A.3 START UP ..................................................................................................................10
OPERATION OF OIL BURNER ..............................................................................................15
FINAL CHECK OUT ............................................................................................................21
PARTS LISTING ................................................................................................................23
2
IMPORTANT: 3. LOCATION OF UNIT
SAVE THESE INSTRUCTIONS FOR FUTURE
REFERENCE
1. INTRODUCTION
Please read these instructions completely and
carefully before installing and operating the furnace.
MODELS O5LD-091A-12-R
Model O5LD-091A-12-R is an oil fired forced air upflow furnace with an output capacity range of 59,000
BTU/Hr. to 85,000 BTU/Hr.
DO NOT USE GASOLINE, CRANK CASE OIL,
OR ANY OIL CONTAINING GASOLINE.
All models are CSA listed, (NRTL/C) for use with No. 1
(Stove) and No. 2 (Furnace) Oil. Please refer to the
tables in Appendix A for performance and dimensional
data.
In Canada, the installation of the furnace and related
equipment shall be installed in accordance with the
regulations of CAN/CSA - B139, Installation Code For Oil-Burning Equipment, as well as in accordance with
local codes.
In the United States of America, the installation of the
furnace and related equipment shall be installed in
accordance with the regulations of NFPA No. 31,
Standard for the Installation of Oil-Burning Equipment
as well as in accordance with local codes.
Regulations prescribed in the National Codes and
Local regulations take precedence over the general
instructions provided on this installation manual. When
in doubt, please consult your local authorities.
All models are
furnace should be carefully inspected for damage
when being unpacked.
shipped assembled and pre-wired. The
,
2. HEAT LOSS
The maximum hourly heat loss for each heated space
shall be calculated in accordance with the procedures
described in the manuals of the Heating, Refrigeration
and Air Conditioning Institute of Canada (HRAI), or by
other means prescribed, or approved by the local
authority having jurisdiction.
In the United States, Manual
Calculation" published by the Air Conditioning
Contractors of America, describes a suitable
procedure for calculating the maximum hourly heat
loss.
J. titled,
"Load
The furnace should be located such that the flue
connection to the chimney is short, direct and consists
as few elbows as possible. When possible, the unit
of
should be centralized with respect to the supply
return air ductwork. A central location minimizes the
trunk duct sizing. All models may be installed on
combustible floors.
The minimum installation clearances are listed in Table
1.
and
Table 1: Clearances – (Inches)
Location Clearance to Combustibles
Top
Bottom
S/A Plenum
Rear
Sides
Front
1
0
1
6*
1**
1*
4 in. measured horizontally or
Flue Pipe
below flue pipe.
8 in. measured vertically or
above flue pipe
Enclosure
Closet
** 18 in. required on one side for service
access to rear
* 24 in. required for service clearance
4. AIR CONDITIONING APPLICATIONS
If the furnace is used in conjunction with air
conditioning,
with
or upstream from the evaporator coil to avoid
condensation in the heat exchanger. In a parallel
installation, the dampers or air controlling means must
prevent chilled air from entering the furnace. If the
dampers are manually operated, there must be a
means of control to prevent the operation of either
system unless the dampers are in the full heat or full
cool position. The air heated by the furnace shall not
pass through a refrigeration unit unless the unit is
specifically approved for such service.
The blower speed must be checked and adjusted
compensate for
evaporator coil. Refer to Appendix B for recommended
wiring and electrical connections of the air conditioning
controls.
the furnace shall be installed in parallel
to
the pressure drop caused by the
3
5. COMBUSTION AIR
If the furnace is installed in a closet or utility room, two
openings must be provided connecting to a wellventilated space (full basement, living room or other
room opening thereto, but not a bedroom or
bathroom). One opening shall be located above the
level of the upper vent opening and one opening below
the combustion air inlet opening in the front of the
furnace. Each opening shall have a minimum free area
of 1½ square inches per 1,000 Btu/h of total input
rating of all appliances installed in the room.
For furnaces located in buildings of unusually tight
construction, such as those with high quality weather
stripping, caulking, windows and doors, or storm
sashed windows, or where basement windows are well
sealed, a permanent opening communicating with a
well ventilated attic or with the outdoors shall be
provided, using a duct if necessary. The duct opening
shall have a free area of 1½ square inches per 1,000
Btu/h of total input rating of all appliances to be
installed. When a furnace is installed in a full
basement, infiltration is normally adequate to provide
air for combustion and draft operation. Furnace rooms
under 65m³ (700 ft³) should automatically be treated as
confined space.
The flue pipe must not pass through any floor or
ceiling, but may pass through a wall where suitable fire
protection provisions have been installed. Refer to the
latest edition of CAN/CSA B-139 for rules governing
the installation of oil burning equipment. In the United
States, refer to the latest edition of NFPA 31 for
regulations governing the installation of oil burning
equipment.
See appendix A for burner set-up.
Fig. 1: Checking Over-Fire Draft.
6. CHIMNEY VENTING
The flue pipe should be as short as possible with
horizontal pipes sloping upward toward the chimney at
a rate of one-quarter inch to the foot. The flue pipe
should not be smaller in cross sectional area than the
flue collar on the furnace. The flue pipe should connect
to the chimney such that the flue pipe extends into,
and terminates flush with the inside surface of the
chimney liner. Seal the joint between the pipe and the
lining. The chimney outlet should be at least two feet
above the highest point of a peaked roof. All unused
chimney openings should be closed. Chimneys must
conform to local, provincial or state codes, or in the
absence of local regulations, to the requirements of the
National Building Code.
NOTE: THE FURNACE IS APPROVED FOR
USE WITH TYPE L VENT OR EQUIVALENT.
CHIMNEY VENTED VERSIONS OF THE
FURNACE MUST BE CONNECTED TO A
FLUE HAVING SUFFICIENT DRAFT AT ALL
TIMES TO ENSURE SAFE AND PROPER
OPERATION OF THE APPLIANCE.
7. BAROMETRIC DAMPER CONTROL.
The barometric damper control, also known as a draft
regulator, is used on conventional chimney venting
only. This control automatically maintains a constant
negative pressure in the furnace to obtain maximum
efficiency. It ensures that proper pressures are not
exceeded. If the chimney does not develop sufficient
draft, the draft control cannot function properly. The
draft regulator, when installed should be in the same
room or enclosure as the furnace and should not
interfere with the combustion air supplied to the
burner. The control should also be located near the
furnace flue outlet and installed according to the
instructions supplied with the regulator. The flue outlet
pressure (measured between the furnace and draft
regulator, or the oil burner mounting plate over-fired
draft access port. Fig 1) should be set to -0.02 in. w.c.
NOTE: THE RECOMMENDED OVER-FIRE
DRAFT PRESSURE IS -0.02 IN. W.C. (SEE FIG.
1).
4
8. FAN TIMER BOARD AND LIMIT CONTROL
(FIG.2) (page 17)
The Electronic Fan Timer integrates control of all
burner and circulator fan operations. This control is the
central wiring point for most of the electrical
components in the furnace. The United Technologies 1158-120 has an adjustable fan on time
that is set by selecting the dipswitch combination
displayed in Chart 1. This fan on delay can be set at
30, 60, 90 or 120 seconds. This provides a delay
between the burner ignition and blower start-up to
eliminate excessive flow of cold air when the blower
comes on. The United Technologies 1158-120 has
an adjustable fan off time of 2, 3, 4 or 6 minutes
displayed in Chart 1. The fan off delay time starts when
the burner motor is de-energized at the end of a call
for heat. Blower shutdown is delayed to remove any
residual heat from the heat exchanger and improve the
annual efficiency of the furnace.
The electronic fan timer board works in conjunction
with snap disc limit controls, which perform a safety
function, and breaks power to the oil burner primary
control, which shuts off the burner if the furnace overheats. The limit control is thermally operated and
automatically resets. The limit control is factory
installed pre-set and is not adjustable.
If the limit control opens with the United Technologies 1158-120 electronic fan control, the circulating fan will
be energized as well. When the limit closes, the fan off
timer will begin. At the end of the fan off time cycle the
burner will be energized, initiating a normal burner
cycle.
CHART 1
United Technologies 1158-120
Dip Switch Position Blower Delay Times
1 2 3 4 On
Seconds
Off
Minutes
Off Off 30
On Off 60
Off On 90
On On 120
Off Off 2
On Off 3
Off On 4
On On 6
9. ELECTRICAL CONNECTIONS
The furnace is listed by the Canadian Standards
Association under the NRTL (North American)
Standard. It is factory wired and requires minimal field
wiring. All field wiring should conform to CAN/CSA
C22.1 Canadian Electrical Code, Part 1, and by local
codes, where they prevail. In the United States, the
wiring must be in accordance with the National Fire
Protection Association NFPA-70, National Electrical
Code, and with local codes and regulations.
The furnace should be wired to a separate and
dedicated circuit in the main electrical panel; however,
accessory equipment such as electronic air cleaners
and humidifiers may be included on the furnace circuit.
Although a suitably located circuit breaker can be used
as a service switch, a separate service switch is
advisable. The service switch is necessary if reaching
the circuit breaker involves becoming close to the
furnace, or if the furnace is located between the circuit
breaker and the means of entry to the furnace room.
The furnace switch (service switch) should be clearly
marked, installed in an easily accessible area between
the furnace and furnace room entry, and be located in
such a manner to reduce the likelihood that it would be
mistaken as a light switch or similar device.
The power requirement for the O5LD-091A-12-R
model is: 120 VAC, 1 Ø, 60 Hz., 12A.
Accessories requiring 120 VAC power sources such as
electronic air cleaners and humidifier transformers may
be powered from the electronic fan timer board where
provisions have been made for connections, but
should have their own controls. Do not use the direct
drive motor connections as a power source, since
there is a high risk of damaging the accessories by
exposure to high voltage from the auto-generating
windings of the direct drive motor.
5
Thermostat wiring connections and air conditioning
contactor low voltage connections are shown in the
wiring diagrams in Appendix B. Some micro-electronic
thermostats require additional controls and wiring.
Refer to the thermostat manufacturer's instructions.
The thermostat should be located approximately 5 feet
above the floor, on an inside wall where there is good
natural air circulation, and where the thermostat will be
exposed to average room temperatures. Avoid
locations where the thermostat will be exposed to cold
drafts, heat from nearby lamps and appliances,
exposure to sunlight, heat from inside wall stacks, etc.
The thermostat heat anticipator should be adjusted to
the amperage draw of the heating control circuit as
measured at the "R" and "W" terminals of the
thermostat. To reduce the risk of damaging the heat
anticipator, do not measure this current with the
thermostat connected to the circuit. Measure the
amperage by connecting an ammeter between the two
wires that will connect to the thermostat "R" and "W"
terminals.
10. HUMIDIFIER
A humidifier is an optional accessory available through
most heating supplies outlets. Installation should be
carried out in accordance with the humidifier
manufacturer's installation instructions. Water or water
droplets from the humidifier should not be allowed to
come into contact with the furnace heat exchanger. Do
not use direct drive motor connections as a source of
power for 120 VAC humidifiers and humidifier
transformers.
11. PIPING INSTALLATION
The entire fuel system should be installed in
accordance with the requirement of CAN/CSA B-139,
and local regulations. Use only an approved fuel oil
tanks piping, fittings and oil filter.
In the United States the installation must be in
accordance with NFPA No. 31 and local codes and
authorities.
Install the oil filter as close to the burner as possible.
For further details of the oil supply tank and piping
requirements, please refer to the instructions and
illustrations in the oil burner and oil pump instructions
shipped with the furnace.
12. OIL FILTER
All fuel systems should include an oil filter
between the fuel oil storage tank and the oil
burner. When using an oil burner nozzle smaller
than 0.65 U.S. Gallons Per Hour, install an
additional 7 to 10 micron filter as close as
possible to the oil burner.
13. OIL BURNER NOZZLES
The O5LD-091A-12-R is certified for multiple firing
rates, ranging from 70,000 to 105,000 Btu/h. By
manipulating the oil burner nozzle, flame retention
head, static plate and temperature rise; the furnace
may be fired at an ideal rate for a wide range of
structures. Refer to Table A-1, and the furnace rating
plate to determine the proper combinations.
14. OIL BURNER ADJUSTMENT
The burner air supply is adjusted to maintain the fuel to
air ratio to obtain ideal combustion conditions. A lack of
air causes "soft" and "sooty" flames, resulting in soot
build-up throughout the heat exchanger passages.
Excess combustion air causes a bright roaring fire and
high stack temperatures resulting in poor fuel
efficiency. The O5LD-091A-12-R furnace operates
most efficiently with a No. 1 smoke spot on the
Bacharach Scale. This is not necessarily the optimum
setting; however, because dust will inevitably build up
on the air moving components of the oil burner
assembly. This will result in decreased air supply with
the potential result of soot building up in the flue gas
passageways of the heat exchanger. Soot behaves as
an insulator and impairs good heat transfer. Stack
temperature will increase, and the overall efficiency will
decrease. As a means of avoiding this problem, it is
advisable to adjust the air supply to provide no more
than a trace smoke spot on the Bacharach Scale.
BEFORE OPERATING THE FURNACE
CHECK BURNER ALIGNMENT WITH
COMBUSTION CHAMBER. THE END
CONE OF THE AIR TUBE MUST BE
CENTRED TO THE ACCOMODATING
RING PROVIDED IN THE DESIGN OF
THE COMBUSTION CHAMBER. ADJUST
AS NECESSARY.
15. BURNER ELECTRODES
Correct positioning of the electrode tips with respect to
each other, to the fuel oil nozzle, and to the rest of the
burners is essential for smooth light ups and proper
operation. Refer to the oil burner instructions shipped
with the furnace for electrode specifications.
NOTE: Beckett AF Series Burner electrode
specifications have been revised. They should be
adjusted to be 5/16” above the nozzle centerline.
6
16. Burner Primary (Safety) Control
The furnace is equipped with a primary combustion
control, sometimes referred to as the burner relay or
burner protector relay, which uses a light sensing
device (cad cell) located in the burner housing, to
monitor and control combustion. Over time, dust or
combustion residuals can build up on the lens of the
cad cell impairing its response to the flame. The cad
cell should be checked for cleanliness and proper
alignment if the primary control frequently shuts down
combustion.
ALL FURNACE CONTROLS ARE SENSITIVE
AND SHOULD NOT BE SUBJECTED TO
TAMPERING. IF PROBLEMS PERSIST, CALL
YOUR SERVICE CONTRACTOR.
17. COMBUSTION CHAMBER
This furnace is equipped with a high quality cerafelt
combustion chamber. It is held in place by a retaining
bracket.
CHECK THE ALIGNMENT OF THE
COMBUSTION CHAMBER AND OIL BURNER
BEFORE FIRING. IT IS POSSIBLE FOR THE
COMBUSTION CHAMBER TO SHIFT IF
SUBJECTED TO ROUGH HANDLING DURING
TRANSIT.
inspected for damage or carbon build up whenever the
oil burner is removed for repairs or routine
maintenance.
The combustion chamber should be
DO NOT START THE BURNER UNLESS THE
BLOWER ACCESS DOOR IS SECURED IN
PLACE.
18. CIRCULATING AIR BLOWER
The O5LD-091A-12-R furnace model is equipped with
PSC motor Direct Drive blower systems. Direct drive
blower speed adjustments are not normally required in
properly sized extended plenum duct systems. The
motor RPM and air CFM delivery will vary
automatically to accommodate conditions within the
usual range of external static pressures typical of
residential duct systems. Under-sized duct systems
may require a higher blower speed to obtain a
reasonable system temperature rise. Some older duct
systems were not designed to provide static pressure.
They typically feature special reducing fittings at each
branch run and lack block ends on the trunk ducts.
7
This system may require modification to provide some
resistance to the airflow to prevent over-amping of the
direct drive blower motor. Selecting a lower blower
speed may correct this problem. Direct drive blower
speeds are adjusted by changing the "hot" wires to the
motor winding connections. Please refer to wiring
diagrams in Appendix B or the wiring diagram label
affixed to the furnace. THE NEUTRAL WIRE
(normally the white wire) IS NEVER MOVED TO
ADJUST THE BLOWER SPEED.
It is possible and acceptable to use a single blower
speed for both heating and cooling modes. The
simplest method to connect the wiring from both
modes is to use a "piggy-back connector"
accommodating both wires on a single motor tap. It is
also acceptable to connect the selected motor speed
with a pigtail joined to both heating and cooling speed
wires with a wire nut. As a safety precaution against
accidental disconnection of the wires by vibration, it is
advisable to secure the wire nut and wires with a few
wraps of electricians tape.
DO NOT CONNECT POWER LEADS
BETWEEN MOTOR SPEEDS. THE NEUTRAL
WIRE MUST ALWAYS BE CONNECTED TO
THE MOTOR'S DESIGNATED NEUTRAL
TERMINAL.
If the joining of the blower speed wiring is done in the
furnace junction box, tape off both ends of the unused
wire.
Do not use the blower speed wires as a source of
power to accessories as electronic air cleaners
and humidifier transformers. The unused motor
taps auto-generate sufficiently high voltages to
damage accessory equipment.
DISCONNECT THE POWER SUPPLY TO THE
FURNACE BEFORE OPENING THE BLOWER
ACCESS DOOR TO SERVICE THE AIR
FILTER, FAN AND MOTOR. FAILURE TO
SHUT OFF POWER COULD ALLOW THE
BLOWER TO START UNEXPECTEDLY,
CREATING A RISK OF DEATH OR
PERSONAL INJURY.
19. MAINTENANCE AND SERVICE
Annual Service By Contractor
A: Routine Maintenance By Home Owner
Other than remembering to arrange for the annual
professional servicing of the furnace by the service or
installation contractor, the most important routine
service performed by the homeowner is to maintain the
air filter or filters. A dirty filter can cause the furnace to
over-heat, fail to maintain indoor temperature during
cold weather, increase fuel consumption and cause
component failure.
The furnace filter(s) should be inspected, cleaned or
replaced monthly. The furnace is factory equipped with
a semi-permanent type filter. If the filter is damaged,
replace with filters of the same size and type. (See
Appendix A, Table A-8).
During the routine service, inspect the general
condition of the furnace watching for signs of oil leaks
in the vicinity of the oil burner, soot forming on any
external part of the furnace, soot forming around the
joints in the vent pipe, etc. If any of these conditions
are present, please advise your service or installation
contractor.
THE COMBUSTION CHAMBER (FIREPOT) IS
FRAGILE. USE CARE WHEN INSPECTING
AND CLEANING THIS AREA.
The heat exchanger should be inspected periodically
and cleaned if necessary. If cleaning is necessary,
SHUT OFF POWER TO THE FURNACE and remove
the burner. Using a stiff brush with a wire handle,
brush off scale and soot from inside the drum and flue
pipe. To clean the radiator, remove the clean-out caps
screws, and remove the caps carefully to avoid tearing
the gaskets. A wire brush can be used to loosen dirt
and debris on the inside surfaces of the radiator. Clean
out all accumulated dirt, soot and debris with a wire
handled brush and an industrial vacuum cleaner.
Before replacing the clean-out caps, inspect the
gaskets. If the gaskets are broken, remove the
remnants and replace with new gaskets.
The blower motor is factory oiled and permanently
sealed. DO NOT LUBRICATE. Excess oil causes
premature electric failure.
Inspect the blower fan. Clean if necessary.
Oil Burner Maintenance: Follow the instructions of the
oil burner manufacturer. (See oil burner manufacturer's
instructions supplied with furnace or burner). It is
advisable to change the oil burner nozzle and oil filter
on an annual basis.
The venting system should be cleaned and inspected
for signs of deterioration. Replace pitted or perforated
vent pipe and fittings. The barometric damper should
open and close freely.
All electrical connections should be checked to ensure
tight connections. Safety controls such as the high limit
controls should be tested for functionality. The fan
control should be checked to ensure that the fan on
and off delay function continues to start and stop the
blower fan at the optimal settings.
8
20. OPERATING INSTRUCTIONS
Before Lighting
Open all supply and return air registers and grilles.
Open all valves in oil pipes.
Turn on electric power supply.
To Light Unit
Set the thermostat above room temperature to call for
heat. The burner should start. NOTE: It may be
necessary to press the RESET button on the primary
combustion control relay.
To Shut Down Unit
Set the thermostat to the lowest possible setting.
Set the manual
switch (if installed) in the Electrical
Power Supply Line to "OFF".
NOTE: IF THE FURNACE IS TO BE SHUT DOWN
FOR AN EXTENDED PERIOD OF TIME, CLOSE THE
OIL SUPPLY VALVE TO THE BURNER.
There will be a fan on time delay before the circulating
fan is energized. The United Technologies 1158-120
has an adjustable fan on time that is set by selecting
the dipswitch combination displayed in Chart 1. This
fan on delay can be set at 30, 60, 90 or 120.
Set the thermostat below room temperature. The oil
burner should stop.
air circulation blower will continue to run until the
The
time off setting selected on the electronic fan timer
control times out. The United Technologies 1158-120
have an adjustable fan off time of 2, 3, 4, & 6 minutes.
The fan timer control adjustments may be altered if the
air at the room registers is uncomfortably high upon
blower start up or shutdown.
The necessary adjustments to the fan control settings
should
the
be determined by measuring the temperature of
air
in the supply air take-off, or within the first few
inches of the supply air trunk. The side mid point of the
transition is usually ideal, providing that the
thermometer probe is beyond the "line of sight"
wherein false readings from radiant heat could be
observed. The system temperature rise is the
difference in temperature between the supply air and
return air.
To check the operation of the limit switch, shut off
power to the furnace. Temporarily remove the neutral
wire from the direct drive blower motor. Restore the
electrical power to the furnace and set the thermostat
above room temperature.
After three or four minutes of burner operation, the limit
control should turn the burner off. When the limit
function test is complete, shut off electrical power to
the furnace, replace the neutral wire to the blower fan
motor, and then restore power. The blower fan will
start up immediately. Once the temperature has
dropped and the limit control has reset, the fan will
operate until the fan off time is achieved. The oil burner
will then resume operation and continue until the
thermostat is satisfied. Restore the thermostat setting
to a comfortable temperature.
DO NOT ATTEMPT TO START THE BURNER
WHEN EXCESS OIL HAS ACCUMULATED,
WHEN THE FURNACE IS FULL OF VAPOUR, OR
WHEN THE COMBUSTION CHAMBER IS VERY
HOT. NEVER BURN GARBAGE OR PAPER IN
THE FURNACE, AND NEVER LEAVE PAPER OR
RAGS AROUND THE UNIT.
9
Loading...
+ 19 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.