Functional Description (Continued)
Security is an optional feature and can only be asserted after
the memory array has been programmed and verified. A secured part will read all 00(hex) by a programmer. The part
will fail Blank Check and will fail Verify operations. A Read
operation will fill the programmer’s memory with 00(hex).
The Security Byte itself is always readable with value of
00(hex) if unsecure and FF(hex) if secure.
DATA MEMORY
The data memory address space includes the on-chip RAM
and data registers, the I/O registers (Configuration, Data and
Pin), the control registers, the MICROWIRE/PLUS SIO shift
register, and the various registers, and counters associated
with the timers (with the exception of the IDLE timer). Data
memory is addressed directly by the instruction or indirectly
by the B, X and SP pointers.
The device has 64 bytes of RAM. Sixteen bytes of RAM are
mapped as “registers” at addresses 0F0 to 0FF Hex. These
registers can be loaded immediately, and also decremented
and tested with the DRSZ (decrement register and skip if
zero) instruction. The memory pointer registers X, SP, and B
are memory mapped into this space at address locations
0FC to 0FE Hex respectively, with the other registers (other
than reserved register 0FF) being available for general usage.
The instruction set permits any bit in memory to beset, reset
or tested. All I/O and registers (except A and PC) are
memory mapped; therefore, I/O bits and register bits can be
directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.
RESET
The RESET input when pulled low initializes the microcontroller. lnitialization will occur whenever the RESET input is
pulled low. Upon initialization, the data and configuration
registers for Ports L and G, are cleared, resulting in these
Ports being initialized to the TRI-STATE mode. Port D is initialized high with RESET. The PC, PSW, CNTRL, and ICNTRL control registers are cleared. The Multi-Input Wake Up
registers WKEN, WKEDG, and WKPND are cleared. The
Stack Pointer, SP, is initialized to 02F Hex.
The following initializations occur with RESET:
Port L: TRI-STATE
Port G: TRI-STATE
Port D: HIGH
PC: CLEARED
PSW, CNTRL and ICNTRL registers: CLEARED
Accumulator and Timer 1:
RANDOM after RESET with power already applied
RANDOM after RESET at power-on
SP (Stack Pointer): Loaded with 2F Hex
CMPSL (Comparator control register): CLEARED
PWMCON (PWM control register): CLEARED
B and X Pointers:
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power-up
RAM:
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power-up
CAN:
The CAN Interface comes out of external reset in the
“error-active” state and waits until the user’s software
sets either one or both of the TXEN0, TXEN1 bits to “1”.
After that, the device will not start transmission or reception of a frame until eleven consecutive “recessive” (undriven) bits have been received. This is done to ensure
that the output drivers are not enabled during an active
message on the bus.
CSCAL, CTlM, TCNTL, TEC, REC: CLEARED
RTSTAT: CLEARED with the exception of the TBE bit
which is set to 1
RID, RIDL, TID, TDLC: RANDOM
ON-CHIP POWER-ON RESET
The device is designed with an on-chip power-on reset circuit which will trigger a 256 t
c
delay as VCCrises above the
minimum RAM retention voltage (V
r
). This delay allows the
oscillator to stabilize before the device exits the reset state.
The contents of data registers and RAM are unknown following an on-chip power-on reset. The external reset takes priority over the on-chip reset and will deactivate the 256 t
c
de-
lay if in progress.
When using external reset, the external RC network shown
in
Figure 6
should be used to ensure that the RESET pin is
held low until the power supply to the chip stabilizes.
Under no circumstances should the RESET pin be allowed
to float. If the on-chip power-on reset feature is being used,
RESET should be connected directly to V
CC
. Be aware of
the Power Supply Rise Time requirements specified in the
DC Specifications Table. These requirements must be met
for the on-chip power-on reset to function properly.
The on-chip power-on reset circuit may reset the device if
the operating voltage (V
CC
) goes below Vr.
Oscillator Circuits
The chip can be driven by a clock input on the CKI input pin
which can be between DC and 10 MHz. The CKO output
clock is on pin G7. The CKI input frequency is divided by 10
to produce the instruction cycle clock (1/t
c
).
Figure 7
shows the Crystal diagram.
DS101137-6
RC>5 x Power Supply Rise Time
FIGURE 6. Recommended Reset Circuit
www.national.com 10