHYCR will not put the device in the MII isolate mode.
When in the MII isolate mode, the DP83848C does not respond to packet data present at TXD[3:0], TX_EN inputs and presents a high impedance on the TX_CLK, RX_CLK, RX_DV, RX_ER, RXD[3:0], COL, and CRS outputs. When in Isolate mode, the DP83848C will continue to respond to all management transactions.
While in Isolate mod e, th e PM D ou tpu t p a ir wi ll n ot t r ansm it packet data but will continue to source 100BASE-TX scrambled idles or 10BASE-T normal link pulses.
The DP83848C can Auto-Negotiate or parallel detect to a specific technology depending on the receive signal at the PMD input pair. A valid link can be established for the receiver even when the DP83848C is in Isolate mode.
Table 2. PHY Address Mapping
Pin # PHYAD Function RXD Function
42 PHYAD0 COL 43 PHYAD1 RXD_0 44 PHYAD2 RXD_1 45 PHYAD3 RXD_2 46 PHYAD4 RXD_3
Figure 2. PHYAD Strapping Example
COL
RXD_0
RXD_1
RXD_2
RXD_3
VCC
2.2k
PHYAD0 = 1
PHYAD1 = 1
PHYAD2 = 0PHY AD3 = 0
PHYAD4= 0
19 www.national.com
DP83848C
2.4 LED Interface
The DP83848C supports three configurable Light Emitting Diode (LED) pins. The device supports three LED configu­rations: Link, Speed, Activity and Collision. Function are
multiplexed among the LEDs. The PHY Control Register (PHYCR) for the LEDs can also be selected through address 19h, bits [6:5].
See Table 3 for LED Mode selection.
The LED_LINK pin in Mode 1 indicates the link status of the port. In 100BASE-T mode, link is established as a result of input receive amplitude compliant with the TP­PMD specifications which will result in internal generation of signal detect. A 10 Mb/s Link is est abli shed as a result of the reception of at least seven consecutive normal Link Pulses or the reception of a valid 10BASE-T packet. This will cause the as se rtion of LED_LINK. LED_LINK will deas
­sert in accordance with the Link Loss Timer as specified in the IEEE 802.3 specification.
The LED_LINK p in in Mo de 1 w ill be OF F w h en no LI NK is present.
The LED_LINK pin in Mode 2 and Mode 3 will be ON to indicate Link is good and BLINK to indicate activity is present on either transmit or receive activity.
The LED_SPEED pin indicates 10 or 100 Mb/s data rate of the port. The standard CMOS driver goes high when oper­ating in 100 Mb/s operation. The functionality of this LED is independent of mode selected.
The LED_ACT/COL pin in Mode 1 indicates the presence of either transmit or r ece iv e ac ti vit y. The LED will be ON for Activity and OFF for No Activity. In Mode 2, this pin indi
­cates the Collision status of the port. The LED will be ON for Collision and OFF for No Collision.
The LED_ACT/COL pin in Mode 3 indicates the presence of Duplex status for 10 Mb/s or 100 Mb/s operation. The LED will be ON for Full Duplex and OFF for Half Duplex.
In 10 Mb/s half duplex mode, the collision LED is based on the COL signal.
Since these LED pins are also used as strap options, the polarity of the LED is dependent on whether the pin is pulled up or down.
2.4.1 LEDs
Since the Auto-Negotiation (AN) strap options share the LED output pins, the external components required for strapping and LED usage must be considered in order to avoid contention.
Specifically, when the LED outputs are used to drive LEDs directly, the active state of each output driver is dependent on the logic level sampled by the corresponding AN input upon power-up/reset. For example, if a given AN input is resistively pulled low then the corresponding output will be configured as an active high driver. Conversely, if a given AN input is resistively pulled high, then the corresponding output will be configured as an active low driver.
Refer to Figure 3 for an example of AN connections to external components. In this example, the AN strapping results in Auto-Negotiation with 10/100 Half/Full-Duplex advertised.
The adaptive nature of the LED outputs helps to simplify potential implemen t ation issues o f th ese dual purpos e pins .
Table 3. LED Mode Select
Mode LED_CFG[1]
(bit 6)
LED_CFG[0]
(bit 5)
or (pin40)
LED_LINK LED_SPEED LED_ACT/COL
1 don’t care 1 ON for Good Link
OFF for No Link
ON in 100 Mb/s OFF in 10 Mb/s
ON for Activity OFF for No Activity
2 0 0 ON for Good Link
BLINK for Activity
ON in 100 Mb/s OFF in 10 Mb/s
ON for Collision OFF for No Collision
3 1 0 ON for Good Link
BLINK for Activity
ON in 100 Mb/s OFF in 10 Mb/s
ON for Full Duplex OFF for Half Duplex
LED_LINK
LED_SPEED
LED_ACT/COL
VCC
2.2k 110
110
2.2k 110
AN0 = 1
AN1 = 1
AN_EN = 1
2.2k
Figure 3. AN Strapping and LED Loading Example
20 www.national.com
DP83848C
2.4.2 LED Direct Control
The DP83848C provides another option to directly control any or all LED outputs throu gh the LED Di rect Contro l Reg
­ister (LEDCR), address 18h. The register does not provide read access to LEDs.
2.5 Half Duplex vs. Full Duplex
The DP83848C supports both half and full duplex opera­tion at both 10 Mb/s and 100 Mb/s speeds.
Half-duplex relies on the C SMA/C D protoc ol to ha ndle c olli­sions and network access. In Half-Duplex mode, CRS responds to both transmit and receive activity in order to maintain compliance with the IEEE 802.3 specification.
Since the DP83848C is designed to support simultaneous transmit and receiv e act ivi ty it is capabl e of su ppor ting full ­duplex switched ap plications with a throughput of up to 200 Mb/s per port when operating in 100BASE-TX mode. Because the CSMA/CD protocol does not apply to full­duplex operation, the DP83848C disables its own internal collision sensing and reporting functions and modifies the behavior of Carrier Sense (CRS) such that it indicates only receive acti vity. This allows a full-d uplex capable MAC to operate properly.
All modes of operation (100BASE-TX and 10BASE-T) can run either half-duplex or full-duplex. Additionally, other than CRS and Collision reporting, all remaining MII signaling remains the same regardless of the selected duplex mode.
It is important to understand that while Auto-Negotiation with the use of Fast Link Pulse code words can interpret and configure to full-duplex operation, parallel detection can not recognize the difference between full and half­duplex from a fixed 10 Mb/s or 100 Mb/s link partner over twisted pair. As specified in the 802.3u specification, if a far-end link partner is configured to a forced full duplex 100BASE-TX ability, the parallel detection state machine in the partner would be unable to detect the full duplex capa
­bility of the far-end link partner. This link segment would negotiate to a half duplex 100BASE-TX configuration (same scenario for 10 Mb/s).
2.6 Internal Loopback
The DP83848C includes a Loopback Test mode for facili­tating system diagnostics. The Loopback mode is selected through bit 14 (Loopback) of the Basic Mode Control Reg
­ister (BMCR). Writing 1 to this bit enables MII transmit data to be routed to the MII receive outputs. Loopback status may be checked in bit 3 of the PHY Status Register (PHYSTS). While in Loopback mode the data will not be transmitted onto the media. To ensure that the desired operating mode is maintained, Auto-Negotiation should be disabled before selecting the Loopback mode.
2.7 BIST
The DP83848C incorporates an internal Built-in Self Test (BIST) circuit to accommodate in-circuit testing or diagnos
­tics. The BIST circuit can be utilized to test the integrity of the transmit and receive data paths. BIST testing can be performed with the part in the internal loopback mode or externally looped back using a loopback cable fixture.
The BIST is implemented with independent transmit and receive paths, with the tran smit block generating a continu
­ous stream of a pseudo random sequence. The user can select a 9 bit or 15 bit pseudo random sequence from the PSR_15 bit in the PHY Control Register (PHYCR). The received data is compared to the generated pseudo-ran
­dom data by the BIST Linear Feedback Shift Register (LFSR) to determine the BIST pass/fail status.
The pass/fail status of the BIST is stored in the BIST status bit in the PHYCR regis ter. The status bit de faul t s to 0 (BIST fail) and will transition on a successful comparison. If an error (mis-compare) occurs, the status bit is latched and is cleared upon a subsequent write to the Start/Stop bit.
For transmit VOD testing, the Packet BIST Continuous Mode can be used to allow continuous data transmission, setting BIST_CONT_MODE, bit 5, of CDCTRL1 (0x1Bh).
The number of BIST errors can be monitored through the BIST Error Count in the CDCTRL1 (0x1Bh), bits [15:8].
21 www.national.com
DP83848C
3.0 Functional Description
The DP83848C supports several modes of operation using the MII interface pins. The optio ns are defi ned in th e follow
-
ing sections and include: — MII Mode — RMII Mode — 10 Mb Serial Network Interface (SNI) The modes of operation can be selected by strap options
or register control. For RMII mode, it is recommended to use the strap option, since it requires a 50 MHz clock instead of the normal 25 MHz.
In each of these modes, the IEEE 802.3 serial manage­ment interface is operational for device configuration and status. The serial management interface of the MII allows for the configuration and control of multiple PHY devices, gathering of status, error information, and the determina
-
tion of the type and capabilities of the attached PHY(s).
3.1 MII Interface
The DP83848C incorporates the Media Independent Inter­face (MII) as specified in Clause 22 of the IEEE 802.3u standard. This interface may be used to connect PHY devices to a MAC in 10/100 Mb/s systems. This section describes the nibble wide MII data interface.
The nibble wide MII data interface consists of a rec ei ve bus and a transmit bus each with control signals to facilitate data transfer between the PHY and the upper layer (MAC).
3.1.1 Nibble-wide MII Data Interface
Clause 22 of the IEEE 802.3u specification defines the Media Independent Interface. This interface includes a dedicated recei ve bu s an d a d edicated transmit bus. These two data buses, along with various control and status sig
­nals, allow for the simultaneous exchange of data between the DP83848C and the upper layer agent (MAC).
The receive interface consists of a nibble wide data bus RXD[3:0], a receive error signal RX_ER, a receive data valid flag RX_DV, and a receive clock RX_CLK for syn
­chronous transfer of the data. The receive clock operates at either 2.5 MHz to su pport 10 Mb/s operation modes or at 25 MHz to support 100 Mb/s operational modes.
The transmit interface consists of a nibble wide data bus TXD[3:0], a transmit enable control signal TX_EN, and a transmit cloc k TX_CL K which runs at ei ther 2. 5 MHz or 25 MHz.
Additionally, the MII includes the carrier sense signal CRS, as well as a collision detect signal COL. The CRS signal asserts to ind icate the re ception of d ata from the ne twork or as a function of transmit data in Half Duplex mode. The COL signal asse rt s as an ind ic atio n of a collision which can occur during half-duplex operation when both a transmit and receive operation occur simultaneously.
3.1.2 Collision Detect
For Half Duplex, a 10BASE-T or 100BASE-TX collision is detected when the receive and transmit channels are active simu ltaneously. Collisions are reported by the COL signal on the MII.
If the DP83848C is transmitting in 10 Mb/s mode when a collision is dete cte d, the collision is not reported un til se ve n bits have been received while in the collision state. This prevents a collision being reported incorrectly due to noise on the network. The COL signal remains set for the dura
-
tion of the collision. If a collision occ urs du ring a r eceive operation, it is immedi-
ately reported by the COL signal. When heartbeat is enabled (only applicable to 10 Mb/s
operation), approximately 1µs after the transmission of each packet, a Si gn al Q u ali ty Error (SQE) signal of approx
­imately 10 bit times is generated (internally) to indicate successful transmiss io n. SQ E is repo rted as a pul se on th e COL signal of the MII.
3.1.3 Carrier Sense
Carrier Sense (CRS) is asserted due to receive activity, once valid data is detected via the squelch function during 10 Mb/s operation. During 100 Mb/s operation CRS is asserted when a valid link (SD) and two non-contiguous zeros are detected on the line.
For 10 or 100 Mb/s Half Duple x op era tio n, C RS is a sserte d during either packet transmission or reception.
For 10 or 100 Mb/s Full Duplex operation, CRS is asserted only due to receive activity.
CRS is deasserted following an end of packet.
3.2 Reduced MII Interface
The DP83848C incorporates the Reduced Media Indepen­dent Interface (RMII) as specified in the RMII specification (rev1.2) from the RMII Consortium. This interface may be used to connect PHY devices to a MAC in 10/100 Mb/s systems using a reduced number of pins. In this mode, data is transferred 2-bits at a time using the 50 MHz RMII_REF clock for both transmit and receive. The follow
­ing pins are used in RMII mode:
— TX_EN —TXD[1:0] — RX_ER (optional for Mac) — CRS_DV — RXD[1:0] — X1 (RMII Reference clock is 50 MHz) In addition, the RMII mode supplies an RX_DV signal
which allows for a simpler method of recovering receive data without having to separate RX_DV from the CRS_DV indication. This is especially useful for systems which do not require CRS, such as systems that only support full­duplex operation. This signal is also useful for diagnostic testing where it may be desirable to loop Receive RMII data directly to the transmitte r.
Since the reference clock operates at 10 times the data rate for 10 Mb/s operation, transmit data is sampled every 10 clocks. Likewise, receive data will be generated every 10th clock so that an attached device can sample the data every 10 clocks.
RMII mode requires a 50 MHz oscillator be connected to the device X1 pin. A 50 MHz crystal is not supported.
22 www.national.com
DP83848C
To tolerate potential frequency differences between the 50 MHz referenc e clock an d the recove red recei ve clock, the receive RMII function includes a programmable elasticity buffer. The elasticity buffer is programmable to minimize propagation delay based on expected packet size and clock accuracy. This allows for supporting a range of packet sizes including jumbo frames.
The elasticity buffer will force Frame Check Sequence errors for packets which overrun or underrun the FIFO. Underrun and Overrun conditions can be reported in the RMII and Bypass Register (RBR). The following table indi
­cates how to program the elastic ity buff er fifo (in 4-bi t incre­ments) based on expected max packet size and clock accuracy. It assumes both clocks (RMII Reference clock and far-end Transmitter clock) have the same accuracy.
3.3 10 Mb Serial Network Interface (SNI)
The DP83848C incorporates a 10 Mb Serial Network Inter­face (SNI) which al lo ws a s im pl e ser ial d ata interface for 10 Mb only devices. This is also referred to as a 7-wire inter
­face. While there is no defined standard for this interface, it is based on early 10 Mb physical layer devices. Data is clocked serially at 10 MHz using separate transmit and receive paths. The following pins are used in SNI mode:
—TX_CLK —TX_EN —TXD[0] —RX_CLK —RXD[0] — CRS —COL
3.4 802.3u MII Serial Management Interface
3.4.1 Serial Management Register Access
The serial management MII specification defines a set of thirty-two 16-bit status and control registers that are acces
­sible through the management interface pins MDC and MDIO. The DP83848C implements all the required MII reg
­isters as well as several optional registers. These registers are fully described in
Section 7.0. A description of the seria l
management access protocol follows.
3.4.2 Serial Management Access Protocol
The serial cont rol interface co nsists of two pins, Manage­ment Data Clock (MDC) and Management Data Input/Out­put (MDIO). MDC has a maximum clock rate of 25 MHz and no minimum rate. The MDIO line is bi-directional and may be shared by up to 32 devices. The MDIO frame for
­mat is shown below in Table 5.
The MDIO pin requires a pull-up resistor (1.5 k) which, during IDLE and turnaro und, will pull M DIO hi gh. In o rder to initialize the MDIO int erface , the st atio n manag ement entit y sends a sequence of 32 contiguous logic ones on MDIO to provide the DP83848C with a sequence that can be used to establish sy nchr oniz ati on. Th is pr eamb le may be gene r
­ated either by driving MDIO high for 32 consecutive MDC clock cycles, or by simply allowing the MDIO pull-up resis
­tor to pull the MDIO pin high during which time 32 MDC clock cycles are provided. In addition 32 MDC clock cycles should be used to re-sync the device if an invalid start, opcode, or turnaround bit is detected.
The DP83848C waits until it has received this preamble sequence before responding to any other transaction. Once the DP83848C serial management port has been ini
­tialized no further preamble sequencing is required until after a power-on/reset, invalid Start, invalid Opcode, or invalid turnaround bit has occurred.
The St art co de is in dic ate d by a <01> p atte rn. Th is ass ure s the MDIO line transitions from the default idle line state.
Turnaround is defined as an idle bit time inserted between the Register Address field and the Data field. To avoid con­tention during a read transaction, no device shall actively drive the MDIO signal during the first bit of Turnaround. The addressed DP83848C drives the MDIO with a zero for the second bit of turnaround and follows this with the required data.
Figure 4 shows the timing relationship between MDC and th e MDIO as dr iven/re ceived by the Sta­tion (STA) and the DP83848C (PHY) for a typical register read access.
For write transactions, the station management entity writes data to the addressed DP83848C thus eliminating the requirement for MDIO Turnaround. The Turnaround time is filled by the management entity by inserting <10>. Figure 5 shows the timing relationship for a typical MII reg­ister write access.
Table 4. Supported packet sizes at +/-50ppm +/-100ppm for each clock
Start Threshold
RBR[1:0]
Latency Tolerance Recommende d Packet Size
at +/- 50ppm
Recommended Packet Size
at +/- 100ppm
1 (4-bits) 2 bits 24 00 byt es 1200 bytes
2 (8-bits) 6 bits 72 00 byt es 3600 bytes 3 (12-bits) 10 bits 12000 bytes 6000 bytes 0 (16-bits) 14 bits 16800 bytes 8400 bytes
23 www.national.com
DP83848C
3.4.3 Serial Management Preamble Suppression
The DP83848C supports a Preamble Suppression mode as indicated by a one in bit 6 of the Basic Mode Status Register (BMSR, address 01h.) If the station management entity (i.e. MAC or other management controller) deter
­mines that all PHYs in the system support Preamble Sup­pression by returning a one in this bit, then the station management entity need not generate preamble for each management transaction.
The DP83848C requires a single initialization sequence of 32 bits of preamble fol lo w ing hard ware/s oftware reset. This
requirement is generally met by the mandatory pull-up resistor on MDI O in co nj u nc tio n wi th a co nt i nuo u s MD C, or the management access made to determine whether Pre
-
amble Suppression is supported. While the DP83848C requires an initial preamble
sequence of 32 bits for management initialization, it does not require a full 32-bit sequence between each subse
­quent transaction. A minimum of one idle bit between man- agement transactions is required as specified in the IEEE
802.3u specification.
Table 5. Typical MDIO Frame Format
MII Management
Serial Protocol
<idle><start><op code><device addr><reg addr><turnaround><data><idle>
Read Operation <idle><01><10><AAAAA><RRRRR><Z0><xxxx xxxx xxxx xxxx><idle> Write Operation <idle><01><01><AAAAA><RRRRR><10><xxxx xxxx xxxx xxxx><idle>
Figure 4. Typical MDC/MDIO Read Operation
Figure 5. Typical MDC/MDIO Write Operation
MDC
MDIO
00011 110000000
(STA)
Idle Start
Opcode
(Read)
PHY Address
(PHYAD = 0Ch)
Register Address
(00h = BMCR)
TA
Register Data
Z
MDIO
(PHY)
Z
Z
Z
0 0 011000100000000
Z
Idle
Z
Z
MDC
MDIO
00011110000000
(STA)
Idle Start
Opcode
(Write)
PHY Address
(PHYAD = 0Ch)
Register Address
(00h = BMCR)
TA
Register Data
Z
0 0 0 000 00000000
Z
Idle
1000
ZZ
24 www.national.com
DP83848C
4.0 Architecture
This section describes the operations within each trans­ceiver module, 100BASE-TX and 10BASE-T. Each opera­tion consists of several functional blocks and described in the following:
— 100BASE-TX Transmitter — 100BASE-TX Receiver — 10BASE-T Transceiver Module
4.1 100BASE-TX TRANSMITTER
The 100BASE-TX transmitter consists of several functional blocks which conver t sync hronous 4-bit ni bble d at a, as p ro
­vided by the MII, to a scrambled MLT-3 125 Mb/s serial data stream. Because the 100BASE-TX TP-PMD is inte­grated, the differential output pins, PMD Output Pair, can be directly routed to the magnetics.
The block diagram in Figure 6. provides an overview of each functional block within the 100BASE-TX transmit sec­tion.
The Transmitter section consists of the following functional blocks:
— Code-group Encoder and Injection block — Scrambler block (bypass option) — NRZ to NRZI encoder block — Binary to MLT-3 converter / Common Driver The bypass option for the functional blocks within the
100BASE-TX transmitter provides flexibility for applications where data conversion is not always required. The DP83848C implements the 100BASE-TX transmit state machine diagram as specified in the IEEE 802.3u Stan
-
dard, Clause 24.
Figure 6. 100BASE-TX Transmit Block Diagram
4B5B CODE-
GROUP
ENCODER &
SCRAMBLER
NRZ TO NRZI
ENCODER
5B PARALLEL
TO SERIAL
PMD OUTPUT PAIR
TX_CLK
TXD[3:0] /
TX_EN
BINARY
TO MLT-3 /
COMMON
DRIVER
125MHZ CLOCK
BP_SCR
MUX
100BASE-TX
LOOPBACK
MLT[1:0]
DIVIDE
BY 5
25 www.national.com
DP83848C
Table 5. 4B5B Code-Group Encoding/Decoding
DATA CODES
0 11110 0000 1 01001 0001 2 10100 0010 3 10101 0011 4 01010 0100 5 01011 0101 6 01110 0110 7 01111 0111 8 10010 1000 9 10011 1001 A 10110 1010 B 10111 1011 C 11010 1100 D 11011 1101 E 11100 1110 F 11101 1111
IDLE AND CONTROL CODES
H 00100 HALT code-group - Error code
I 11111 Inter-Packet IDLE - 0000 (Note 1) J 11000 First Start of Packet - 0101 (Note 1) K 10001 Second Start of Packet - 0101 (Note 1) T 01101 First End of Packet - 0000 (Note 1) R 00111 Second End of Packet - 0000 (Note 1)
INVALID CODES
V 00000 V 00001 V 00010 V 00011 V 00101 V 00110 V 01000 V 01100
Note: Control code-groups I, J, K, T and R in data fields will be mapped as invalid codes, together with RX_ER as­serted.
6.
Loading...
+ 57 hidden pages