Nokia Ringo2 System Module 03

PAMS Technical Documentation
NHN–6N Series Transceivers
Chapter 3
System Module
Original 11/97
NHN–6N
PAMS
Technical Documentation
CONTENTS
Introduction 3 – 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Sub–modules 3 – 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Modes of Operation 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connections 3 – 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery/Service Connector 3 – 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Charger Connector 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Audio Specifications 3 – 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Headset Connector 3 – 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Description 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CTRLU 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CTRLU Internal Signals, Inputs 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CTRLU Internal Signals, Outputs 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block description 3 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RFTEMP, RF temperature measurement 3 – 12. . . . . . . . . . . . . . . . . . . . . .
Main components 3 – 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWRU 3 – 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block description 3 – 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUUMI Block diagram 3 – 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AUDIO 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Main features 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical specifications 3 – 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NIPA Block Diagram 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit (TX) audio signal path 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Section 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Summary 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basic Specifications 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Module Characteristics 3 – 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connections 3 – 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page 3 – 2
Maximum ratings 3 – 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics 3 – 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connections to Baseband module 3 – 30. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital control signal values 3 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram 3 – 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver 3 – 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Original 11/97
PAMS
NHN–6N
Technical Documentation
RX Synthesizer 3 – 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RX loop filter 3 – 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TX Synthesizer 3 – 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TX Loop Filter 3 – 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter 3 – 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Regulators 3 – 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AFC function 3 – 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UIF Module 3 – 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UIF internal Signals, Inputs 3 – 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UIF internal Signals, Outputs 3 – 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parts List of JR9B EDMS Issue 2.3 version 01 Code: 0201178 3 – 39. . . .
Schematic Diagrams of JR9B: layout version 01
Block Diagram of System/RF Blocks (Version: 01; Edit: 89) 3A–1. .
Circuit Diagram of Connector (Version: 02; Edit: 89) 3A–2. . . . . . . .
Circuit Diagram of CTRLU Section (Version: 02; Edit: 119) 3A–3. . .
Circuit Diagram of PWRU Section (Version: 02; Edit: 101) 3A–4. . . .
Circuit Diagram of Audio Section (Version: 02; Edit: 228) 3A–5. . . . .
Circuit Diagram of Keyboard Section (Version: 02; Edit: 72) 3A–6. .
Circuit Diagram of Display Section (Version: 02; Edit: 18) 3A–7. . . .
Circuit Diagram of Receiver Section (Version: 02; Edit: 131) 3A–8. . Circuit Diagram of Transmitter Section (Version: 02; Edit: 81) 3A–9. Circuit Diagram of Synthesizer Section (Version: 02; Edit: 114) 3A–10
Layout Diagram (Version 01) 3A–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Original 11/97
Page 3 – 3
NHN–6N
PAMS
Introduction
The baseband submodule controls the internal operation of the phone. It controls the user interface, i.e. LCD driver, keyboard, and audio interface functions. The module performs all signalling towards the system, and carries out audio–frequency signal processing. In addition, it controls the operation of the transceiver and stores tuning data for the phone.
All functional blocks of the baseband are mounted on a single multi layer printed circuit board. This board also contains RF–parts. The chassis of the radio unit contains separating walls for baseband and RF. All compo­nents of the baseband are surface mountable. They are reflow soldered . The connections to the Display–module are fed through a flex to the board connector.
The Baseband Module includes power supply, modem, audio filters, mi­cro–controller, nonvolatile memory, SIS–processor, and keyboard. The display is a separate module. Power supply circuits like regulators, volt­age detection and charging control, are integrated to the custom MUUMI circuit . The modem and audio operations are integrated into NIPA ASIC. The micro–controller is a Hitachi H8 series controller with 64 kbytes ROM and 2 kbytes RAM. The 2 kbytes EEPROM memory is of serial I type. The SIS–processor is a Motorola MC68HC11A8 connected to the controller over serial bus I2C.
Technical Documentation
2
C–bus
List of Sub–modules
Name of submodule Notes
CTRLU PWRU AUDIO UIF RECEIVER TRANSMITTER SYNTHESIZER
These blocks are only functional blocks and therefore have no type nor material codes.
Control Unit for the phone Power supply Audio User interface Receiver Transmitter Synthesizer
Page 3 – 4
Original 11/97
PAMS
NHN–6N
Technical Documentation
Modes of Operation
The module has three operating modes: stand–by, listening, and con­versation mode.
Standby mode:
CPU‘s clock is switched off, only NIPA timer is running to take care of bat­tery save timings.
If charger is connected CPU doesn‘t go to standby mode. Listening mode: In the listening mode, some blocks of the audio IC (NIPA) are in standby
state. Conversation mode:
In the conversation mode all ICs are active.
DC Characteristics
Pin / Conn. Line Symbol Minimum Typical /
Nominal
VCS
VCS
VBA T 4.5V 4.8V 6.8V VRF 4.5V 4.8V 6.8V VBAT for RF mod-
VA 3.1V 3.3V 3.5V Imax = 20mA VL2 3.1V 3.3V 3.5V Imax = 40mA VL3 3.84V 4.0V 4.16V Imax = 100mA VREF 3.2V 3.3V 3.42V Imax = 5mA
9.5V 10.5V 10.5V LCH–6; ACH–6 740mA
10.5V 12.0V 16.5V ACH–8 265mA
Maximum Unit / Notes
ule
Original 11/97
Page 3 – 5
NHN–6N
PAMS
Connections
Battery/Service Connector
Technical Documentation
Pin Line
Symbol
1 VBAT 4.2V 4.8V 6.8V Battery voltage for transceiver. 2 MBUS Mbus line 3 XEAR External earphone 4 XMIC External microphone 5 GND Power supply ground.
Mini-
mum
Typical / Nomi-
nal
Maxi-
mum
Minimum Typical /
Nominal
Maximum
Page 3 – 6
Original 11/97
PAMS
NHN–6N
Technical Documentation
Charger Connector
Pin Line
Symbol
2 VCS
3 GND Power Supply Ground 4 TERMI-
NAL
Mini­mum
9.5V 10.5V 10.5V LCH–6 and ACH–6
10.5V 12.0V 16.5V ACH–8
Typical / Nomi-
nal
740mA
265mA
Maxi-
mum
Unit / Notes
S0001227
Original 11/97
Page 3 – 7
NHN–6N
PAMS
Technical Documentation
Audio Specifications
Typical / Nomi-
nal
MIC (NIPA ’s input pin) 0.25 mV Mic amplifier input
EARP, EARM 760 mV Earphone amplifier output XEAR 170mV
XMIC 260mV
rms
rms
Maximum Unit / Notes
(NIPA’s input pin)
Via Battery / Service Connector
2600mV
rms
Via Battery / Service Connector
Headset Connector
The handsfree headset is connected by a 2,5 mm TC – Jack. The exter­nal earphone and microphone use the same audio lines and the same amplifier as the internal earphone and microphone.
Pin Line
Symbol
1 GND Power Supply Ground
Unit / Notes
2 XMIC Bias from NIPA, external microphone 3 XEAR Audio from amplifier, external earphone 4 MIC Internal microphone 5 EAR Internal earphone
Page 3 – 8
Original 11/97
PAMS
NHN–6N
Technical Documentation
Circuit Description
CTRLU
The Control block controls all phone functions, and SIS–processor too.
CTRLU Internal Signals, Inputs
Signal Name Notes From
VL2 Logic supply voltage Max 40 mA PWRU VL3 SIS processor and earphone amplifier supply voltage PWRU VREF Reference voltage 3.3V 2%. Max. 5mA. PWRU PWRON Signal from power button. PWRU XRES Reset line from MUUMI PWRU VCHARG Charger voltage to A/D converter PWRU VBATSW Battery voltage to A/D converter . PWRU BTEMP Battery temperature CTRLU RFTEMP RF temperature SYNTHESIZER RSSI Received signal strenght indication RECEIVER TXI Transmitter output power level indication TRANSMITTER RXD Serial interface (M2BUS) PWRU XINT Interrupt request from NIPA AUDIO NMI No maskable Interrupt request from NIPA AUDIO CLKMCU Clock for controller AUDIO HSCONN Headset recognition AUDIO
CTRLU Internal Signals, Outputs
Signal Name Notes To
TXD Serial interface (M2BUS) PWRU CSW Charger control PWRU AGC Gain control RECEIVER RXE RX Circuit power on/off RECEIVER SCLK Synchronous data clock for synthesizers SYNTHESIZER SDAT Synchronous data for synthesizers SYNTHESIZER SLE Synthesizer data latch enable SYNTHESIZER TXE Transmitter control (on/off) TRANSMITTER TXC Transmitter Power Control TRANSMITTER TXS TX synthesizer enable SYNTHESIZER EAREN Earphone enable AUDIO XNCS NIPA chip select signal AUDIO XNWR NIPA write control signal AUDIO
Original 11/97
Page 3 – 9
NHN–6N
PAMS
XNRD NIPA read control signal AUDIO NA(3:0) NIPA address bus AUDIO ND(7:0) NIPA data bus AUDIO LIGHTS Backlights on/off UIF COL0/
XPWROFF COL1–4 Lines for keyboard read (keypad outputs) UIF ROW0–2 Lines for keyboard read (keypad inputs). Input pullup used UIF LCDD0–3 Lcd driver data UIF E Lcd driver chip select signal UIF RW Lcd driver read/write select signal UIF RS Lcd driver register select signal UIF LCDRES Lcd driver reset signal UIF MBUSEN Mbus enable AUDIO
Line for keyboard read/ Power off control
Technical Documentation
UIF
ToNotesSignal Name
Block description
CTRLU – PWRU
CTRLU controls the watchdog timer in MUUMI. It sends a positive pulse at approximately 1 s intervals to the XPWROFF pin of MUUMI to keep the power on. If CTRLU fails to deliver this pulse, the MUUMI will cut off pow­er from the system. CTRLU also controls the charger on/off switching in the PWRU block. When power off is requested, CTRLU leaves the MUUMI watchdog without reset. After the watchdog has elapsed, MUUMI cuts off the supply voltages from the phone. Battery charging is controlled by CSW line, which is a PWM–controlled output port (frequency about 11 Hz).
VBATSW, Battery voltage measurement
The battery voltage can be measured up to 9.075 V nominal with 3.3 V reference voltage. The absolute accuracy is low because of the reference 3 % accuracy, and A/D–converter +/– 8 LSB accuracy . This battery volt­age measurement offset error must be calibrated with input voltage 4.8 V. The A/D conversion result can be calculated from the equation:
A/D readout = 1024 * (VBATSW* ( 4/11)) / VREF VREF=3.3V
Page 3 – 10
For example:
6.9 V results 778 = 30AH
4.8 V results 542 = 21EH
4.0 V results 451 = 1C3H
Original 11/97
PAMS
NHN–6N
Technical Documentation
VCHARG, Charger voltage measurement
The charger voltage can be measured up to 21.6 V nominal. The A/D–conversion result can be calculated from the equation :
A/D readout = 1024 * (VCSW*(18/118)) / VREF VREF=3.3 V For example:
BTEMP , Battery temperature measurement
Battery temperature measurement is implemented with 15 kohm NTC and 47 kohm pull–up resistor. The A/D conversion readout can be calcu­lated from the equation:
11 V gives 520 = 208H 10 V gives 473 = 1D9H
4.8 V gives 227 = 0E3H
A/D readout= 1024* ( R
NTC
/( R
NTC
+47k))
CTRLU – AUDIO
The interface between micro–controller and NIPA circuit is a bi–directional 8–bit data bus with 4 address lines. Address, data, and control lines are used in micro–controller as I/O–port pins. Data line direction must be con­trolled with the micro–controller data direction register. The Interface in­cludes address outputs NA0–3, data inputs (read) / outputs (write) ND0–7, chip select control output XNCS, read control output XNRD, write control output XNWR, and interrupt inputs XINT and NMI. To minimize power consumption in battery stand by mode, control signals XRD and XCS should be in ’0’ state, address output NA0–3 and NWR in ’1’ state, and data lines ND0–7 should be inputs .
CTRLU – UIF
The keyboard is connected directly to the controller. COL0–4 are output lines and ROW0–2 are input lines. The watchdog is updated at the same time as keyboard scanning (XPWROFF). Keyboard scanning is done by driving one COL to 0 V at time, and ROWs are used to read which key is pressed.
For example:
+25°C gives 247 = 0F7H ( About 0.8 V )
The keyboard and LCD lights are controlled by the LIGHTS signal. The LCD controller interface to the micro–controller are 4 bi–directional
data lines DD0–3, register select control RS output, read/write control RW output, and bus enable control E output. The data lines LCDD0–3 and control signals RS, RW must be set to high state during standby opera-
Original 11/97
Page 3 – 11
NHN–6N
PAMS
tion because of the pull–up resistors in the LCD controller. LCD controller resetting requires clock signal during XRES active low which is controlled by LCDRES line. The MCU disables LCDRES after it has set LCDCLK frequency to 57.6 kHz.
CTRLU – RECEIVER
The RECEIVER circuit power is connected on/off by the RXE signal. Received signal strength is measured over the RSSI line, and the inter-
mediate frequency is measured over the IF line.
CTRLU – SYNT
The frequency is controlled by the AFC signal. The synthesizer is con­trolled via the synchronous serial bus SDAT/SCLK. The data is latched to the synthesizer by the positive edge of the SLE line. The TX synthesizer power on/off (TXS) line is controlled via PLL circuit. Control information is programmed by using the SDAT line.
Technical Documentation
RFTEMP, RF temperature measurement
RF temperature measurement is implemented with 15 kohm NTC and 47 kohm pull–up resistor. The A/D conversion readout can be calculated from the equation:
A/D readout= 1024* ( R
For example:
25 C gives 247 = 0F7H ( about 0.8 V )
CTRLU – TRANSMITTER
The transmitter output power level is measured over the TXI line. The TXE line activates the power module. The power is controlled via the TXC line which is a PWM–controlled output port (frequency about 5.1 kHz).
Main components
H8/3032 is a CMOS micro–controller. All memory needed (64kB ROM, 2kB RAM) except the EEPROM, is located in the controller. The MCU op­erating clock (3.6864 MHz) is generated on NIPA. H8/3032 is operating in single–chip normal mode (mode 2) 64 kbyte address space, so all input/ output pins are used as I/O–ports.
NTC
/( R
NTC
+47k))
Pin Number Port Signal Description
1 PB0 SDAT 2 PB1
3 PB2 4 PB3 RXD
Page 3 – 12
Serial data for synthesizer
M2BUS net free timer input
Original 11/97
PAMS
NHN–6N
Technical Documentation
5 PB4 EAREN 6 PB5 LCDRES 7 PB6 PWRON 8 PB7 SLE 9 P90 TXD 10 P92 RXD 11 P94 ECLK 12 VSS GND
13 – 20 P30 – P37 ND0 – ND7 21 VCC VL2
22 P10 NA0 23 P11 NA1
DescriptionSignalPortPin Number
Earphone enable Reset for Lcd driver Power button state RX/TX synthesizer latch Serial interface (M2BUS) Serial interface (M2BUS) Serial clock for EEPROM
Parallel data bus for NIPA
Address line for NIPA Address line for NIPA
24 P12 NA2 25 P13 NA3 26 P14 XNCS 27 P15 XNWR 28 P16 XNRD 29 P17 LIGHTS 30 VSS GND
31 – 34 P20 – P23 LCDD0 – LCDD3 35 – 37 P24 – P26 ROW0 – ROW2
38 P27 COL4 39 P50 COL0/XPWROFF
40 – 42 P51 – P53 COL1 – COL3 43 P60 TXS
Address line for NIPA Address line for NIPA NIPA chip select Read/write control to NIPA Read/write control to NIPA Backlight control
Lcd driver data Keypad inputs (Input pullup
used)
Keypad output Keypad output /
Watchdog control (XPWROFF)
Keypad outputs TX synthesizer enable. Ac-
tive high
44 – 45 MD0 – MD1 46 47 STBY
48 RES XRES 49 NMI NMI
50 VSS GND
NC
Original 11/97
Mode selection
Reset from MUUMI Interrupt request from
NIPA
Page 3 – 13
NHN–6N
PAMS
51 EXTAL CLKMCU
52 XTAL 53 VCC VL2 54 P63 TXE
55 P64 AGC 56 P65 RXE 57 RESO
58 AVSS GND 59 P70 VBATSW
60 P71 VCHARG 61 P72 RSSI
Technical Documentation
DescriptionSignalPortPin Number
External system clock from NIPA
Transmitter on/off Receiver gain control RX circuit power on/off
Battery voltage Charger voltage Received signal strength
62 P73 TXI 63 P74 BTEMP 64 P75 HSCONN 65 P76 RFTEMP 66 P77
67 VREF VREF 68 AVCC VREF 69 P80 XINT
70 P81 RS 71 P82 RW 72 P83 E 73 PA0 SISCLK
74 PA1 SISD
Transmitter power monitor Battery temperature Headset recognition RF temperature
Interrupt request from NIPA
Lcd driver register select Lcd driver read/write Lcd driver chip select Serial clock for SIS–pro-
cessor Serial data for SIS–proces-
sor
75 PA2 EDATA
76 PA3 SCLK 77 PA4 CSW 78 PA5 MBUSEN 79 PA6 TXC 80 PA7
Page 3 – 14
Serial data to/from EE­PROM
Serial clock for synthesizer Charging control Mbus enable Transmitter power control
Original 11/97
PAMS
NHN–6N
Technical Documentation
MC68HC11A8
MC68HC11A8 is a SIS (subscriber identification) circuit connected to the controller over serial bus I2C.
SIS–processor signals
Pin No Signal From
31 EXTAL Clock input from the NIPA 43 RESET Reset input 47 PD0
50 PD1
EEPROM
I2C bus clock I2C bus data
There is one 2k EEPROM in the phone. EEPROM is a nonvolatile memory into which the tuning data for the phone is stored. In addition, it contains the short code memory locations to retain user selectable phone numbers.
EEPROM signals
Pin No Signal Description
5 SDA 6 SCL
I2C bus data I2C bus clock
Original 11/97
Page 3 – 15
NHN–6N
PAMS
Technical Documentation
PWRU
The power block provides the supply voltages for the baseband, and also includes the charging electronics.
PWRU Internal Signals, Inputs
Signal Name Notes From
VBAT Battery voltage input CONNECTOR XPWRON Power on control from keyboard UIF XPWROFF Power off control from controller (watch dog) CTRLU VCS Charging supply voltage from charger CONNECTOR CSW Charger control CTRLU TXD Serial interface (M2BUS) CTRLU M2BUS Serial interface CONNECTOR
PWRU Internal Signals, Outputs
Signal Name Signal description To
VA Analog supply voltage. Max 20 mA. AUDIO VL2 MCU supply voltage CTRLU, UIF VL3 SIS processor and earphone amplifier supply voltage CTRLU, AUDIO VREF Reference voltage 3.3V 2%. Max. 5mA. CTRLU, PWRU
RECEIVER,
TRANSMITTER XRES Master reset CTRLU, AUDIO VBATSW Battery voltage to A/D converter . CTRLU VCHARG Charger voltage to A/D converter CTRLU RXD Serial interface (M2BUS) CTRLU PWRON Power button indicator, PWRON is same as XPWRON but
buffered and inverted.
CTRLU
Block description
The baseband power supplying circuit MUUMI includes: – the supply voltages:
VL2 40mA for digital circuits VA 20mA for analog circuits VREF 5mA reference voltage for A/D–converters and
regulators – the supply voltage VL3 (100mA) for SIS–processor and earphone am­plifier is generated by external regulator – switched output of battery (VBATSW) and charger voltage (VCHARG) measurements to MCU A/D–converter – battery voltage detection and reset logic – charger switch control output used to limit battery voltage VBAT < 6.8V – power on/off switch input (XPWRON), buffered output to MCU
Page 3 – 16
Original 11/97
PAMS
NHN–6N
Technical Documentation
(PWRON) – watchdog timer using oscillator in COFF pin , cleared by falling edge input in PWROFFX, elapsing time for watchdog timer is 3 ... 4 seconds – M2BUS open drain output driver.
The charge switch driving circuit is implemented with discrete compo­nents. This circuit includes transient voltage protection, soft charge switching, low voltage battery charging and battery disconnecting with charger connected protection. This circuit also limits battery voltage when charger is connected to protect MUUMI and TX transistors.
Power circuitry have three different operating modes: POWER OFF , RE­SET and POWER ON. In POWER OFF state MUUMI regulator outputs are disabled and reset control output signal (PURX) is active low. MUUMI internal oscillator at pin COFF is working in all operating modes. MUUMI goes through short RESET state (100ms ) to POWER ON–state , if PWR–button is pressed or charger voltage input is connected to charging input VCS (charging voltage detection in MUUMI input VCHAR is level active). In RESET–state regulator outputs VL,VA and VREF are active and PURX–signal is active low. If battery voltage VBAT is lower than 4.1 V (3.9V...4.3V) the circuit cannot go to POWER ON state. MUUMI goes also to RESET state, when battery voltage is falling below
3.9 V (3.7V...4.1V). This situation is possible, when battery is fully dis­charged or battery is disconnected.
In POWER ON mode all regulator outputs are active and MUUMI reset signal output PURX is inactive high. Micro–controller XPWROFF–output signal clears at falling edge the watchdog inside MUUMI. If the watchdog is not cleared , MUUMI goes to POWER OFF state. When the charger is connected and battery voltage is higher than 4.1V , module stays in POWER ON mode.
The micro–controller controls battery charging with CSW output (which is PWM–controlled output port) and MUUMI limits the maximum battery volt­age to 6.8 V with CHRGSW–output. No current flows from charger (VCHARG) to battery , if MCU output CSW is active low and XRES signal is inactive high. The battery is charged also, when charger is connected and XRES signal is active low. The charging circuit charges the battery during RESET to higher than 4.3 V.
The charging electronics is controlled by the CTRLU. When the charging voltage is applied to the phone while the phone is powered up, the CTRLU detects it and starts controlling the charging.
If the phone is in power–off, the MUUMI will detect the charging voltage . If the battery voltage is high enough the reset will be released and the CTRLU will start controlling the charging. If the battery voltage is too low the phone is in reset and charging control circuitry will pass the charging current to the battery. When the battery voltage has reached 4.1V (3.9...4.3V) the reset will be removed and the CTRLU starts controlling the charging. This all is invisible to the user.
Original 11/97
Page 3 – 17
NHN–6N
PAMS
V116 is the charging switch; it is governed by the controller (CSW line) via voltage regulator V114 and V115. In fast charge mode CSW is ”1” and in maintain charge mode there is controller controlled pulses. In charge off state CSW is ”0”. In maintain charge mode pulse ratio depends of charger and temperature.
There is three different ways to switch power on: – Power key pressing grounds the XPWRON line. The MUUMI defects
that and switches the power on.
– Charger detection on MUUMI detects that charger is connected and
switches power on.
– MUUMI will switch power on when the battery is connected. If the bat-
tery is changed during the call, the power is kept on. If not the power is switched off.
Technical Documentation
Page 3 – 18
Original 11/97
PAMS
NHN–6N
Technical Documentation
MUUMI Block diagram
VBAT1
1
VBAT2
22
VBAT3
5
M2BUSIN
11
760k
PWM
15
760k
CHARGER
CTRL
LOGIC
BANDGAP REF



70k
40k
VBATSW
M2BUSOUT
VL2
VA
VREF
17
12
23
2
4
21
13
14
3
VCHAR
PWRONX
PWROFFX
TEST
VBAT
32k
760k
760k
LOW VBAT & CHARGER DETECT
PWR ON/OFF & RESET LOGIC
Creset
20
16
Coff
VL_ENA VA_ENA
VREF_ENA
VSW_ENA
VCHAR
GND1
24
GND2
19
GND3
7
CHRGSW
PWRONXBUFF
VCHARSW
Cref
6
PURX
8
10
9
18
Original 11/97
Page 3 – 19
NHN–6N
PAMS
AUDIO
Introduction
The block includes NIPA audio/signalling processor in a 64 TQFP pack­age for NMT450 and NMT900 systems.
Main features
– Single chip FFSK modem and audio circuit – Full duplex 1200 baud signalling – DMS facility – Low power consumption modes – Programmable output clocks with clock stop for MCU and LCD – 8 bit parallel interface with pull ups – FSK indicator and level detector – Speech volume indicator – Programmable timer – IF counter – 8 bit DAC – FII filter and gain control – Low noise microphone amplifier – Input for a handset microphone or an accessory – Microphone sensitivity compensation +4.8/–4.2 dB range (4 bits) – Compander – RX and TX filters – Tx hard limiter – Tx AGC – Internal reference compensation +1.00/–0.75 dB range(3 bits) – Summing stage for voice/data, signalling and fii – Transmitter compensation amplifier with +3.75/–3.75 dB range (4 bits) – Receiver compensation amplifier with +3.75/–3.75 dB range (4 bits) – Volume control amplifier with –20/+17.5 range (4 bits) – Earphone amplifier with drive capability for ceramic earpiece – Buffered output for a handset or an accessory – Mute switches – Dual and single tone multi–frequency generator – Driver for buzzer amplifier – Hands free functions
Technical Documentation
Page 3 – 20
Original 11/97
PAMS
NHN–6N
Technical Documentation
Technical specifications AUDIO Internal Signals, Inputs
Signal Name Notes From
XRES Reset line from MUUMI PWRU XNCS Chip select signal CTRLU XNWR Write control signal CTRLU XNRD Read control signal CTRLU NA0...3 4–bit address bus CTRLU ND0...7 8–bit bi–directional data bus CTRLU EAREN Earphone enable CTRLU MBUSINT M2BUS interrupt request PWRU KBINT Keyboard interrupt request UIF IF (2nd) Intermediate frequency for AFC function RECEIVER DAF Detected audio signal from receiver RECEIVER XMIC External audio input from service accessories CONNECTOR VBAT Battery voltage CONNECTOR VA Analog supply voltage Max 20 mA. PWRU VL3 Logic supply voltage for earphone amplifier, Max 100mA PWRU MBUSEN Mbus enable from CTRLU CTRLU
AUDIO Internal Signals, Outputs
Signal Name Notes To
XINT Interrupt request to MCU CTRLU NMI No maskable Interrupt request to MCU CTRLU HSCONN Headset recognition to CTRLU CTRLU LCDCLK Clock signal for LCD driver ( 57.6 kHz) UIF CLKMCU Clock signal for MCU (3.6864 MHz) CTRLU XEAR External audio output to service accessories CONNECTOR MOD Audio output to synthesizer SYNTHESIZER AFC VCTCXO control SYNTHESIZER
NIPA Pin list
Pin no Symbol Pin type Notes
1 VDD1 + 3.3 V Supply voltage, digital 2 XRD DIN/pd Read control signal, active state LOW, pull–down > 50
k
3 XCS DIN/pd Chip select signal, active state LOW, pull–down > 50
k
Original 11/97
Page 3 – 21
NHN–6N
PAMS
NotesPin typeSymbolPin no
4 A3 DIN/pu 4–bit address bus, MSB, pull–up > 50 k 5 A2 DIN/pu 4–bit address bus, pull–up > 50 k 6 A1 DIN/pu 4–bit address bus, pull–up > 50 k 7 A0 DIN/pu 4–bit address bus, LSB, pull–up > 50 k 8 D7 DIO 8–bit bi–directional data bus MSB
9 D6 DIO 8–bit bi–directional data bus 10 D5 DIO 8–bit bi–directional data bus 11 D4 DIO 8–bit bi–directional data bus 12 D3 DIO 8–bit bi–directional data bus 13 D2 DIO 8–bit bi–directional data bus 14 D1 DIO 8–bit bi–directional data bus 15 D0 DIO 8–bit bi–directional data bus LSB 16 VDD2 + 3.3 V Supply voltage, digital
Technical Documentation
17 NMI DOUT Non maskable Interrupt request 18 XCLR DIN HW reset input, active state LOW 19 TMODE DIN/pd Test mode selection, pull–down > 50 k 20 TSEL DIN/pd Test select, pull–down > 50 k 21 XINT DOUT Interrupt request to MCU, active state LOW 22 MBUSINT DIN MBUS interrupt request, falling edge active 23 KBINT DIN Keyboard interrupt request, falling edge active 24 IF AIN IF input 25 VSS2 0 V Supply voltage, digital ground 26 VSA2 0 V Supply voltage, analog ground 27 DAF AIN Signal input 28 FILO AOUT Rxfilter output 29 EXPI AIN Expander input 30 EAMPBO AOUT Expander Amplifier B output 31 EWCI AIN Expander Window Comparator input 32 EXPO AOUT Expander output 33 VDA2 + 3.3 V Supply voltage, analog 34 VOLI AIN Volume control ampl. input (Volume) 35 EXTEAR AOUT Buffered output for handset or an accessory 36 EVGND AIN Earphone driver virtual ground 37 EARM AOUT Earphone driver output 38 EARP AOUT Earphone driver output 39 EARFB AIN Pin for feedback resistor of EARphone amplifier 40 DACO AOUT DA converter output
Page 3 – 22
Original 11/97
PAMS
NHN–6N
Technical Documentation
NotesPin typeSymbolPin no
41 EARIN AOUT Pin for input resistor of EARphone amplifier 42 REF AIN Internal analog signal ground 1.65 V 43 MIC AIN Microphone amplifier input 44 BIMIC AOUT Microphone bias current output 45 CMIC AIN Microphone current stabilization capacitor 46 EXTMIC AIN Audio input for a handset or an accessory 47 TXBPO AOUT Transmit bandpass filter output 48 VDA1 + 3.3 V Supply voltage, analog 49 COMI AIN Compressor input 50 COMO AOUT Compressor output 51 EMPI AIN Pre emphasis input 52 FIIOUT AOUT Received FII signal 53 TOUT DOUT Test output, digital
54 ATST AOUT Audio Filter Test output 55 MOD AOUT Transmit path output 56 VSA1 0 V Supply voltage, analog ground 57 VSS1 0 V Supply voltage, digital ground 58 BUZZ DOUT Buzzer output 59 ATOUT AOUT Test pin 60 CLKIN CIN 7.3728 MHz (3.6864 MHz) crystal oscillator input or
input for the external clock 61 CLKOUT COUT 7.3728 MHz (3.6864 MHz) crystal oscillator output 62 CLKLCD DOUT Clock signal for LCD, 230.4 kHz or 57.6 kHz 63 CLKMCU DOUT Clock signal for MCU, 3.6864 MHz or 7.3728 MHz 64 XWR DIN/pu Write control signal, active state LOW, pull–up > 50
k
Original 11/97
Page 3 – 23
NHN–6N
R
PAMS
NIPA Block Diagram
ATST
ATOUT
LIM
TXAAF
PREEMP
EMPI
CWCI
COMI COMO
TXBPO
AGC
VOL
SUM
TXTRI
RXAAF
SINGEN
MODTRFIL
MODRXFIL
TXLP TXTRI+TXPOSTFIL
AGC
PREEM LIM
COMPR
DATACOMP
txbpo
(to SIDEAR)
aloop (to RXMUX)
SINGEN MODTRFIL
FSKMOD
TRSTBY
TR
RFLAG
TFLAG
RECCTRL
INTERNAL
WTRFIL
SUM
TRREG
CTRL
STATUS
BITS
RECREG
DPLL
CLOCKS
MOD
WPOSFIL
ddtmf
SMUX
loop (to MODRXFIL)
MODTRPOST
BUZZ
DRIV
BUZZ
CONTROL BITS
DFLAG
DETED
AFC
XBSSBY
XTALKSBY
XBUZZSBY
XIFSBY
CREG
TIMER
DETFIL
DACO
D/A
8 bit
XDACSBY
XDTMFSBY
INTERFACE
FIIBUF
A0 A1 A2 A3 D0 D1 D2 D3 D4 D5 D6 D7
NMI
XINT
XWR
XRD
XCS
Technical Documentation
FIIOUT
EAR
FIIPOST
EARP
HF
EARM
CONTR
EVGND
RXATT ACC
EXP VOL
DEEMP+RXFIL
EXTEAR
SIDEA
SIDEAR
txbpo
(from TXBP)
64 pins
VOLI
EXPO
EWCI
EAMPBO
EXPI
FILO
MICAM
Page 3 – 24
TXMUX+TXAAF TXATT MICTRI TXBP
MIC
CMIC
BIMIC
ddtmf (to BUZZDRIV)
DTMFCOMP
dtmf
DTMF GEN
EXTMIC
CLKLCD CLKMCU
XCLR
TMODE
(to RXMUX)
REF GEN
CLKIN
CLOCKDIV
TSEL
OSC
IFAMP
CLKOUT
IFCNTR
IF
FSKIND
GND GEN
REF
FSKDIS
DATACOMP
KBINT
MBUSINT
MODRXFIL
LEVEL
FSKLEV
VDD2
VDD1
FIIFIL(4kHz)+FIITRI
dtmf
loop (from WPOSFIL)
VSS2
VSA1
VDA1
VDA2
RXMUX+AAFIL
VSA2
VSS1
aloop (from TXPOSTFIL)
RXTRI RXAAF
DAF
Original 11/97
PAMS
NHN–6N
Technical Documentation
Transmit (TX) audio signal path
The TX audio signal is processed in the NIPA circuit and fed via the MOD line to the TX synthesizer on SYNTHESIZER module.
NIPA ASIC contains the following stages for TX signal processing: MICAM: The signal from the microphone is fed to this stage and amplified up to
200 mVrms. TXMUX + TXAAF: TX source selection (exmic/mic/dmmf/muted). Txaafil prevents aliasing in
TXBP filter. TXATT: TXATT is a hands free attenuator. Maximum attenuation is selectable
from four levels: –30, –27, –24 or –21 dB. MICTRI:
MICTRI is for different microphone (phone microphone, headset and handset etc.) sensitivity compensation. It is used also for dtmf level set­ting. Gain 16 levels, step 0.6 dB.
BANDPASS: Tx bandpass filter takes out high freq noise and low freq hum. COMPR: It compresses speech dynamic area to avoid noise at tx and radio path. It
is an amplitude compressor and ratio is 2:1 in dB scale. It can be by­passed for measurement or dtmf purposes.
PREEMP: Pre–emphasis filter gives +6 dB/oct emphasis. AGC: A soft limiter is needed in order to suppress inter–modulation. Signal
measuring circuitry measures peak–to–peak voltage. If the signal on soft limiter input is not a sine signal (clipped in preceding stages), peak–to– peak signal level is increased in the post limiter filter.
LIM: Hard limiter. It cuts the signal transients to 1131 mVpp levels. TXLP: The corner frequency of tx lowpass filter is 3400 Hz. Amplitude attenua-
tion is 12 dB/oct after the corner point. Filter includes notch at 4 kHz. TXTRI: TXTRI is for nominal deviation tuning. Gain 8 levels, step 0.5 dB. TXPOSTFIL:
Original 11/97
Page 3 – 25
NHN–6N
PAMS
Postfil eliminates filter clock. SUM: Speech, data and FII signals are summed together. WTRFIL: This block is a lowpass filter for FII and data. Transmitter Compensation
Amplifier is these too. Gain 16 levels, step 0.5 dB.
WPOSFIL: WPOSFIL filters out the replicates of the output spectrum around WTRFIL
clock frequency and its harmonics.
RECEIVE (RX) AUDIO SIGNAL PATH
Technical Documentation
NIPA contains the following stages for RX signal processing:
RXTRI: RXTRI is for demodulation sensitivity compensation. Gain 16 levels, step
0.5 dB. RXAAF: RX aafilter filters out noise and other high frequency components from
the incoming signal. It prevents aliasing in FIIFIL, RXFIL and MODRXFIL. RXMUX+AAFIL: Rxmux selects speech from DAF–pin or DTMF from generator or a loop
from TXTRI or mute. Aafil prevents aliasing in RXFIL. DEEMP+ RXFIL: Rx filter filters out high freq noise and low freq hum. It has de–emphasis
–6 dB/oct for the received speech signal. Design should include notch at 4kHz.
EXP: It expands speech dynamic back to normal. It is an amplitude expander
and ratio is 1:2 in dB scale. It can be by–passed for measurement or dtmf purposes.
VOL: VOL is for earphone or accessory speaker/earphone volume control. Vol-
ume Control Amplifier. Gain 16 levels over –20 to +17.5 dB in 2.5 dB steps.
Page 3 – 26
Original 11/97
PAMS
NHN–6N
Technical Documentation
RXATT: RXATT is a hands free attenuator. Maximum attenuation is selectable
from four levels: –30, –27, –24 or –21 dB. Hands free controller (HF CONTR) measures peak–to–peak level of the received audio and controls gains of the transmit and receive attenuators as a function of measured signal level.
EAR: The Earphone Amplifier is a single input, differential output amplifier for a
ceramic earpiece. ACC: Buffer for accessory line is capable of driving high capacitive load. Gain
and response of the buffer are fixed.
Transmitting data path
The data to be transmitted will be loaded into the transmitting register TRREG. From the TRREG register the 8 bit data is transformed to serial data which is sent to the FSK modulator (FSKMOD) and sine wave generator (SINGEN) and then to the summing block (SUM).
Receiving data path
The data from anti alias filter is connected through the modems RX filter (MODRXFIL) to the data comparator (DA TACOMP) and then to FSK discrim­inator. Further from FSK discriminator data is connected to detecting filter (DETFIL) and from there to digital phase locked loop (DPLL).
IF
Intermediate frequency counter (IFCTR) is on the modem to measure the frequency of IF signal.
AFC
AFC provides the synthesizer fine tuning. It can also be used for channel sidestep. AFC DA–converter output DC level tunes RF oscillator (VCXO).
FII path
The FII signal is filtered and amplified with a 4 kHz bandpass filter (FIIF­IL). FIITRI is for FII sensitivity compensation. The filtered FII is then fed to the summing block (SUM).
Original 11/97
Page 3 – 27
NHN–6N
PAMS
Buzzer driver
The buzzer driver is a ’semi PWM’ signal generator. It detects rising edges of DTMF signal and generates a pulse on every rising edge. The length of the pulse can be set by writing a length control word to the register BUZZ­VOL. The length is N * 2.17 us, where N is a value in BUZZVOL register.
V alue 0x0H in BUZZVOL register disables buzzer driver i.e. BUZZ output is always low.
The buzzer uses three volume levels, which are controlled by the PWM signal.
Clock divider
The clock divider generates internal clock frequencies by dividing the master clock frequency which is created by an internal crystal oscillator and an external 7.3728 MHz or 3.6864 MHz crystal. An external clock sig­nal can also be used. If the crystal is used, the oscillator output CLKOUT must not be loaded. A buffered crystal frequency can be obtained at pin CLKMCU directly or divided by two. A 230.4kHz / 57.6kHz clock can be obtained at pin CLKLCD. The frequency can be selected with control bit SELLCDC.
Technical Documentation
NHN–6N uses a 3.6864 MHz clock for the MCU (CLKMCU), and a
57.6 kHz clock for the LCD display (CLKLCD).
Page 3 – 28
Original 11/97
PAMS
NHN–6N
Technical Documentation
RF Section
Technical Summary Functional Description
The RF module is designed for handportable cellular phone which oper­ates in the NMT900 system. The purpose of the module is to receive and demodulate the radio frequency signal from base station and transmit modulated RF signal to base station.
RF module is constructed on a 1.0 mm thick FR4 four–layer Printed Wire Board. Dimensions of the PWB are 142 mm x 48 mm.
EMC leakage is prevented with magnesium shield on component side.
Basic Specifications
Parameter Value
RX frequency band 935.0125 – 959.9875 MHz TX frequency band 890.0125 – 914.9875 MHz RX LO frequency band 980.0125 – 1004.9875 MHz Duplex spacing 45 MHz Channel numbers 1 – 1000, 1025 – 2023 Number of channels 1999 Channel spacing 12.5/25 kHz TX output power 0.1 W low power, 0.55 W high power Method of frequency synthesis Dual PLL with two UHF signals for RX LO and
TX Frequency control AFC with +/– 2.5 kHz limits Receiver type Superheterodyne with double IF Modulator type FM–modulator Current consumption, reception 63 mA Current consumption, standby 5.5 mA Current consumption, transmission 550 mA
Original 11/97
Page 3 – 29
NHN–6N
PAMS
Technical Documentation
Module Characteristics
Maximum ratings
The maximum battery voltage during transmission should not exceed 6.0 V. Higher battery voltages may destroy the power amplifier module.
Parameter Value
Battery voltage nom. 4.8 V, min. 4.5 V, max. 6.0 V, Regulated supply voltage 3.6 V +/– 5 % Operating temperature range –25 ... +55 deg.C
DC Characteristics Regulators
There are two regulators in the RF unit. Regulators get their reference voltages 3.3 V (Vref) from BB unit. Regulators regulate the battery voltage to the fixed 3.6 V level.
Control Signals
In the following table the RF current consumption can be seen with differ­ent status of the control signals. RX and TX synthesizer phase locked loops are switched on/off by a control byte of PLL circuit.
RXE + SW power­up for RX synthe-
sizer
H H H 550 mA Power Level 2 H H L 67 mA H L L 42 mA Synthesizer TX part
L L L 1 mA All RF parts have
TXS + SW power­up for TX synthe-
sizer
TXE Typical Current
Consumption /mA
has been powered off
been powered off
Connections
Connections to Baseband module
Signal Name Type Function
Note
AFC Analog out The reference oscillator frequency adjust.
AGC Digital out Receiver gain control. Active state: High
DAF Analog in Demodulated received signal (audio + fii+ data)
GND Power Common ground
IF Analog out 2nd IF signal (450 kHz)
Page 3 – 30
Original 11/97
PAMS
NHN–6N
Technical Documentation
FunctionTypeSignal Name
MOD Analog out Modulation signal for transmitter (audio + fii + data)
RFTEMP Analog in Main crystal temperature.
RSSI Analog in Received signal strength indicator. Voltage measurement.
RXE Digital out Receiver enable, Active state: High SCLK Digital out Serial clock for synthesizer. Active state: Rising edge SDAT Digital out Serial data for synthesizer. Active state: High
SLE Digital out Synthesizer latch enable TXC PWM out Transmitter power control TXE Digital out Transmitter enable. Active state: High
TXI Analog in ”TX power on” –indicator
TXS Digital out TX synthesizer enable. Active state: High
VBAT Power Battery voltage to transmitter
VRF Power Battery voltage to regulator
VREF Power Reference voltage
Digital control signal values
Supply voltage VDD 3.3 V Logical 1 VOH >VDD*0,7 Logical 0 VOL <VDD*0,3 Logical 1 IOH <1mA , 1mA (typical) Logical 0 IOL <1mA , 1mA (typical)
AFC VCTCXO control voltage
Type analog signal (DC–level) Level 0.3...3,0 V DC Source impedance Zs < 1.5 kohm Load impedance ZL > 10 kohm Control step size for TX freq. 100 Hz (typical)
AGC Receiver gain control
Type Digital signal Function 0 = AGC off
1 = AGC on
Original 11/97
Page 3 – 31
NHN–6N
PAMS
DAF Demodulated audio and data
signal
Type analog signal Nominal level 50 mVrms @3,0 kHz deviation Unit to unit variation 35 mV...65 mV Source impedance ZS < 5 kohm Load impedance ZL > 50 kohm
IF 450 kHz 2nd IF signal
Level 250 mVpp (typical) not speci-
Source impedance < 10 k W Load impedance > 50 k W
Technical Documentation
fied by manufacturer
MOD Modulation signal for trans-
mitter (Audio + data)
Type Analog signal Nominal level 300 mVpp @3,0 kHz deviation Load impedance ZL > 10 kW Source impedance Zs < 5 kW
RFTEMP VCTCXO temperature
Type analog signal Level 0...3,3 V DC Temp. range –25...+55 degrees centigrade
RSSI Received signal strength in-
dicator
DC–level 0.2...3.0 V Source impedance 56 kW (typical)
RXE Receiver enable
Type Digital signal Function 0 = RX off
1 = RX on
On–state current 150 mA (typical) (300 mA max.)
Page 3 – 32
Original 11/97
PAMS
NHN–6N
Technical Documentation
SCLK Serial clock for synthesizer
Type digital signal Pulse width > 1 us
SLE Synthesizer enable
Type Digital signal Function 0 = synthesizer enabled
1 = synthesizer disabled
TXC Transmitter power control
Type PWM signal Function Duty cycle of the TXC signal
defines the TX power level
PWM frequency 5 kHz
Level 0...3.3 V DC Number of duty cycle steps 256 Load impedance > 100 kohm
TXE Transmitter on/off control
Type Digital signal Function 0 = TX off
1 = TX on
TXI ”TX power on” –indicator
Type Analog signal Source impedance > 47 k Level < 1 V = TX off
> 1 V = TX on
TXS TX synthesizer on/off
Type Digital signal Function 0 = Supply off
1 = Supply on
Original 11/97
Page 3 – 33
NHN–6N
PAMS
VBAT Battery voltage
Nominal value 4.8 V Minimum value 4.5 V Absolute maximum 6.9 V Max. current 700 mA
VRF Battery voltage for RX regula-
tor
Nominal value 4.8 V Minimum value 4.5 V Absolute maximum 6.9 V Max. current 100 mA
Technical Documentation
VREF Reference voltage
Level 3.3 V 4%
Page 3 – 34
Original 11/97
PAMS
NHN–6N
Technical Documentation
Block diagram
DAF
IF
RSSI
450 kHz FILTER
IF CIRCUIT
TX LO BUFFER
PHASE SHIFTER
TX VCO
LOOP FILTER
MOD
SLE
SCLK
AGC
SDATA
RF TEMP
AFC
TXC
VCTCXO 14.85 MHz
TXE
TXI
VBAT
REGULATOR
3.6 V
VCCR
VTSYN TSYN SWITCH
VREF
REGULATOR
3.6 V
VSYN
TXS
IF AMPLIFIER
45 MHz
CRYSTAL FILTER
DIODE MIXER
RX–FILTER
LNA
UMA 1015
SYNTHESIZER IC
TANK CIRCUIT FOR 2.ND LO
PLL
PLL
LOOP FILTER
RX LO BUFFER
RX VCO
RF2131
AMPLIFIER MODULE
TX POWER CONTROL
POWER DETECTOR
Original 11/97
ANTENNA
DUPLEX–FILTER
DIR_COUPLER
Page 3 – 35
NHN–6N
PAMS
Receiver
The receiver is a dual–conversion superheterodyne using two intermediate frequencies, 45 MHz and 450 kHz.
The RF signal from the duplexer RX port is applied to the RF amplifier. The amplifier has 18 dB gain and 1,5 dB noise figure.
Next the signal is filtered with Z321. The filter is followed by a single balanced diode mixer, which has 6 dB conversion loss.
After the mixer signal is filtered with the crystal filter Z350, which has 7,5 kHz bandwidth. Next the IF signal is amplified by V380. From the amplifier the IF–signal is applied to the second mixer.
The second mixer, the LO buffer transistor, IF amplifier and quadrature detector are all integrated in the circuit N370. The second LO frequency,
44.55 MHz, is third harmonic of the VCTCXO frequency . LO signal is realized with tank circuit C372 and L371. After the mixer the 450kHz IF signal is filtered with ceramic filter Z370. The IF amplifier output signal is phase shifted by resonance circuit. After this the signal is fed to a quadrature detector.
Technical Documentation
Signal DAF is low pass filtered by R372 and C379. The DAF, RSSI and 2nd IF signal (450 kHz) are fed to the audio/logic unit.
RX Synthesizer
The first injection frequency for receiver is generated by a digital phase locked loop (PLL). The output frequency of the loop (LO) is obtained from a voltage–controlled oscillator (VCO) G530. The VCO output signal is amplified by RX–LO–buffer and fed to the receiver mixer . The injection level required by the receiver mixer is about +3 dBm. In addition, the signal is feeded back to the dualsynthesizer circuit N820.
The overall divisor of the chain is selected according to the desired chan­nel.
The internal dividers of N820 are programmed with 17 bits, which are transferred serially on the SDAT (synthesizer data) line from the processor into an internal shift register also located in N820. Data transfer is timed with SCLK clock pulses.
The divided frequency is compared with a highly stable reference frequency by a phase comparator in the PLL circuit. The phase comparator controls the VCO frequency by means of a DC voltage through the loop filter so as to keep the divided frequency applied to the phase comparator equal to the fixed reference frequency.
The reference frequency is 12,5 kHz. This reference frequency is obtained from voltage controlled crystal oscillator (VCXO or VCTCXO). Oscillator frequency is 14.85 MHz. The VCXO frequency is divided by 1188.
RX loop filter
Phase comparator output is pin 3. If the VCO frequency is too high, the output goes low and discharge integrator capacitor C521. After this, the DC control voltage and the VCO frequency will decrease.
Page 3 – 36
Original 11/97
PAMS
NHN–6N
Technical Documentation
If the VCO frequency is too low, the output goes high and charge the integrator capacitor C521. Thereafter the DC control voltage and the VCO frequency will go up.
Output pulses from the phase detector have to be supplied to the loop filter. The function of the integrator is to convert positive and negative pulses to DC voltage. The remaining ripple and AC components are filtered in the lowpass filter.
TX Synthesizer
The transmitter synthesizer generates a frequency modulated transmitter signal for the transmitter section. The modulated TX injection frequency is generated in TX–VCO (G430). The TX modulated TX signal is amplified in TX–buffer before the transmitter.
TX Loop Filter
Output pulses from the phase detector N820 pin 17 have to be supplied to the loop filter. The integrator, which is constituted of R420 and C421, converts positive and negative pulses to DC voltage. The remaining ripple is filtered in the low–pass filter.
Transmitter
The transmitter is realized with a power amplifier module. The modulated RF signal from the TX synthesizer is applied to the 50 ohm input of the module. The power level is controlled by the voltage supplied to the pin 1. Zener diode V642 protects the module against too high control voltages (>4.5 V). Amplifier module has two pairs of output pins ( pins 10, 11 and 14,15 ). Amplified RF signals are compined symmetrically and fed through a low–pass filter to the duplex filter. The harmonics of the transmitter are reduced by the duplex filter. A voltage proportional to the output power is rectified from a directional coupler by DC–biased Schottky diode V640. This rectified voltage is fed to a differential amplifier which consists of transistor V650. The reference voltage is filtered from the PWM signal by TXC line. The differential amplifier adjusts the control voltage so that the reference voltage and the voltage proportional to the output power are equal. The transmitter is switched on when TXE goes high (logic 1), which enables the transmitter power control circuit by transistor V653. When the transmitter is inactive (TXE low) the RF level from the transmitter is reduced below –57 dBm.
Regulators
The voltage regulators for RF parts consist of the transistors V310, 31 1, 313 and 314. The first regulator (V310, 311) provides the operating voltage for the receiver, PLL circuit and RX–VCO buffer. The other one is used to regulate the operating voltage of the RX–VCO. These regulators are realized using discrete transistors because the output noise has to be very low. The 3.3 V reference voltage (VREF) is fed from the logic module. TX synthesizer gets the supply voltage via a switch which is realized using transistors V411 and V410. The switch is controlled by the digital TXS–line from the logic module.
Original 11/97
Page 3 – 37
NHN–6N
PAMS
AFC function
The transceiver unit is equipped with AFC function, i.e. it uses the incoming receive signal from base station as a frequency reference. The control loop consists of the receiver, the IF counter in the NIPA, CPU, an 8–bit D/A converter in the NIPA and the VCTCXO, which is used as a reference oscillator for the synthesizer.
The 2nd IF signal (450 kHz) from receiver is fed to the NIP A. The IF counter counts the received frequency. If the frequency differs from programmed value, CPU adjusts the frequency of the VCXO by changing output voltage of the D/A converter. This adjustment continues until the desired receive frequency is achieved. AFC is not active during a channel scan and below –90 dBm RX signal level.
UIF Module
Technical Documentation
The UIF module includes keyboard, keyboard illumination and display.
UIF internal Signals, Inputs
Signal Name Notes From
LIGHTS Backlights on/off CTRLU COL0–4 Lines for keyboard read (keypad outputs) CTRLU DD0–3 Lcd driver data CTRLU E Lcd driver chip select signal CTRLU RW Lcd driver read/write select signal CTRLU RS Lcd driver register select signal CTRLU LCDRES Lcd driver reset signal CTRLU
UIF internal Signals, Outputs
Signal Name Notes To
ROW0–2 Lines for keyboard read (keypad inputs). Internal pull–up of
MCU is used
XPWRON Power on control fro keyboard PWRU
CTRLU
KBINT Keyboard interrupt request, falling edge active AUDIO
Page 3 – 38
Original 11/97
PAMS
NHN–6N
Technical Documentation
Parts List of JR9B EDMS Issue 2.3 (for layout version 01) Code: 0201178
ITEM CODE DESCRIPTION VALUE TYPE
R111 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R112 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R113 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R114 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R115 1430738 Chip resistor 270 5 % 0.063 W 0402 R116 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R117 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R118 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R119 1430730 Chip resistor 150 5 % 0.063 W 0402 R120 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R121 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R122 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R123 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R124 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R151 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R155 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R161 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R162 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R163 1430740 Chip resistor 330 5 % 0.063 W 0402 R202 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R203 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R204 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R205 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R206 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R208 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R242 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R243 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R245 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R247 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R251 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R252 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R263 1800673 NTC resistor 15 k 10 % 0.12 W 0805 R310 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R311 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R312 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R313 1430758 Chip resistor 1.5 k 5 % 0.063 W 0402 R314 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R315 1430776 Chip resistor 8.2 k 5 % 0.063 W 0402 R317 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R318 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R320 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R321 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R322 1430726 Chip resistor 100 5 % 0.063 W 0402
Original 11/97
Page 3 – 39
NHN–6N
PAMS
R325 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R326 1430758 Chip resistor 1.5 k 5 % 0.063 W 0402 R327 1430776 Chip resistor 8.2 k 5 % 0.063 W 0402 R328 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R330 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R331 1430808 Chip resistor 150 k 5 % 0.063 W 0402 R332 1430734 Chip resistor 220 5 % 0.063 W 0402 R333 1430700 Chip resistor 10 5 % 0.063 W 0402 R334 1430710 Chip resistor 22 5 % 0.063 W 0402 R335 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R340 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R341 1430832 Chip resistor 2.7 k 5 % 0.063 W 0402 R342 1430700 Chip resistor 10 5 % 0.063 W 0402 R343 1430734 Chip resistor 220 5 % 0.063 W 0402 R350 1430726 Chip resistor 100 5 % 0.063 W 0402 R360 1430744 Chip resistor 470 5 % 0.063 W 0402 R361 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R362 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R363 1430756 Chip resistor 1.2 k 5 % 0.063 W 0402 R365 1430690 Chip jumper 0402 R366 1430714 Chip resistor 33 5 % 0.063 W 0402 R370 1430758 Chip resistor 1.5 k 5 % 0.063 W 0402 R371 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R372 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R373 1430714 Chip resistor 33 5 % 0.063 W 0402 R374 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R381 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R411 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R412 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R414 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R420 1430766 Chip resistor 3.9 k 5 % 0.063 W 0402 R421 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R422 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R423 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R430 1430718 Chip resistor 47 5 % 0.063 W 0402 R431 1430734 Chip resistor 220 5 % 0.063 W 0402 R432 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R433 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R434 1430700 Chip resistor 10 5 % 0.063 W 0402 R440 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R441 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R442 1430734 Chip resistor 220 5 % 0.063 W 0402 R443 1430700 Chip resistor 10 5 % 0.063 W 0402 R520 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R521 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R522 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402
Technical Documentation
Page 3 – 40
Original 11/97
PAMS
NHN–6N
Technical Documentation
R523 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R530 1430724 Chip resistor 82 5 % 0.063 W 0402 R531 1430734 Chip resistor 220 5 % 0.063 W 0402 R532 1430700 Chip resistor 10 5 % 0.063 W 0402 R601 1430700 Chip resistor 10 5 % 0.063 W 0402 R632 1430700 Chip resistor 10 5 % 0.063 W 0402 R641 1430726 Chip resistor 100 5 % 0.063 W 0402 R642 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R643 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R644 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R646 1430776 Chip resistor 8.2 k 5 % 0.063 W 0402 R647 1430744 Chip resistor 470 5 % 0.063 W 0402 R649 1430806 Chip resistor 120 k 5 % 0.063 W 0402 R651 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R652 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R653 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R654 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R656 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R657 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R659 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R660 1430690 Chip jumper 0402 R721 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R722 1430776 Chip resistor 8.2 k 5 % 0.063 W 0402 R731 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R732 1430774 Chip resistor 6.8 k 5 % 0.063 W 0402 R733 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R741 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R742 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R743 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R767 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R768 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R769 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R771 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R772 1430151 Chip resistor 10 5 % 0.063 W 0603 R773 1430151 Chip resistor 10 5 % 0.063 W 0603 R791 1430724 Chip resistor 82 5 % 0.063 W 0402 R793 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R800 1800673 NTC resistor 15 k 10 % 0.12 W 0805 R811 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R812 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R816 1430700 Chip resistor 10 5 % 0.063 W 0402 R820 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R821 1430714 Chip resistor 33 5 % 0.063 W 0402 R822 1430714 Chip resistor 33 5 % 0.063 W 0402 R826 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R829 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R830 1430778 Chip resistor 10 k 5 % 0.063 W 0402
Original 11/97
Page 3 – 41
NHN–6N
PAMS
R831 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R840 1430714 Chip resistor 33 5 % 0.063 W 0402 R900 1430087 Chip resistor 100 k 5 % 0.063 W 0603 R901 1430077 Chip resistor 39 k 5 % 0.063 W 0603 R902 1430087 Chip resistor 100 k 5 % 0.063 W 0603 R903 1800673 NTC resistor 15 k 10 % 0.12 W 0805 R904 1430051 Chip resistor 4.7 k 5 % 0.063 W 0603 R909 1430151 Chip resistor 10 5 % 0.063 W 0603 R920 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R921 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R922 1430718 Chip resistor 47 5 % 0.063 W 0402 R923 1430718 Chip resistor 47 5 % 0.063 W 0402 R924 1430714 Chip resistor 33 5 % 0.063 W 0402 R925 1430714 Chip resistor 33 5 % 0.063 W 0402 R930 1430804 Chip resistor 100 k 5 % 0.063 W 0402 C101 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C102 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C103 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C104 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C105 2604199 Tantalum cap. 2.2 u 20 % 3.2x1.6x1.6 C106 2604199 Tantalum cap. 2.2 u 20 % 3.2x1.6x1.6 C107 2604199 Tantalum cap. 2.2 u 20 % 3.2x1.6x1.6 C108 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C109 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C111 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C112 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C113 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C120 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C121 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C122 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C123 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C140 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C141 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C142 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C143 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C161 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C191 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C192 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C193 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C194 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C195 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C201 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C202 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C203 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C205 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C206 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C207 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402
Technical Documentation
Page 3 – 42
Original 11/97
PAMS
NHN–6N
Technical Documentation
C228 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C229 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C241 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C242 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C251 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C312 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C313 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C314 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C315 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C320 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C322 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C323 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C324 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C325 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C326 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C327 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C328 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C331 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C332 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C333 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C340 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C341 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C342 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C343 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C344 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C345 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C350 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C351 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C354 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C360 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C361 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C362 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C370 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C371 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C372 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C373 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C374 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C375 2604329 Tantalum cap. 4.7 u 20 % 10 V 3.5x2.8x1.9 C376 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C377 2310490 Ceramic cap. 360 p 2 % 50 V 0805 C378 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C379 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C380 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C381 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C382 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C411 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C420 2320620 Ceramic cap. 10 n 5 % 16 V 0402
Original 11/97
Page 3 – 43
NHN–6N
PAMS
C421 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C422 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C423 2320120 Ceramic cap. 22 n 10 % 25 V 0603 C424 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C430 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C431 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C432 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C433 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C434 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C440 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C441 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C442 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C443 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C520 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C521 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C522 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C523 2320120 Ceramic cap. 22 n 10 % 25 V 0603 C524 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C530 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C531 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C532 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C601 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C602 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C603 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C604 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C605 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C608 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C625 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C631 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C633 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C634 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C635 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C641 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C642 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C643 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C644 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C645 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C646 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C648 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C650 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C651 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C660 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C701 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C702 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C703 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C704 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C705 2320781 Ceramic cap. 47 n 20 % 16 V 0603
Technical Documentation
Page 3 – 44
Original 11/97
PAMS
NHN–6N
Technical Documentation
C706 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C711 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C712 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C713 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C714 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C715 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C716 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C717 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C721 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C731 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C732 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C741 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C742 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C753 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C762 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C763 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C764 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C765 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C766 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C772 2320045 Ceramic cap. 27 p 5 % 50 V 0603 C773 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C781 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C783 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C791 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C792 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C793 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C794 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C795 2312296 Ceramic cap. Y5 V 1210 C811 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C812 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C813 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C814 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C815 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C821 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C823 2604209 Tantalum cap. 1.0 u 20 % 16 V 3.2x1.6x1.6 C824 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C825 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C826 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C900 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C901 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C902 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C903 2604431 Tantalum cap. 10 u 20 % 16 V 6.0x3.2x2.5 C904 2320045 Ceramic cap. 27 p 5 % 50 V 0603 C909 2604431 Tantalum cap. 10 u 20 % 16 V 6.0x3.2x2.5 L101 3641262 Ferrite bead 30r/100mhz 2a 1206 1206 L102 3641262 Ferrite bead 30r/100mhz 2a 1206 1206 L320 3643003 Chip coil 12 n 5 % Q=30/250 MHz
Original 11/97
Page 3 – 45
NHN–6N
PAMS
0805 L350 3641602 Chip coil 560 n 5 % Q=30/25 MHz 1008 L370 3640103 Chip coil 320 u 2 % Q=40/796kHz 1812 L371 3641302 Chip coil 470 n 5 % Q=30/25 MHz 1008 L631 3641262 Ferrite bead 30r/100mhz 2a 1206 1206 B700 5469031 SM, conn chp2502–0101 1x2 m p1.2 P1.25 B701 4510099 Crystal 3.6864 M +–35PPM B731 5469031 SM, conn chp2502–0101 1x2 m p1.2 P1.25 B732 5140051 Cond.mic –42+–2DB 2.2K WIRES+CONWIRES+CONN B771 5140073 Buzzer 9 4DB 2.670KHZ 3.6V 9X9X4.9x9x4.5 G430 4350011 SM, vco 890–915mhz4.3v/10ma tx nm NMT9 G530 4350015 SM, vco980–1005mhz3.4v/10ma rx n NMT G810 4510043 SM, VCTCXO112cb 14.85mhz+–2ppm3.3v F101 5119011 SM, fuse f2a 63v 120 1206 F102 5119011 SM, fuse f2a 63v 120 1206 Z321 4511016 Saw filter 947.5+–12.5 M 5.4x5.2 Z350 4510085 XTAL filter 45 M +–7.5KHZ 4POLE Z370 4500001 Cer.filt 450+–6khz/6db 9.5x6.5 9.5x6.5 Z660 4512059 Dupl 890–915/935–960mhz 45x15.9 45x15.9 V030 4864388 Led Green 0603 V031 4864388 Led Green 0603 V032 4864388 Led Green 0603 V033 4864388 Led Green 0603 V036 4864388 Led Green 0603 V037 4864388 Led Green 0603 V038 4864388 Led Green 0603 V039 4864388 Led Green 0603 V040 4864388 Led Green 0603 V041 4864388 Led Green 0603 V043 4200917 Transistor BC848B/BCW32npn 30 V 100 mA SOT23 V044 4200917 Transistor BC848B/BCW32npn 30 V 100 mA SOT23 V045 4200917 Transistor BC848B/BCW32npn 30 V 100 mA SOT23 V110 4113828 Trans. supr. SMBJ28A DO214AA V111 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V113 4210102 Transistor BC858Wpnp 30 V 100 mA 200MWSOT323 V114 4200226 Darl. transistor BCV27npn 30 V 300 mA SOT23 V115 4200226 Darl. transistor BCV27npn 30 V 300 mA SOT23 V116 4210020 Transistor BCP69–25 pnp 20 V 1 A SOT223 V117 4210100 Transistor BC848W npn 30 V SOT323 V118 4110034 Schottky diode MBRS140 40 V 1 A DO214AA V140 4340337 Mm1165imr reg 4v 100ma 4% mmp4p MMP4P V310 4210054 Transistor FMMT589 pnp 30 V 1 A SOT23 V311 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V312 4210100 Transistor BC848W npn 30 V SOT323 V313 4210102 Transistor BC858Wpnp 30 V 100 mA 200MWSOT323 V314 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V320 4210074 Transistor BFP420 npn 4. V SOT343
Technical Documentation
Page 3 – 46
Original 11/97
PAMS
NHN–6N
Technical Documentation
V330 4210102 Transistor BC858Wpnp 30 V 100 mA 200MWSOT323 V331 4219922 Transistor x 2 UM6 V340 4115802 Sch. diode x 2 4V 30 mA SOT23 V341 4210090 Transistor BFG540/Xnpn 15 V 129 mA SOT143 V380 4210066 Transistor BFR93AWnpn 12 V 35 mA SOT323 V410 4210102 Transistor BC858Wpnp 30 V 100 mA 200MWSOT323 V411 4210100 Transistor BC848W npn 30 V SOT323 V440 4210090 Transistor BFG540/Xnpn 15 V 129 mA SOT143 V640 4100567 Sch. diode x 2 BAS70–04 70V15 mA SERSOT23 V641 4116536 Zener diode BZX84 5 % 2.4 V 0.3 W SOT23 V642 4110126 Zener diode BZX84 5 % 4.3 V 0.3 W SOT23 V650 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V651 4210054 Transistor FMMT589 pnp 30 V 1 A SOT23 V653 4210100 Transistor BC848W npn 30 V SOT323 V741 4100285 Diode x 2 BAV9970 V 200 mA SER.SOT23 V770 4200226 Darl. transistor BCV27npn 30 V 300 mA SOT23 V771 4110070 Diode BAS16W 75 V 0.25 A SOT323 V930 4119902 Diode x 4 IMP11 80 V 0.3 A IMD D100 4340011 LCD display driv nju6428lfg dtmtr sqfp10 SQFP100 D241 4370029 IC, ASIC PQFP64 D253 4343258 IC, EEPROM 2kx8 bit N101 4370084 IC, mas1013s–t muumi ssop2NMP70084SSOP24 N370 4349694 IC, if amp+fm detector sso TA31136 SSO16 N601 4340163 IC, pow.amp. SO16SB N701 4375081 Nipa1 nmt audio/signalling sqfp64 SQFP64 N761 4340331 IC, Power amp. LM4862 P W SO8S N820 4349616 IC, 2xsynth 1.1ghz 3v ssoUMA1015M SSO20 X100 5460011 SM, conn cgp4505–0101 1x5 m p1.5 X102 5409003 SM, jack 3.0mm f dc 9v 1a X790 5409049 SM, jack 2.5mm+2 switch stereo
9854262 PCB JR9B 143.1X48.0X1.0 M4 4/PA 9854262 PC board JR9B143.1x48.0x1.0 m4 4/pa 0240523 IC, SWMCU SW PROGR.
Original 11/97
Page 3 – 47
NHN–6N
PAMS
Technical Documentation
[This page intentionally left blank]
Page 3 – 48
Original 11/97
Loading...