The baseband submodule controls the internal operation of the phone. It
controls the user interface, i.e. LCD driver, keyboard, and audio interface
functions. The module performs all signalling towards the system, and
carries out audio–frequency signal processing. In addition, it controls the
operation of the transceiver and stores tuning data for the phone.
All functional blocks of the baseband are mounted on a single multi layer
printed circuit board. This board also contains RF–parts. The chassis of
the radio unit contains separating walls for baseband and RF. All components of the baseband are surface mountable. They are reflow soldered .
The connections to the Display–module are fed through a flex to the
board connector.
The Baseband Module includes power supply, modem, audio filters, micro–controller, nonvolatile memory, SIS–processor, and keyboard. The
display is a separate module. Power supply circuits like regulators, voltage detection and charging control, are integrated to the custom MUUMI
circuit . The modem and audio operations are integrated into NIPA ASIC.
The micro–controller is a Hitachi H8 series controller with 64 kbytes ROM
and 2 kbytes RAM. The 2 kbytes EEPROM memory is of serial I
type. The SIS–processor is a Motorola MC68HC11A8 connected to the
controller over serial bus I2C.
The handsfree headset is connected by a 2,5 mm TC – Jack. The external earphone and microphone use the same audio lines and the same
amplifier as the internal earphone and microphone.
PinLine
Symbol
1GNDPower Supply Ground
Unit / Notes
2XMICBias from NIPA, external microphone
3XEARAudio from amplifier, external earphone
4MICInternal microphone
5EARInternal earphone
Page 3 – 8
Original 11/97
PAMS
NHN–6N
Technical Documentation
System Module
Circuit Description
CTRLU
The Control block controls all phone functions, and SIS–processor too.
CTRLU Internal Signals, Inputs
Signal NameNotesFrom
VL2Logic supply voltage Max 40 mAPWRU
VL3SIS processor and earphone amplifier supply voltagePWRU
VREFReference voltage 3.3V 2%. Max. 5mA.PWRU
PWRONSignal from power button.PWRU
XRESReset line from MUUMIPWRU
VCHARGCharger voltage to A/D converterPWRU
VBATSWBattery voltage to A/D converter .PWRU
BTEMPBattery temperatureCTRLU
RFTEMPRF temperatureSYNTHESIZER
RSSIReceived signal strenght indicationRECEIVER
TXITransmitter output power level indicationTRANSMITTER
RXDSerial interface (M2BUS)PWRU
XINTInterrupt request from NIPAAUDIO
NMINo maskable Interrupt request from NIPAAUDIO
CLKMCUClock for controllerAUDIO
HSCONNHeadset recognitionAUDIO
CTRLU Internal Signals, Outputs
Signal NameNotesTo
TXDSerial interface (M2BUS)PWRU
CSWCharger controlPWRU
AGCGain controlRECEIVER
RXERX Circuit power on/offRECEIVER
SCLKSynchronous data clock for synthesizersSYNTHESIZER
SDATSynchronous data for synthesizersSYNTHESIZER
SLESynthesizer data latch enableSYNTHESIZER
TXETransmitter control (on/off)TRANSMITTER
TXCTransmitter Power ControlTRANSMITTER
TXSTX synthesizer enableSYNTHESIZER
EARENEarphone enableAUDIO
XNCSNIPA chip select signalAUDIO
XNWRNIPA write control signalAUDIO
Original 11/97
Page 3 – 9
NHN–6N
PAMS
System Module
XNRDNIPA read control signalAUDIO
NA(3:0)NIPA address busAUDIO
ND(7:0)NIPA data busAUDIO
LIGHTSBacklights on/offUIF
COL0/
CTRLU controls the watchdog timer in MUUMI. It sends a positive pulse
at approximately 1 s intervals to the XPWROFF pin of MUUMI to keep the
power on. If CTRLU fails to deliver this pulse, the MUUMI will cut off power from the system. CTRLU also controls the charger on/off switching in
the PWRU block. When power off is requested, CTRLU leaves the
MUUMI watchdog without reset. After the watchdog has elapsed, MUUMI
cuts off the supply voltages from the phone. Battery charging is controlled
by CSW line, which is a PWM–controlled output port (frequency about 11
Hz).
VBATSW, Battery voltage measurement
The battery voltage can be measured up to 9.075 V nominal with 3.3 V
reference voltage. The absolute accuracy is low because of the reference
3 % accuracy, and A/D–converter +/– 8 LSB accuracy . This battery voltage measurement offset error must be calibrated with input voltage 4.8 V.
The A/D conversion result can be calculated from the equation:
The charger voltage can be measured up to 21.6 V nominal. The
A/D–conversion result can be calculated from the equation :
A/D readout = 1024 * (VCSW*(18/118)) / VREF VREF=3.3 V
For example:
BTEMP , Battery temperature measurement
Battery temperature measurement is implemented with 15 kohm NTC
and 47 kohm pull–up resistor. The A/D conversion readout can be calculated from the equation:
11 Vgives520 = 208H
10 Vgives473 = 1D9H
4.8 Vgives227 = 0E3H
A/D readout= 1024* ( R
NTC
/( R
NTC
System Module
+47k))
CTRLU – AUDIO
The interface between micro–controller and NIPA circuit is a bi–directional
8–bit data bus with 4 address lines. Address, data, and control lines are
used in micro–controller as I/O–port pins. Data line direction must be controlled with the micro–controller data direction register. The Interface includes address outputs NA0–3, data inputs (read) / outputs (write)
ND0–7, chip select control output XNCS, read control output XNRD, write
control output XNWR, and interrupt inputs XINT and NMI. To minimize
power consumption in battery stand by mode, control signals XRD and
XCS should be in ’0’ state, address output NA0–3 and NWR in ’1’ state,
and data lines ND0–7 should be inputs .
CTRLU – UIF
The keyboard is connected directly to the controller. COL0–4 are output
lines and ROW0–2 are input lines. The watchdog is updated at the same
time as keyboard scanning (XPWROFF). Keyboard scanning is done by
driving one COL to 0 V at time, and ROWs are used to read which key is
pressed.
For example:
+25°Cgives247 = 0F7H ( About 0.8 V )
The keyboard and LCD lights are controlled by the LIGHTS signal.
The LCD controller interface to the micro–controller are 4 bi–directional
data lines DD0–3, register select control RS output, read/write control RW
output, and bus enable control E output. The data lines LCDD0–3 and
control signals RS, RW must be set to high state during standby opera-
Original 11/97
Page 3 – 11
NHN–6N
PAMS
System Module
tion because of the pull–up resistors in the LCD controller. LCD controller
resetting requires clock signal during XRES active low which is controlled
by LCDRES line. The MCU disables LCDRES after it has set LCDCLK
frequency to 57.6 kHz.
CTRLU – RECEIVER
The RECEIVER circuit power is connected on/off by the RXE signal.
Received signal strength is measured over the RSSI line, and the inter-
mediate frequency is measured over the IF line.
CTRLU – SYNT
The frequency is controlled by the AFC signal. The synthesizer is controlled via the synchronous serial bus SDAT/SCLK. The data is latched to
the synthesizer by the positive edge of the SLE line. The TX synthesizer
power on/off (TXS) line is controlled via PLL circuit. Control information is
programmed by using the SDAT line.
Technical Documentation
RFTEMP, RF temperature measurement
RF temperature measurement is implemented with 15 kohm NTC and
47 kohm pull–up resistor. The A/D conversion readout can be calculated
from the equation:
A/D readout= 1024* ( R
For example:
25 Cgives247 = 0F7H ( about 0.8 V )
CTRLU – TRANSMITTER
The transmitter output power level is measured over the TXI line. The
TXE line activates the power module. The power is controlled via the TXC
line which is a PWM–controlled output port (frequency about 5.1 kHz).
Main components
H8/3032 is a CMOS micro–controller. All memory needed (64kB ROM,
2kB RAM) except the EEPROM, is located in the controller. The MCU operating clock (3.6864 MHz) is generated on NIPA. H8/3032 is operating in
single–chip normal mode (mode 2) 64 kbyte address space, so all input/
output pins are used as I/O–ports.
Earphone enable
Reset for Lcd driver
Power button state
RX/TX synthesizer latch
Serial interface (M2BUS)
Serial interface (M2BUS)
Serial clock for EEPROM
Address line for NIPA
Address line for NIPA
NIPA chip select
Read/write control to NIPA
Read/write control to NIPA
Backlight control
Lcd driver data
Keypad inputs (Input pullup
used)
Keypad output
Keypad output /
Watchdog control
(XPWROFF)
Keypad outputs
TX synthesizer enable. Ac-
tive high
44 – 45MD0 – MD1
46
47STBY
48RESXRES
49NMINMI
50VSSGND
NC
Original 11/97
Mode selection
Reset from MUUMI
Interrupt request from
NIPA
Page 3 – 13
NHN–6N
PAMS
System Module
51EXTALCLKMCU
52XTAL
53VCCVL2
54P63TXE
55P64AGC
56P65RXE
57RESO
58AVSSGND
59P70VBATSW
60P71VCHARG
61P72RSSI
Technical Documentation
DescriptionSignalPortPin Number
External system clock from
NIPA
Transmitter on/off
Receiver gain control
RX circuit power on/off
Battery voltage
Charger voltage
Received signal strength
62P73TXI
63P74BTEMP
64P75HSCONN
65P76RFTEMP
66P77
67VREFVREF
68AVCCVREF
69P80XINT
70P81RS
71P82RW
72P83E
73PA0SISCLK
74PA1SISD
Transmitter power monitor
Battery temperature
Headset recognition
RF temperature
Interrupt request from
NIPA
Lcd driver register select
Lcd driver read/write
Lcd driver chip select
Serial clock for SIS–pro-
cessor
Serial data for SIS–proces-
sor
75PA2EDATA
76PA3SCLK
77PA4CSW
78PA5MBUSEN
79PA6TXC
80PA7
Page 3 – 14
Serial data to/from EEPROM
Serial clock for synthesizer
Charging control
Mbus enable
Transmitter power control
Original 11/97
PAMS
NHN–6N
Technical Documentation
MC68HC11A8
MC68HC11A8 is a SIS (subscriber identification) circuit connected to the
controller over serial bus I2C.
SIS–processor signals
Pin NoSignalFrom
31EXTALClock input from the NIPA
43RESETReset input
47PD0
50PD1
EEPROM
I2C bus clock
I2C bus data
There is one 2k EEPROM in the phone. EEPROM is a nonvolatile
memory into which the tuning data for the phone is stored. In addition, it
contains the short code memory locations to retain user selectable phone
numbers.
System Module
EEPROM signals
Pin NoSignalDescription
5SDA
6SCL
I2C bus data
I2C bus clock
Original 11/97
Page 3 – 15
NHN–6N
PAMS
System Module
Technical Documentation
PWRU
The power block provides the supply voltages for the baseband, and also
includes the charging electronics.
PWRU Internal Signals, Inputs
Signal NameNotesFrom
VBATBattery voltage inputCONNECTOR
XPWRONPower on control from keyboardUIF
XPWROFFPower off control from controller (watch dog)CTRLU
VCSCharging supply voltage from chargerCONNECTOR
CSWCharger controlCTRLU
TXDSerial interface (M2BUS)CTRLU
M2BUSSerial interfaceCONNECTOR
PWRU Internal Signals, Outputs
Signal NameSignal descriptionTo
VAAnalog supply voltage. Max 20 mA.AUDIO
VL2MCU supply voltageCTRLU, UIF
VL3SIS processor and earphone amplifier supply voltageCTRLU, AUDIO
VREFReference voltage 3.3V 2%. Max. 5mA.CTRLU, PWRU
RECEIVER,
TRANSMITTER
XRESMaster resetCTRLU, AUDIO
VBATSWBattery voltage to A/D converter .CTRLU
VCHARGCharger voltage to A/D converterCTRLU
RXDSerial interface (M2BUS)CTRLU
PWRONPower button indicator, PWRON is same as XPWRON but
buffered and inverted.
CTRLU
Block description
The baseband power supplying circuit MUUMI includes:
– the supply voltages:
VL240mA for digital circuits
VA20mA for analog circuits
VREF5mA reference voltage for A/D–converters and
regulators
– the supply voltage VL3 (100mA) for SIS–processor and earphone amplifier is generated by external regulator
– switched output of battery (VBATSW) and charger voltage (VCHARG)
measurements to MCU A/D–converter
– battery voltage detection and reset logic
– charger switch control output used to limit battery voltage VBAT < 6.8V
– power on/off switch input (XPWRON), buffered output to MCU
Page 3 – 16
Original 11/97
PAMS
NHN–6N
Technical Documentation
(PWRON)
– watchdog timer using oscillator in COFF pin , cleared by falling edge
input in PWROFFX, elapsing time for watchdog timer is 3 ... 4 seconds
– M2BUS open drain output driver.
The charge switch driving circuit is implemented with discrete components. This circuit includes transient voltage protection, soft charge
switching, low voltage battery charging and battery disconnecting with
charger connected protection. This circuit also limits battery voltage when
charger is connected to protect MUUMI and TX transistors.
Power circuitry have three different operating modes: POWER OFF , RESET and POWER ON. In POWER OFF state MUUMI regulator outputs
are disabled and reset control output signal (PURX) is active low.
MUUMI internal oscillator at pin COFF is working in all operating modes.
MUUMI goes through short RESET state (100ms ) to POWER ON–state
, if PWR–button is pressed or charger voltage input is connected to
charging input VCS (charging voltage detection in MUUMI input VCHAR
is level active). In RESET–state regulator outputs VL,VA and VREF are
active and PURX–signal is active low. If battery voltage VBAT is lower
than 4.1 V (3.9V...4.3V) the circuit cannot go to POWER ON state.
MUUMI goes also to RESET state, when battery voltage is falling below
3.9 V (3.7V...4.1V). This situation is possible, when battery is fully discharged or battery is disconnected.
System Module
In POWER ON mode all regulator outputs are active and MUUMI reset
signal output PURX is inactive high. Micro–controller XPWROFF–output
signal clears at falling edge the watchdog inside MUUMI. If the watchdog
is not cleared , MUUMI goes to POWER OFF state. When the charger is
connected and battery voltage is higher than 4.1V , module stays in
POWER ON mode.
The micro–controller controls battery charging with CSW output (which is
PWM–controlled output port) and MUUMI limits the maximum battery voltage to 6.8 V with CHRGSW–output.
No current flows from charger (VCHARG) to battery , if MCU output CSW
is active low and XRES signal is inactive high. The battery is charged
also, when charger is connected and XRES signal is active low. The
charging circuit charges the battery during RESET to higher than 4.3 V.
The charging electronics is controlled by the CTRLU. When the charging
voltage is applied to the phone while the phone is powered up, the
CTRLU detects it and starts controlling the charging.
If the phone is in power–off, the MUUMI will detect the charging voltage .
If the battery voltage is high enough the reset will be released and the
CTRLU will start controlling the charging. If the battery voltage is too low
the phone is in reset and charging control circuitry will pass the charging
current to the battery. When the battery voltage has reached 4.1V
(3.9...4.3V) the reset will be removed and the CTRLU starts controlling
the charging. This all is invisible to the user.
Original 11/97
Page 3 – 17
NHN–6N
PAMS
System Module
V116 is the charging switch; it is governed by the controller (CSW line) via
voltage regulator V114 and V115. In fast charge mode CSW is ”1” and in
maintain charge mode there is controller controlled pulses. In charge off
state CSW is ”0”. In maintain charge mode pulse ratio depends of charger
and temperature.
There is three different ways to switch power on:
– Power key pressing grounds the XPWRON line. The MUUMI defects
that and switches the power on.
– Charger detection on MUUMI detects that charger is connected and
switches power on.
– MUUMI will switch power on when the battery is connected. If the bat-
tery is changed during the call, the power is kept on. If not the power
is switched off.
Technical Documentation
Page 3 – 18
Original 11/97
PAMS
NHN–6N
Technical Documentation
MUUMI Block diagram
VBAT1
1
VBAT2
22
VBAT3
5
M2BUSIN
11
760k
PWM
15
760k
CHARGER
CTRL
LOGIC
BANDGAP
REF
70k
40k
System Module
VBATSW
M2BUSOUT
VL2
VA
VREF
17
12
23
2
4
21
13
14
3
VCHAR
PWRONX
PWROFFX
TEST
VBAT
32k
760k
760k
LOW VBAT
& CHARGER
DETECT
PWR ON/OFF
&
RESET LOGIC
Creset
20
16
Coff
VL_ENA
VA_ENA
VREF_ENA
VSW_ENA
VCHAR
GND1
24
GND2
19
GND3
7
CHRGSW
PWRONXBUFF
VCHARSW
Cref
6
PURX
8
10
9
18
Original 11/97
Page 3 – 19
NHN–6N
PAMS
System Module
AUDIO
Introduction
The block includes NIPA audio/signalling processor in a 64 TQFP package for NMT450 and NMT900 systems.
Main features
– Single chip FFSK modem and audio circuit
– Full duplex 1200 baud signalling
– DMS facility
– Low power consumption modes
– Programmable output clocks with clock stop for MCU and LCD
– 8 bit parallel interface with pull ups
– FSK indicator and level detector
– Speech volume indicator
– Programmable timer
– IF counter
– 8 bit DAC
– FII filter and gain control
– Low noise microphone amplifier
– Input for a handset microphone or an accessory
– Microphone sensitivity compensation +4.8/–4.2 dB range (4 bits)
– Compander
– RX and TX filters
– Tx hard limiter
– Tx AGC
– Internal reference compensation +1.00/–0.75 dB range(3 bits)
– Summing stage for voice/data, signalling and fii
– Transmitter compensation amplifier with +3.75/–3.75 dB range (4 bits)
– Receiver compensation amplifier with +3.75/–3.75 dB range (4 bits)
– Volume control amplifier with –20/+17.5 range (4 bits)
– Earphone amplifier with drive capability for ceramic earpiece
– Buffered output for a handset or an accessory
– Mute switches
– Dual and single tone multi–frequency generator
– Driver for buzzer amplifier
– Hands free functions
XRESReset line from MUUMIPWRU
XNCSChip select signalCTRLU
XNWRWrite control signalCTRLU
XNRDRead control signalCTRLU
NA0...34–bit address busCTRLU
ND0...78–bit bi–directional data busCTRLU
EARENEarphone enableCTRLU
MBUSINTM2BUS interrupt requestPWRU
KBINTKeyboard interrupt requestUIF
IF(2nd) Intermediate frequency for AFC functionRECEIVER
DAFDetected audio signal from receiverRECEIVER
XMICExternal audio input from service accessoriesCONNECTOR
VBATBattery voltageCONNECTOR
VAAnalog supply voltage Max 20 mA.PWRU
VL3Logic supply voltage for earphone amplifier, Max 100mAPWRU
MBUSENMbus enable from CTRLUCTRLU
AUDIO Internal Signals, Outputs
Signal NameNotesTo
XINTInterrupt request to MCUCTRLU
NMINo maskable Interrupt request to MCUCTRLU
HSCONNHeadset recognition to CTRLUCTRLU
LCDCLKClock signal for LCD driver ( 57.6 kHz)UIF
CLKMCUClock signal for MCU (3.6864 MHz)CTRLU
XEARExternal audio output to service accessoriesCONNECTOR
MODAudio output to synthesizerSYNTHESIZER
AFCVCTCXO controlSYNTHESIZER
NIPA Pin list
Pin noSymbolPin typeNotes
1VDD1+ 3.3 V Supply voltage, digital
2XRDDIN/pdRead control signal, active state LOW, pull–down > 50
k
3XCSDIN/pdChip select signal, active state LOW, pull–down > 50
9D6DIO8–bit bi–directional data bus
10D5DIO8–bit bi–directional data bus
11D4DIO8–bit bi–directional data bus
12D3DIO8–bit bi–directional data bus
13D2DIO8–bit bi–directional data bus
14D1DIO8–bit bi–directional data bus
15D0DIO8–bit bi–directional data bus LSB
16VDD2+ 3.3 V Supply voltage, digital
Technical Documentation
17NMIDOUTNon maskable Interrupt request
18XCLRDINHW reset input, active state LOW
19TMODEDIN/pdTest mode selection, pull–down > 50 k
20TSELDIN/pdTest select, pull–down > 50 k
21XINTDOUTInterrupt request to MCU, active state LOW
22MBUSINTDINMBUS interrupt request, falling edge active
23KBINTDINKeyboard interrupt request, falling edge active
24IFAINIF input
25VSS20 V Supply voltage, digital ground
26VSA20 V Supply voltage, analog ground
27DAFAINSignal input
28FILOAOUTRxfilter output
29EXPIAINExpander input
30EAMPBOAOUTExpander Amplifier B output
31EWCIAINExpander Window Comparator input
32EXPOAOUTExpander output
33VDA2+ 3.3 V Supply voltage, analog
34VOLIAINVolume control ampl. input (Volume)
35EXTEARAOUTBuffered output for handset or an accessory
36EVGNDAINEarphone driver virtual ground
37EARMAOUTEarphone driver output
38EARPAOUTEarphone driver output
39EARFBAINPin for feedback resistor of EARphone amplifier
40DACOAOUTDA converter output
Page 3 – 22
Original 11/97
PAMS
NHN–6N
Technical Documentation
NotesPin typeSymbolPin no
41EARINAOUTPin for input resistor of EARphone amplifier
42REFAINInternal analog signal ground 1.65 V
43MICAINMicrophone amplifier input
44BIMICAOUTMicrophone bias current output
45CMICAINMicrophone current stabilization capacitor
46EXTMICAINAudio input for a handset or an accessory
47TXBPOAOUTTransmit bandpass filter output
48VDA1+ 3.3 V Supply voltage, analog
49COMIAINCompressor input
50COMOAOUTCompressor output
51EMPIAINPre emphasis input
52FIIOUTAOUTReceived FII signal
53TOUTDOUTTest output, digital
System Module
54ATSTAOUTAudio Filter Test output
55MODAOUTTransmit path output
56VSA10 V Supply voltage, analog ground
57VSS10 V Supply voltage, digital ground
58BUZZDOUTBuzzer output
59ATOUTAOUTTest pin
60CLKINCIN7.3728 MHz (3.6864 MHz) crystal oscillator input or
input for the external clock
61CLKOUTCOUT7.3728 MHz (3.6864 MHz) crystal oscillator output
62CLKLCDDOUTClock signal for LCD, 230.4 kHz or 57.6 kHz
63CLKMCUDOUTClock signal for MCU, 3.6864 MHz or 7.3728 MHz
64XWRDIN/puWrite control signal, active state LOW, pull–up > 50
k
Original 11/97
Page 3 – 23
NHN–6N
R
PAMS
System Module
NIPA Block Diagram
ATST
ATOUT
LIM
TXAAF
PREEMP
EMPI
CWCI
COMICOMO
TXBPO
AGC
VOL
SUM
TXTRI
RXAAF
SINGEN
MODTRFIL
MODRXFIL
TXLPTXTRI+TXPOSTFIL
AGC
PREEMLIM
COMPR
DATACOMP
txbpo
(to SIDEAR)
aloop (to RXMUX)
SINGEN MODTRFIL
FSKMOD
TRSTBY
TR
RFLAG
TFLAG
RECCTRL
INTERNAL
WTRFIL
SUM
TRREG
CTRL
STATUS
BITS
RECREG
DPLL
CLOCKS
MOD
WPOSFIL
ddtmf
SMUX
loop (to MODRXFIL)
MODTRPOST
BUZZ
DRIV
BUZZ
CONTROL BITS
DFLAG
DETED
AFC
XBSSBY
XTALKSBY
XBUZZSBY
XIFSBY
CREG
TIMER
DETFIL
DACO
D/A
8 bit
XDACSBY
XDTMFSBY
INTERFACE
FIIBUF
A0 A1 A2 A3 D0 D1 D2 D3 D4 D5 D6 D7
NMI
XINT
XWR
XRD
XCS
Technical Documentation
FIIOUT
EAR
FIIPOST
EARP
HF
EARM
CONTR
EVGND
RXATTACC
EXPVOL
DEEMP+RXFIL
EXTEAR
SIDEA
SIDEAR
txbpo
(from TXBP)
64 pins
VOLI
EXPO
EWCI
EAMPBO
EXPI
FILO
MICAM
Page 3 – 24
TXMUX+TXAAFTXATTMICTRI TXBP
MIC
CMIC
BIMIC
ddtmf (to BUZZDRIV)
DTMFCOMP
dtmf
DTMF GEN
EXTMIC
CLKLCD CLKMCU
XCLR
TMODE
(to RXMUX)
REF GEN
CLKIN
CLOCKDIV
TSEL
OSC
IFAMP
CLKOUT
IFCNTR
IF
FSKIND
GND GEN
REF
FSKDIS
DATACOMP
KBINT
MBUSINT
MODRXFIL
LEVEL
FSKLEV
VDD2
VDD1
FIIFIL(4kHz)+FIITRI
dtmf
loop (from WPOSFIL)
VSS2
VSA1
VDA1
VDA2
RXMUX+AAFIL
VSA2
VSS1
aloop (from TXPOSTFIL)
RXTRIRXAAF
DAF
Original 11/97
PAMS
NHN–6N
Technical Documentation
Transmit (TX) audio signal path
The TX audio signal is processed in the NIPA circuit and fed via the MOD
line to the TX synthesizer on SYNTHESIZER module.
NIPA ASIC contains the following stages for TX signal processing:
MICAM:
The signal from the microphone is fed to this stage and amplified up to
TXBP filter.
TXATT:
TXATT is a hands free attenuator. Maximum attenuation is selectable
from four levels: –30, –27, –24 or –21 dB.
MICTRI:
System Module
MICTRI is for different microphone (phone microphone, headset and
handset etc.) sensitivity compensation. It is used also for dtmf level setting. Gain 16 levels, step 0.6 dB.
BANDPASS:
Tx bandpass filter takes out high freq noise and low freq hum.
COMPR:
It compresses speech dynamic area to avoid noise at tx and radio path. It
is an amplitude compressor and ratio is 2:1 in dB scale. It can be bypassed for measurement or dtmf purposes.
PREEMP:
Pre–emphasis filter gives +6 dB/oct emphasis.
AGC:
A soft limiter is needed in order to suppress inter–modulation. Signal
measuring circuitry measures peak–to–peak voltage. If the signal on soft
limiter input is not a sine signal (clipped in preceding stages), peak–to–
peak signal level is increased in the post limiter filter.
LIM:
Hard limiter. It cuts the signal transients to 1131 mVpp levels.
TXLP:
The corner frequency of tx lowpass filter is 3400 Hz. Amplitude attenua-
tion is 12 dB/oct after the corner point. Filter includes notch at 4 kHz.
TXTRI:
TXTRI is for nominal deviation tuning. Gain 8 levels, step 0.5 dB.
TXPOSTFIL:
Original 11/97
Page 3 – 25
NHN–6N
PAMS
System Module
Postfil eliminates filter clock.
SUM:
Speech, data and FII signals are summed together.
WTRFIL:
This block is a lowpass filter for FII and data. Transmitter Compensation
Amplifier is these too. Gain 16 levels, step 0.5 dB.
WPOSFIL:
WPOSFIL filters out the replicates of the output spectrum around WTRFIL
clock frequency and its harmonics.
RECEIVE (RX) AUDIO SIGNAL PATH
Technical Documentation
NIPA contains the following stages for RX signal processing:
RXTRI:
RXTRI is for demodulation sensitivity compensation. Gain 16 levels, step
0.5 dB.
RXAAF:
RX aafilter filters out noise and other high frequency components from
the incoming signal. It prevents aliasing in FIIFIL, RXFIL and MODRXFIL.
RXMUX+AAFIL:
Rxmux selects speech from DAF–pin or DTMF from generator or a loop
from TXTRI or mute. Aafil prevents aliasing in RXFIL.
DEEMP+ RXFIL:
Rx filter filters out high freq noise and low freq hum. It has de–emphasis
–6 dB/oct for the received speech signal. Design should include notch at
4kHz.
EXP:
It expands speech dynamic back to normal. It is an amplitude expander
and ratio is 1:2 in dB scale. It can be by–passed for measurement or dtmf
purposes.
VOL:
VOL is for earphone or accessory speaker/earphone volume control. Vol-
ume Control Amplifier. Gain 16 levels over –20 to +17.5 dB in 2.5 dB
steps.
Page 3 – 26
Original 11/97
PAMS
NHN–6N
Technical Documentation
RXATT:
RXATT is a hands free attenuator. Maximum attenuation is selectable
from four levels: –30, –27, –24 or –21 dB.
Hands free controller (HF CONTR) measures peak–to–peak level of the
received audio and controls gains of the transmit and receive attenuators
as a function of measured signal level.
EAR:
The Earphone Amplifier is a single input, differential output amplifier for a
ceramic earpiece.
ACC:
Buffer for accessory line is capable of driving high capacitive load. Gain
and response of the buffer are fixed.
Transmitting data path
The data to be transmitted will be loaded into the transmitting register
TRREG. From the TRREG register the 8 bit data is transformed to serial data
which is sent to the FSK modulator (FSKMOD) and sine wave generator
(SINGEN) and then to the summing block (SUM).
System Module
Receiving data path
The data from anti alias filter is connected through the modems RX filter
(MODRXFIL) to the data comparator (DA TACOMP) and then to FSK discriminator. Further from FSK discriminator data is connected to detecting filter
(DETFIL) and from there to digital phase locked loop (DPLL).
IF
Intermediate frequency counter (IFCTR) is on the modem to measure
the frequency of IF signal.
AFC
AFC provides the synthesizer fine tuning. It can also be used for channel
sidestep.
AFC DA–converter output DC level tunes RF oscillator (VCXO).
FII path
The FII signal is filtered and amplified with a 4 kHz bandpass filter (FIIFIL). FIITRI is for FII sensitivity compensation. The filtered FII is then fed to
the summing block (SUM).
Original 11/97
Page 3 – 27
NHN–6N
PAMS
System Module
Buzzer driver
The buzzer driver is a ’semi PWM’ signal generator. It detects rising edges
of DTMF signal and generates a pulse on every rising edge. The length of
the pulse can be set by writing a length control word to the register BUZZVOL. The length is N * 2.17 us, where N is a value in BUZZVOL register.
V alue 0x0H in BUZZVOL register disables buzzer driver i.e. BUZZ output is
always low.
The buzzer uses three volume levels, which are controlled by the PWM
signal.
Clock divider
The clock divider generates internal clock frequencies by dividing the
master clock frequency which is created by an internal crystal oscillator
and an external 7.3728 MHz or 3.6864 MHz crystal. An external clock signal can also be used. If the crystal is used, the oscillator output CLKOUT
must not be loaded. A buffered crystal frequency can be obtained at pin
CLKMCU directly or divided by two. A 230.4kHz / 57.6kHz clock can be
obtained at pin CLKLCD. The frequency can be selected with control bit
SELLCDC.
Technical Documentation
NHN–6N uses a 3.6864 MHz clock for the MCU (CLKMCU), and a
57.6 kHz clock for the LCD display (CLKLCD).
Page 3 – 28
Original 11/97
PAMS
NHN–6N
Technical Documentation
RF Section
Technical Summary
Functional Description
The RF module is designed for handportable cellular phone which operates in the NMT900 system. The purpose of the module is to receive and
demodulate the radio frequency signal from base station and transmit
modulated RF signal to base station.
RF module is constructed on a 1.0 mm thick FR4 four–layer Printed Wire
Board. Dimensions of the PWB are 142 mm x 48 mm.
EMC leakage is prevented with magnesium shield on component side.
Basic Specifications
System Module
ParameterValue
RX frequency band935.0125 – 959.9875 MHz
TX frequency band890.0125 – 914.9875 MHz
RX LO frequency band980.0125 – 1004.9875 MHz
Duplex spacing45 MHz
Channel numbers1 – 1000, 1025 – 2023
Number of channels1999
Channel spacing12.5/25 kHz
TX output power0.1 W low power, 0.55 W high power
Method of frequency synthesisDual PLL with two UHF signals for RX LO and
TX
Frequency controlAFC with +/– 2.5 kHz limits
Receiver typeSuperheterodyne with double IF
Modulator typeFM–modulator
Current consumption, reception63 mA
Current consumption, standby5.5 mA
Current consumption, transmission550 mA
Original 11/97
Page 3 – 29
NHN–6N
PAMS
System Module
Technical Documentation
Module Characteristics
Maximum ratings
The maximum battery voltage during transmission should not exceed 6.0
V. Higher battery voltages may destroy the power amplifier module.
ParameterValue
Battery voltage nom. 4.8 V, min. 4.5 V, max. 6.0 V,
Regulated supply voltage 3.6 V +/– 5 %
Operating temperature range –25 ... +55 deg.C
DC Characteristics
Regulators
There are two regulators in the RF unit. Regulators get their reference
voltages 3.3 V (Vref) from BB unit. Regulators regulate the battery voltage
to the fixed 3.6 V level.
Control Signals
In the following table the RF current consumption can be seen with different status of the control signals. RX and TX synthesizer phase locked
loops are switched on/off by a control byte of PLL circuit.
RXE + SW powerup for RX synthe-
sizer
HHH550 mAPower Level 2
HHL67 mA
HLL42 mASynthesizer TX part
LLL1 mAAll RF parts have
TXS + SW powerup for TX synthe-
sizer
TXETypical Current
Consumption /mA
has been powered
off
been powered off
Connections
Connections to Baseband module
Signal NameTypeFunction
Note
AFCAnalog outThe reference oscillator frequency adjust.
AGCDigital outReceiver gain control. Active state: High
DAFAnalog inDemodulated received signal (audio + fii+ data)
GNDPowerCommon ground
IFAnalog out2nd IF signal (450 kHz)
Page 3 – 30
Original 11/97
PAMS
NHN–6N
Technical Documentation
FunctionTypeSignal Name
MODAnalog outModulation signal for transmitter (audio + fii + data)
RFTEMPAnalog inMain crystal temperature.
RSSIAnalog inReceived signal strength indicator. Voltage measurement.
RXEDigital outReceiver enable, Active state: High
SCLKDigital outSerial clock for synthesizer. Active state: Rising edge
SDATDigital outSerial data for synthesizer. Active state: High
SLEDigital outSynthesizer latch enable
TXCPWM outTransmitter power control
TXEDigital outTransmitter enable. Active state: High
TXIAnalog in”TX power on” –indicator
TXSDigital outTX synthesizer enable. Active state: High
Typeanalog signal (DC–level)
Level0.3...3,0 V DC
Source impedanceZs < 1.5 kohm
Load impedanceZL > 10 kohm
Control step size for TX freq.100 Hz (typical)
AGCReceiver gain control
TypeDigital signal
Function0 = AGC off
1 = AGC on
Original 11/97
Page 3 – 31
NHN–6N
PAMS
System Module
DAFDemodulated audio and data
signal
Typeanalog signal
Nominal level50 mVrms @3,0 kHz deviation
Unit to unit variation35 mV...65 mV
Source impedanceZS < 5 kohm
Load impedanceZL > 50 kohm
Typeanalog signal
Level0...3,3 V DC
Temp. range–25...+55 degrees centigrade
RSSIReceived signal strength in-
dicator
DC–level0.2...3.0 V
Source impedance56 kW (typical)
RXEReceiver enable
TypeDigital signal
Function0 = RX off
1 = RX on
On–state current150 mA (typical) (300 mA max.)
Page 3 – 32
Original 11/97
PAMS
NHN–6N
Technical Documentation
SCLKSerial clock for synthesizer
Typedigital signal
Pulse width> 1 us
SLESynthesizer enable
TypeDigital signal
Function0 = synthesizer enabled
1 = synthesizer disabled
TXCTransmitter power control
TypePWM signal
FunctionDuty cycle of the TXC signal
defines the TX power level
PWM frequency5 kHz
System Module
Level0...3.3 V DC
Number of duty cycle steps256
Load impedance> 100 kohm
TXETransmitter on/off control
TypeDigital signal
Function0 = TX off
1 = TX on
TXI”TX power on” –indicator
TypeAnalog signal
Source impedance> 47 k
Level< 1 V = TX off
> 1 V = TX on
TXSTX synthesizer on/off
TypeDigital signal
Function0 = Supply off
1 = Supply on
Original 11/97
Page 3 – 33
NHN–6N
PAMS
System Module
VBATBattery voltage
Nominal value4.8 V
Minimum value4.5 V
Absolute maximum6.9 V
Max. current700 mA
VRFBattery voltage for RX regula-
tor
Nominal value4.8 V
Minimum value4.5 V
Absolute maximum6.9 V
Max. current100 mA
Technical Documentation
VREFReference voltage
Level 3.3 V 4%
Page 3 – 34
Original 11/97
PAMS
NHN–6N
Technical Documentation
Block diagram
DAF
IF
RSSI
450 kHz FILTER
IF CIRCUIT
TX LO BUFFER
PHASE SHIFTER
TX VCO
LOOP FILTER
MOD
SLE
SCLK
AGC
SDATA
RF TEMP
AFC
TXC
VCTCXO 14.85 MHz
TXE
TXI
VBAT
REGULATOR
3.6 V
VCCR
VTSYNTSYN SWITCH
System Module
VREF
REGULATOR
3.6 V
VSYN
TXS
IF AMPLIFIER
45 MHz
CRYSTAL FILTER
DIODE MIXER
RX–FILTER
LNA
UMA 1015
SYNTHESIZER IC
TANK CIRCUIT FOR 2.ND LO
PLL
PLL
LOOP FILTER
RX LO BUFFER
RX VCO
RF2131
AMPLIFIER MODULE
TX POWER CONTROL
POWER DETECTOR
Original 11/97
ANTENNA
DUPLEX–FILTER
DIR_COUPLER
Page 3 – 35
NHN–6N
PAMS
System Module
Receiver
The receiver is a dual–conversion superheterodyne using two intermediate
frequencies, 45 MHz and 450 kHz.
The RF signal from the duplexer RX port is applied to the RF amplifier. The
amplifier has 18 dB gain and 1,5 dB noise figure.
Next the signal is filtered with Z321. The filter is followed by a single balanced
diode mixer, which has 6 dB conversion loss.
After the mixer signal is filtered with the crystal filter Z350, which has 7,5 kHz
bandwidth. Next the IF signal is amplified by V380. From the amplifier the
IF–signal is applied to the second mixer.
The second mixer, the LO buffer transistor, IF amplifier and quadrature
detector are all integrated in the circuit N370. The second LO frequency,
44.55 MHz, is third harmonic of the VCTCXO frequency . LO signal is realized
with tank circuit C372 and L371. After the mixer the 450kHz IF signal is
filtered with ceramic filter Z370. The IF amplifier output signal is phase
shifted by resonance circuit. After this the signal is fed to a quadrature
detector.
Technical Documentation
Signal DAF is low pass filtered by R372 and C379. The DAF, RSSI and 2nd
IF signal (450 kHz) are fed to the audio/logic unit.
RX Synthesizer
The first injection frequency for receiver is generated by a digital phase
locked loop (PLL). The output frequency of the loop (LO) is obtained from
a voltage–controlled oscillator (VCO) G530. The VCO output signal is
amplified by RX–LO–buffer and fed to the receiver mixer . The injection level
required by the receiver mixer is about +3 dBm. In addition, the signal is
feeded back to the dualsynthesizer circuit N820.
The overall divisor of the chain is selected according to the desired channel.
The internal dividers of N820 are programmed with 17 bits, which are
transferred serially on the SDAT (synthesizer data) line from the processor
into an internal shift register also located in N820. Data transfer is timed with
SCLK clock pulses.
The divided frequency is compared with a highly stable reference frequency
by a phase comparator in the PLL circuit. The phase comparator controls the
VCO frequency by means of a DC voltage through the loop filter so as to keep
the divided frequency applied to the phase comparator equal to the fixed
reference frequency.
The reference frequency is 12,5 kHz. This reference frequency is obtained
from voltage controlled crystal oscillator (VCXO or VCTCXO). Oscillator
frequency is 14.85 MHz. The VCXO frequency is divided by 1188.
RX loop filter
Phase comparator output is pin 3. If the VCO frequency is too high, the
output goes low and discharge integrator capacitor C521. After this, the DC
control voltage and the VCO frequency will decrease.
Page 3 – 36
Original 11/97
PAMS
NHN–6N
Technical Documentation
If the VCO frequency is too low, the output goes high and charge the
integrator capacitor C521. Thereafter the DC control voltage and the VCO
frequency will go up.
Output pulses from the phase detector have to be supplied to the loop filter.
The function of the integrator is to convert positive and negative pulses to DC
voltage. The remaining ripple and AC components are filtered in the lowpass
filter.
TX Synthesizer
The transmitter synthesizer generates a frequency modulated transmitter
signal for the transmitter section. The modulated TX injection frequency is
generated in TX–VCO (G430). The TX modulated TX signal is amplified in
TX–buffer before the transmitter.
TX Loop Filter
Output pulses from the phase detector N820 pin 17 have to be supplied to
the loop filter. The integrator, which is constituted of R420 and C421,
converts positive and negative pulses to DC voltage. The remaining ripple
is filtered in the low–pass filter.
System Module
Transmitter
The transmitter is realized with a power amplifier module. The modulated RF
signal from the TX synthesizer is applied to the 50 ohm input of the module.
The power level is controlled by the voltage supplied to the pin 1. Zener diode
V642 protects the module against too high control voltages (>4.5 V).
Amplifier module has two pairs of output pins ( pins 10, 11 and 14,15 ).
Amplified RF signals are compined symmetrically and fed through a
low–pass filter to the duplex filter. The harmonics of the transmitter are
reduced by the duplex filter. A voltage proportional to the output power is
rectified from a directional coupler by DC–biased Schottky diode V640. This
rectified voltage is fed to a differential amplifier which consists of transistor
V650. The reference voltage is filtered from the PWM signal by TXC line. The
differential amplifier adjusts the control voltage so that the reference voltage
and the voltage proportional to the output power are equal. The transmitter
is switched on when TXE goes high (logic 1), which enables the transmitter
power control circuit by transistor V653. When the transmitter is inactive
(TXE low) the RF level from the transmitter is reduced below –57 dBm.
Regulators
The voltage regulators for RF parts consist of the transistors V310, 31 1, 313
and 314. The first regulator (V310, 311) provides the operating voltage for
the receiver, PLL circuit and RX–VCO buffer. The other one is used to
regulate the operating voltage of the RX–VCO. These regulators are
realized using discrete transistors because the output noise has to be very
low. The 3.3 V reference voltage (VREF) is fed from the logic module. TX
synthesizer gets the supply voltage via a switch which is realized using
transistors V411 and V410. The switch is controlled by the digital TXS–line
from the logic module.
Original 11/97
Page 3 – 37
NHN–6N
PAMS
System Module
AFC function
The transceiver unit is equipped with AFC function, i.e. it uses the incoming
receive signal from base station as a frequency reference. The control loop
consists of the receiver, the IF counter in the NIPA, CPU, an 8–bit D/A
converter in the NIPA and the VCTCXO, which is used as a reference
oscillator for the synthesizer.
The 2nd IF signal (450 kHz) from receiver is fed to the NIP A. The IF counter
counts the received frequency. If the frequency differs from programmed
value, CPU adjusts the frequency of the VCXO by changing output voltage
of the D/A converter. This adjustment continues until the desired receive
frequency is achieved. AFC is not active during a channel scan and below
–90 dBm RX signal level.
UIF Module
Technical Documentation
The UIF module includes keyboard, keyboard illumination and display.
Parts List of JR9B EDMS Issue 2.3 (for layout version 01)Code: 0201178
ITEMCODEDESCRIPTIONVALUETYPE
R1111430804Chip resistor100 k5 % 0.063 W 0402
R1121430786Chip resistor18 k5 % 0.063 W 0402
R1131430796Chip resistor47 k5 % 0.063 W 0402
R1141430754Chip resistor1.0 k5 % 0.063 W 0402
R1151430738Chip resistor270 5 % 0.063 W 0402
R1161430804Chip resistor100 k5 % 0.063 W 0402
R1171430788Chip resistor22 k5 % 0.063 W 0402
R1181430770Chip resistor4.7 k5 % 0.063 W 0402
R1191430730Chip resistor150 5 % 0.063 W 0402
R1201430764Chip resistor3.3 k5 % 0.063 W 0402
R1211430778Chip resistor10 k5 % 0.063 W 0402
R1221430780Chip resistor12 k5 % 0.063 W 0402
R1231430780Chip resistor12 k5 % 0.063 W 0402
R1241430778Chip resistor10 k5 % 0.063 W 0402
R1511430754Chip resistor1.0 k5 % 0.063 W 0402
R1551430754Chip resistor1.0 k5 % 0.063 W 0402
R1611430762Chip resistor2.2 k5 % 0.063 W 0402
R1621430770Chip resistor4.7 k5 % 0.063 W 0402
R1631430740Chip resistor330 5 % 0.063 W 0402
R2021430796Chip resistor47 k5 % 0.063 W 0402
R2031430778Chip resistor10 k5 % 0.063 W 0402
R2041430796Chip resistor47 k5 % 0.063 W 0402
R2051430778Chip resistor10 k5 % 0.063 W 0402
R2061430796Chip resistor47 k5 % 0.063 W 0402
R2081430770Chip resistor4.7 k5 % 0.063 W 0402
R2421430792Chip resistor33 k5 % 0.063 W 0402
R2431430792Chip resistor33 k5 % 0.063 W 0402
R2451430770Chip resistor4.7 k5 % 0.063 W 0402
R2471430804Chip resistor100 k5 % 0.063 W 0402
R2511430792Chip resistor33 k5 % 0.063 W 0402
R2521430792Chip resistor33 k5 % 0.063 W 0402
R2631800673NTC resistor15 k10 % 0.12 W 0805
R3101430778Chip resistor10 k5 % 0.063 W 0402
R3111430778Chip resistor10 k5 % 0.063 W 0402
R3121430778Chip resistor10 k5 % 0.063 W 0402
R3131430758Chip resistor1.5 k5 % 0.063 W 0402
R3141430778Chip resistor10 k5 % 0.063 W 0402
R3151430776Chip resistor8.2 k5 % 0.063 W 0402
R3171430778Chip resistor10 k5 % 0.063 W 0402
R3181430786Chip resistor18 k5 % 0.063 W 0402
R3201430754Chip resistor1.0 k5 % 0.063 W 0402
R3211430786Chip resistor18 k5 % 0.063 W 0402
R3221430726Chip resistor100 5 % 0.063 W 0402
Original 11/97
Page 3 – 39
NHN–6N
PAMS
System Module
R3251430778Chip resistor10 k5 % 0.063 W 0402
R3261430758Chip resistor1.5 k5 % 0.063 W 0402
R3271430776Chip resistor8.2 k5 % 0.063 W 0402
R3281430778Chip resistor10 k5 % 0.063 W 0402
R3301430754Chip resistor1.0 k5 % 0.063 W 0402
R3311430808Chip resistor150 k5 % 0.063 W 0402
R3321430734Chip resistor220 5 % 0.063 W 0402
R3331430700Chip resistor10 5 % 0.063 W 0402
R3341430710Chip resistor22 5 % 0.063 W 0402
R3351430764Chip resistor3.3 k5 % 0.063 W 0402
R3401430780Chip resistor12 k5 % 0.063 W 0402
R3411430832Chip resistor2.7 k5 % 0.063 W 0402
R3421430700Chip resistor10 5 % 0.063 W 0402
R3431430734Chip resistor220 5 % 0.063 W 0402
R3501430726Chip resistor100 5 % 0.063 W 0402
R3601430744Chip resistor470 5 % 0.063 W 0402
R3611430778Chip resistor10 k5 % 0.063 W 0402
R3621430778Chip resistor10 k5 % 0.063 W 0402
R3631430756Chip resistor1.2 k5 % 0.063 W 0402
R3651430690Chip jumper0402
R3661430714Chip resistor33 5 % 0.063 W 0402
R3701430758Chip resistor1.5 k5 % 0.063 W 0402
R3711430770Chip resistor4.7 k5 % 0.063 W 0402
R3721430754Chip resistor1.0 k5 % 0.063 W 0402
R3731430714Chip resistor33 5 % 0.063 W 0402
R3741430804Chip resistor100 k5 % 0.063 W 0402
R3811430770Chip resistor4.7 k5 % 0.063 W 0402
R4111430778Chip resistor10 k5 % 0.063 W 0402
R4121430786Chip resistor18 k5 % 0.063 W 0402
R4131430778Chip resistor10 k5 % 0.063 W 0402
R4141430778Chip resistor10 k5 % 0.063 W 0402
R4201430766Chip resistor3.9 k5 % 0.063 W 0402
R4211430754Chip resistor1.0 k5 % 0.063 W 0402
R4221430770Chip resistor4.7 k5 % 0.063 W 0402
R4231430778Chip resistor10 k5 % 0.063 W 0402
R4301430718Chip resistor47 5 % 0.063 W 0402
R4311430734Chip resistor220 5 % 0.063 W 0402
R4321430788Chip resistor22 k5 % 0.063 W 0402
R4331430786Chip resistor18 k5 % 0.063 W 0402
R4341430700Chip resistor10 5 % 0.063 W 0402
R4401430762Chip resistor2.2 k5 % 0.063 W 0402
R4411430772Chip resistor5.6 k5 % 0.063 W 0402
R4421430734Chip resistor220 5 % 0.063 W 0402
R4431430700Chip resistor10 5 % 0.063 W 0402
R5201430764Chip resistor3.3 k5 % 0.063 W 0402
R5211430754Chip resistor1.0 k5 % 0.063 W 0402
R5221430770Chip resistor4.7 k5 % 0.063 W 0402
Technical Documentation
Page 3 – 40
Original 11/97
PAMS
NHN–6N
Technical Documentation
R5231430778Chip resistor10 k5 % 0.063 W 0402
R5301430724Chip resistor82 5 % 0.063 W 0402
R5311430734Chip resistor220 5 % 0.063 W 0402
R5321430700Chip resistor10 5 % 0.063 W 0402
R6011430700Chip resistor10 5 % 0.063 W 0402
R6321430700Chip resistor10 5 % 0.063 W 0402
R6411430726Chip resistor100 5 % 0.063 W 0402
R6421430796Chip resistor47 k5 % 0.063 W 0402
R6431430786Chip resistor18 k5 % 0.063 W 0402
R6441430754Chip resistor1.0 k5 % 0.063 W 0402
R6461430776Chip resistor8.2 k5 % 0.063 W 0402
R6471430744Chip resistor470 5 % 0.063 W 0402
R6491430806Chip resistor120 k5 % 0.063 W 0402
R6511430796Chip resistor47 k5 % 0.063 W 0402
R6521430786Chip resistor18 k5 % 0.063 W 0402
R6531430754Chip resistor1.0 k5 % 0.063 W 0402
R6541430778Chip resistor10 k5 % 0.063 W 0402
R6561430796Chip resistor47 k5 % 0.063 W 0402
R6571430796Chip resistor47 k5 % 0.063 W 0402
R6591430778Chip resistor10 k5 % 0.063 W 0402
R6601430690Chip jumper0402
R7211430754Chip resistor1.0 k5 % 0.063 W 0402
R7221430776Chip resistor8.2 k5 % 0.063 W 0402
R7311430762Chip resistor2.2 k5 % 0.063 W 0402
R7321430774Chip resistor6.8 k5 % 0.063 W 0402
R7331430778Chip resistor10 k5 % 0.063 W 0402
R7411430770Chip resistor4.7 k5 % 0.063 W 0402
R7421430796Chip resistor47 k5 % 0.063 W 0402
R7431430796Chip resistor47 k5 % 0.063 W 0402
R7671430778Chip resistor10 k5 % 0.063 W 0402
R7681430786Chip resistor18 k5 % 0.063 W 0402
R7691430816Chip resistor330 k5 % 0.063 W 0402
R7711430762Chip resistor2.2 k5 % 0.063 W 0402
R7721430151Chip resistor10 5 % 0.063 W 0603
R7731430151Chip resistor10 5 % 0.063 W 0603
R7911430724Chip resistor82 5 % 0.063 W 0402
R7931430804Chip resistor100 k5 % 0.063 W 0402
R8001800673NTC resistor15 k10 % 0.12 W 0805
R8111430778Chip resistor10 k5 % 0.063 W 0402
R8121430754Chip resistor1.0 k5 % 0.063 W 0402
R8161430700Chip resistor10 5 % 0.063 W 0402
R8201430786Chip resistor18 k5 % 0.063 W 0402
R8211430714Chip resistor33 5 % 0.063 W 0402
R8221430714Chip resistor33 5 % 0.063 W 0402
R8261430786Chip resistor18 k5 % 0.063 W 0402
R8291430778Chip resistor10 k5 % 0.063 W 0402
R8301430778Chip resistor10 k5 % 0.063 W 0402
System Module
Original 11/97
Page 3 – 41
NHN–6N
PAMS
System Module
R8311430778Chip resistor10 k5 % 0.063 W 0402
R8401430714Chip resistor33 5 % 0.063 W 0402
R9001430087Chip resistor100 k5 % 0.063 W 0603
R9011430077Chip resistor39 k5 % 0.063 W 0603
R9021430087Chip resistor100 k5 % 0.063 W 0603
R9031800673NTC resistor15 k10 % 0.12 W 0805
R9041430051Chip resistor4.7 k5 % 0.063 W 0603
R9091430151Chip resistor10 5 % 0.063 W 0603
R9201430762Chip resistor2.2 k5 % 0.063 W 0402
R9211430764Chip resistor3.3 k5 % 0.063 W 0402
R9221430718Chip resistor47 5 % 0.063 W 0402
R9231430718Chip resistor47 5 % 0.063 W 0402
R9241430714Chip resistor33 5 % 0.063 W 0402
R9251430714Chip resistor33 5 % 0.063 W 0402
R9301430804Chip resistor100 k5 % 0.063 W 0402
C1012611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C1022320620Ceramic cap.10 n5 % 16 V 0402
C1032320131Ceramic cap.33 n10 % 16 V 0603
C1042320620Ceramic cap.10 n5 % 16 V 0402
C1052604199Tantalum cap.2.2 u20 % 3.2x1.6x1.6
C1062604199Tantalum cap.2.2 u20 % 3.2x1.6x1.6
C1072604199Tantalum cap.2.2 u20 % 3.2x1.6x1.6
C1082320620Ceramic cap.10 n5 % 16 V 0402
C1092320620Ceramic cap.10 n5 % 16 V 0402
C1112320620Ceramic cap.10 n5 % 16 V 0402
C1122604209Tantalum cap.1.0 u20 % 16 V 3.2x1.6x1.6
C1132320620Ceramic cap.10 n5 % 16 V 0402
C1202320546Ceramic cap.27 p5 % 50 V 0402
C1212320546Ceramic cap.27 p5 % 50 V 0402
C1222320546Ceramic cap.27 p5 % 50 V 0402
C1232320546Ceramic cap.27 p5 % 50 V 0402
C1402320620Ceramic cap.10 n5 % 16 V 0402
C1412320584Ceramic cap.1.0 n5 % 50 V 0402
C1422604209Tantalum cap.1.0 u20 % 16 V 3.2x1.6x1.6
C1432320546Ceramic cap.27 p5 % 50 V 0402
C1612320546Ceramic cap.27 p5 % 50 V 0402
C1912320584Ceramic cap.1.0 n5 % 50 V 0402
C1922320584Ceramic cap.1.0 n5 % 50 V 0402
C1932320584Ceramic cap.1.0 n5 % 50 V 0402
C1942320584Ceramic cap.1.0 n5 % 50 V 0402
C1952320584Ceramic cap.1.0 n5 % 50 V 0402
C2012320781Ceramic cap.47 n20 % 16 V 0603
C2022320781Ceramic cap.47 n20 % 16 V 0603
C2032320781Ceramic cap.47 n20 % 16 V 0603
C2052320620Ceramic cap.10 n5 % 16 V 0402
C2062320620Ceramic cap.10 n5 % 16 V 0402
C2072320584Ceramic cap.1.0 n5 % 50 V 0402
Technical Documentation
Page 3 – 42
Original 11/97
PAMS
NHN–6N
Technical Documentation
C2282320620Ceramic cap.10 n5 % 16 V 0402
C2292320620Ceramic cap.10 n5 % 16 V 0402
C2412320781Ceramic cap.47 n20 % 16 V 0603
C2422320781Ceramic cap.47 n20 % 16 V 0603
C2512320781Ceramic cap.47 n20 % 16 V 0603
C3122320598Ceramic cap.3.9 n5 % 50 V 0402
C3132611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C3142611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C3152611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C3202320546Ceramic cap.27 p5 % 50 V 0402
C3222320546Ceramic cap.27 p5 % 50 V 0402
C3232320518Ceramic cap.1.8 p0.25 % 50 V 0402
C3242320546Ceramic cap.27 p5 % 50 V 0402
C3252320534Ceramic cap.8.2 p0.25 % 50 V 0402
C3262320546Ceramic cap.27 p5 % 50 V 0402
C3272320526Ceramic cap.3.9 p0.25 % 50 V 0402
C3282611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C3312320620Ceramic cap.10 n5 % 16 V 0402
C3322320584Ceramic cap.1.0 n5 % 50 V 0402
C3332320584Ceramic cap.1.0 n5 % 50 V 0402
C3402320520Ceramic cap.2.2 p0.25 % 50 V 0402
C3412320546Ceramic cap.27 p5 % 50 V 0402
C3422320520Ceramic cap.2.2 p0.25 % 50 V 0402
C3432320526Ceramic cap.3.9 p0.25 % 50 V 0402
C3442320546Ceramic cap.27 p5 % 50 V 0402
C3452320546Ceramic cap.27 p5 % 50 V 0402
C3502320544Ceramic cap.22 p5 % 50 V 0402
C3512320584Ceramic cap.1.0 n5 % 50 V 0402
C3542320532Ceramic cap.6.8 p0.25 % 50 V 0402
C3602320620Ceramic cap.10 n5 % 16 V 0402
C3612320620Ceramic cap.10 n5 % 16 V 0402
C3622320620Ceramic cap.10 n5 % 16 V 0402
C3702320584Ceramic cap.1.0 n5 % 50 V 0402
C3712320584Ceramic cap.1.0 n5 % 50 V 0402
C3722320546Ceramic cap.27 p5 % 50 V 0402
C3732320620Ceramic cap.10 n5 % 16 V 0402
C3742320620Ceramic cap.10 n5 % 16 V 0402
C3752604329Tantalum cap.4.7 u20 % 10 V 3.5x2.8x1.9
C3762320620Ceramic cap.10 n5 % 16 V 0402
C3772310490Ceramic cap.360 p2 % 50 V 0805
C3782320556Ceramic cap.68 p5 % 50 V 0402
C3792320584Ceramic cap.1.0 n5 % 50 V 0402
C3802320620Ceramic cap.10 n5 % 16 V 0402
C3812320620Ceramic cap.10 n5 % 16 V 0402
C3822320560Ceramic cap.100 p5 % 50 V 0402
C4112604209Tantalum cap.1.0 u20 % 16 V 3.2x1.6x1.6
C4202320620Ceramic cap.10 n5 % 16 V 0402
System Module
Original 11/97
Page 3 – 43
NHN–6N
PAMS
System Module
C4212604209Tantalum cap.1.0 u20 % 16 V 3.2x1.6x1.6
C4222320781Ceramic cap.47 n20 % 16 V 0603
C4232320120Ceramic cap.22 n10 % 25 V 0603
C4242320620Ceramic cap.10 n5 % 16 V 0402
C4302611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C4312320546Ceramic cap.27 p5 % 50 V 0402
C4322320546Ceramic cap.27 p5 % 50 V 0402
C4332320584Ceramic cap.1.0 n5 % 50 V 0402
C4342320584Ceramic cap.1.0 n5 % 50 V 0402
C4402320532Ceramic cap.6.8 p0.25 % 50 V 0402
C4412320518Ceramic cap.1.8 p0.25 % 50 V 0402
C4422320546Ceramic cap.27 p5 % 50 V 0402
C4432320526Ceramic cap.3.9 p0.25 % 50 V 0402
C5202320620Ceramic cap.10 n5 % 16 V 0402
C5212604209Tantalum cap.1.0 u20 % 16 V 3.2x1.6x1.6
C5222320781Ceramic cap.47 n20 % 16 V 0603
C5232320120Ceramic cap.22 n10 % 25 V 0603
C5242320620Ceramic cap.10 n5 % 16 V 0402
C5302611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C5312320546Ceramic cap.27 p5 % 50 V 0402
C5322320546Ceramic cap.27 p5 % 50 V 0402
C6012320620Ceramic cap.10 n5 % 16 V 0402
C6022320546Ceramic cap.27 p5 % 50 V 0402
C6032320546Ceramic cap.27 p5 % 50 V 0402
C6042320520Ceramic cap.2.2 p0.25 % 50 V 0402
C6052320620Ceramic cap.10 n5 % 16 V 0402
C6082320781Ceramic cap.47 n20 % 16 V 0603
C6252611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C6312320524Ceramic cap.3.3 p0.25 % 50 V 0402
C6332320620Ceramic cap.10 n5 % 16 V 0402
C6342320546Ceramic cap.27 p5 % 50 V 0402
C6352320546Ceramic cap.27 p5 % 50 V 0402
C6412320524Ceramic cap.3.3 p0.25 % 50 V 0402
C6422320544Ceramic cap.22 p5 % 50 V 0402
C6432320546Ceramic cap.27 p5 % 50 V 0402
C6442320546Ceramic cap.27 p5 % 50 V 0402
C6452320546Ceramic cap.27 p5 % 50 V 0402
C6462320598Ceramic cap.3.9 n5 % 50 V 0402
C6482320620Ceramic cap.10 n5 % 16 V 0402
C6502320781Ceramic cap.47 n20 % 16 V 0603
C6512320781Ceramic cap.47 n20 % 16 V 0603
C6602320532Ceramic cap.6.8 p0.25 % 50 V 0402
C7012320544Ceramic cap.22 p5 % 50 V 0402
C7022320544Ceramic cap.22 p5 % 50 V 0402
C7032320781Ceramic cap.47 n20 % 16 V 0603
C7042320781Ceramic cap.47 n20 % 16 V 0603
C7052320781Ceramic cap.47 n20 % 16 V 0603
Technical Documentation
Page 3 – 44
Original 11/97
PAMS
NHN–6N
Technical Documentation
C7062320530Ceramic cap.5.6 p0.25 % 50 V 0402
C7112320620Ceramic cap.10 n5 % 16 V 0402
C7122320620Ceramic cap.10 n5 % 16 V 0402
C7132320620Ceramic cap.10 n5 % 16 V 0402
C7142320620Ceramic cap.10 n5 % 16 V 0402
C7152320620Ceramic cap.10 n5 % 16 V 0402
C7162320781Ceramic cap.47 n20 % 16 V 0603
C7172320781Ceramic cap.47 n20 % 16 V 0603
C7212320131Ceramic cap.33 n10 % 16 V 0603
C7312320546Ceramic cap.27 p5 % 50 V 0402
C7322320781Ceramic cap.47 n20 % 16 V 0603
C7412320781Ceramic cap.47 n20 % 16 V 0603
C7422320781Ceramic cap.47 n20 % 16 V 0603
C7532320584Ceramic cap.1.0 n5 % 50 V 0402
C7622320781Ceramic cap.47 n20 % 16 V 0603
C7632604209Tantalum cap.1.0 u20 % 16 V 3.2x1.6x1.6
C7642320536Ceramic cap.10 p5 % 50 V 0402
C7652320536Ceramic cap.10 p5 % 50 V 0402
C7662320107Ceramic cap.10 n5 % 50 V 0603
C7722320045Ceramic cap.27 p5 % 50 V 0603
C7732320620Ceramic cap.10 n5 % 16 V 0402
C7812320781Ceramic cap.47 n20 % 16 V 0603
C7832320620Ceramic cap.10 n5 % 16 V 0402
C7912320536Ceramic cap.10 p5 % 50 V 0402
C7922320584Ceramic cap.1.0 n5 % 50 V 0402
C7932320546Ceramic cap.27 p5 % 50 V 0402
C7942320536Ceramic cap.10 p5 % 50 V 0402
C7952312296Ceramic cap.Y5 V 1210
C8112320598Ceramic cap.3.9 n5 % 50 V 0402
C8122604209Tantalum cap.1.0 u20 % 16 V 3.2x1.6x1.6
C8132320534Ceramic cap.8.2 p0.25 % 50 V 0402
C8142320598Ceramic cap.3.9 n5 % 50 V 0402
C8152320598Ceramic cap.3.9 n5 % 50 V 0402
C8212611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C8232604209Tantalum cap.1.0 u20 % 16 V 3.2x1.6x1.6
C8242320598Ceramic cap.3.9 n5 % 50 V 0402
C8252611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C8262320598Ceramic cap.3.9 n5 % 50 V 0402
C9002611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C9012611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C9022611668Tantalum cap.4.7 u20 % 10 V 3.2x1.6x1.6
C9032604431Tantalum cap.10 u20 % 16 V 6.0x3.2x2.5
C9042320045Ceramic cap.27 p5 % 50 V 0603
C9092604431Tantalum cap.10 u20 % 16 V 6.0x3.2x2.5
L1013641262Ferrite bead 30r/100mhz 2a 12061206
L1023641262Ferrite bead 30r/100mhz 2a 12061206
L3203643003Chip coil12 n5 % Q=30/250 MHz
System Module
Original 11/97
Page 3 – 45
NHN–6N
PAMS
System Module
0805
L3503641602Chip coil560 n5 % Q=30/25 MHz 1008
L3703640103Chip coil320 u2 % Q=40/796kHz 1812
L3713641302Chip coil470 n5 % Q=30/25 MHz 1008
L6313641262Ferrite bead 30r/100mhz 2a 12061206
B7005469031SM, conn chp2502–0101 1x2 m p1.2P1.25
B7014510099Crystal3.6864 M+–35PPM
B7315469031SM, conn chp2502–0101 1x2 m p1.2P1.25
B7325140051Cond.mic –42+–2DB 2.2K WIRES+CONWIRES+CONN
B7715140073Buzzer 94DB 2.670KHZ 3.6V 9X9X4.9x9x4.5
G4304350011SM, vco 890–915mhz4.3v/10ma tx nmNMT9
G5304350015 SM, vco980–1005mhz3.4v/10ma rx nNMT
G8104510043 SM, VCTCXO112cb 14.85mhz+–2ppm3.3v
F1015119011SM, fuse f2a 63v 1201206
F1025119011SM, fuse f2a 63v 1201206
Z3214511016Saw filter947.5+–12.5 M5.4x5.2
Z3504510085 XTAL filter45 M+–7.5KHZ 4POLE
Z3704500001 Cer.filt 450+–6khz/6db 9.5x6.59.5x6.5
Z6604512059 Dupl 890–915/935–960mhz 45x15.945x15.9
V0304864388 LedGreen0603
V0314864388 LedGreen0603
V0324864388 LedGreen0603
V0334864388 LedGreen0603
V0364864388 LedGreen0603
V0374864388 LedGreen0603
V0384864388 LedGreen0603
V0394864388 LedGreen0603
V0404864388 LedGreen0603
V0414864388 LedGreen0603
V0434200917 Transistor BC848B/BCW32npn 30 V 100 mA SOT23
V0444200917 Transistor BC848B/BCW32npn 30 V 100 mA SOT23
V0454200917 Transistor BC848B/BCW32npn 30 V 100 mA SOT23
V1104113828 Trans. supr.SMBJ28ADO214AA
V1114219904Transistor x 2UMX1npn 40 V SOT363
V1134210102 Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V1144200226 Darl. transistor BCV27npn 30 V 300 mA SOT23
V1154200226 Darl. transistor BCV27npn 30 V 300 mA SOT23
V1164210020 TransistorBCP69–25pnp 20 V 1 A SOT223
V1174210100 TransistorBC848Wnpn 30 V SOT323
V1184110034 Schottky diodeMBRS14040 V 1 A DO214AA
V1404340337 Mm1165imr reg 4v 100ma 4% mmp4pMMP4P
V3104210054 TransistorFMMT589pnp 30 V 1 A SOT23
V3114219904 Transistor x 2UMX1npn 40 V SOT363
V3124210100 TransistorBC848Wnpn 30 V SOT323
V3134210102 Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V3144219904 Transistor x 2UMX1npn 40 V SOT363
V3204210074 TransistorBFP420npn 4. V SOT343
Technical Documentation
Page 3 – 46
Original 11/97
PAMS
NHN–6N
Technical Documentation
V3304210102 Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V3314219922 Transistor x 2UM6
V3404115802Sch. diode x 24V30 mA SOT23
V3414210090 Transistor BFG540/Xnpn 15 V 129 mA SOT143
V3804210066 Transistor BFR93AWnpn 12 V 35 mA SOT323
V4104210102 Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V4114210100 TransistorBC848Wnpn 30 V SOT323
V4404210090 Transistor BFG540/Xnpn 15 V 129 mA SOT143
V6404100567 Sch. diode x 2BAS70–0470V15 mA SERSOT23
V6414116536Zener diodeBZX845 % 2.4 V 0.3 W SOT23
V6424110126Zener diodeBZX845 % 4.3 V 0.3 W SOT23
V6504219904 Transistor x 2UMX1npn 40 V SOT363
V6514210054 TransistorFMMT589pnp 30 V 1 A SOT23
V6534210100 TransistorBC848Wnpn 30 V SOT323
V7414100285 Diode x 2 BAV9970 V 200 mA SER.SOT23
V7704200226 Darl. transistor BCV27npn 30 V 300 mA SOT23
V7714110070DiodeBAS16W75 V 0.25 A SOT323
V9304119902Diode x 4IMP1180 V 0.3 A IMD
D1004340011LCD display driv nju6428lfg dtmtr sqfp10SQFP100
D2414370029IC, ASICPQFP64
D2534343258IC, EEPROM2kx8 bit
N1014370084IC, mas1013s–t muumi ssop2NMP70084SSOP24
N3704349694IC, if amp+fm detector sso TA31136SSO16
N6014340163IC, pow.amp.SO16SB
N7014375081Nipa1 nmt audio/signalling sqfp64SQFP64
N7614340331IC, Power amp.LM4862P W SO8S
N8204349616IC, 2xsynth 1.1ghz 3v ssoUMA1015MSSO20
X1005460011SM, conn cgp4505–0101 1x5 m p1.5
X1025409003 SM, jack 3.0mm f dc 9v 1a
X7905409049 SM, jack 2.5mm+2 switch stereo