Nokia 7110 System Module 02

PAMS Technical Documentation
NSE–5 Series Transceivers
Chapter 2
System Module
Issue 1 07/99
NSE–5 System Module
Technical Documentation
Contents
System Connector 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Connector 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slide Microphone 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slide Connector 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Roller Interface 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Keys and Keymatrix 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Headset Connector 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Connector 3 – 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vibra Alerting Device 3 – 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SIM Card Connector 3 – 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PAMS
Page No
Infrared Transceiver Module 3 – 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Real Time Clock 3 – 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Baseband Module 3 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Summary 3 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution 3 – 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Up 3 – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power up with a charger 3 – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Up With The Power Switch (PWRONX) 3 – 22. . . . . . . . . . . . . . . . .
Power Up by RTC 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Up by IBI 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acting Dead 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Mode 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sleep Mode 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery charging 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Startup Charging 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Overvoltage Protection 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Removal During Charging 3 – 26. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Different PWM Frequencies ( 1Hz and 32 Hz) 3 – 27. . . . . . . . . . . . . . . . . .
Battery Identification 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Temperature 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply Voltage Regulators 3 – 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Audio Control 3 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Microphone and Earpiece 3 – 32. . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Audio Connections 3 – 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Audio Connections 3 – 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page 2 – 2
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
4–wire PCM Serial Interface 3 – 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speech Processing 3 – 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alert Signal Generation 3 – 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Control 3 – 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAD2PR1 3 – 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAD2PR1 pinout 3 – 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memories 3 – 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Program Memory 32MBit Flash 3 – 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SRAM Memory 3 – 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EEPROM Emulated in FLASH Memory 3 – 47. . . . . . . . . . . . . . . . . . . . . . .
MCU Memory Requirements 3 – 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Programming 3 – 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IBI Accessories 3 – 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phone Power–on by IBI 3 – 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Module
IBI power–on by phone 3 – 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MCU Memory Map 3 – 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Module 3 – 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Frequency Plan 3 – 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Regulators 3 – 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency Synthesizers 3 – 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver 3 – 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter 3 – 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AGC 3 – 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AFC function 3 – 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interfacing 3 – 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User Interface 3 – 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LEDs 3 – 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plastic Window 3 – 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dust Seal 3 – 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LCD Adhesive 3 – 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reflector 3 – 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connector 3 – 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Light Guide 3 – 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UI Module Connection to main PCB 3 – 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parts Lists 3 – 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Amendment 07/00
Page 2– 3
NSE–5 System Module
Technical Documentation
List of Figures.
Figure 1. System Connector – module 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2. System Connector – detailed. 3 – 6. . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 3. Combined headset, system connector audio signals 3 – 13. . . . . . . .
Figure 4. Battery connector locations 3 – 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 5. Sim Card Reader Ultra phone 3 – 15. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 6. IR transmission frame – example 3 – 16. . . . . . . . . . . . . . . . . . . . . . . .
Figure 7. Block Diagram 3 – 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 8. Baseband power distribution 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 9. Battery Charging 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 10. Battery Identification 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 11. Battery Temperature 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 12. Audio Control 3 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PAMS
Figure 13. Combined headset and system connector audio signal 3 – 33. . . . .
Figure 14. IBI Power on 3 – 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 15. Power Distribution 3 – 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 16. Frequency Synthesisers 3 – 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 17. Receiver Block Diagram 3 – 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 18. Transmitter Block Diagram 3 – 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 19. UI module assembled 3 – 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 20. Mounting of LEDs for backlight. Seen from underside. 3 – 66. . . . .
Figure 21. Light guide. 3 – 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 22. Marking specification for the light guide 3 – 68. . . . . . . . . . . . . . . . . .
Schematics/ Layouts
UBG_8v15 A1 – A12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UBG_8v22 A13 – A24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page 2– 4
Amendment 07/00
PAMS
NSE–5
Technical Documentation

System Connector

This section describes the electrical connection and interface levels
between the baseband, RF and UI parts. The electrical interface
specifications are collected into tables that cover a connector or a defined
interface.
The system connector includes the following parts:
– DC connector for external plug–in charger and a desktop charger – System connector for accessories and intelligent battery packs
The System connector is used to connect the transceiver to accessories.
System connector pins can also be used to connect intelligent battery
packs to the transceiver.
Contact 1
System Module
2
3
4
6
Slide Detect
7
8
13
Solderable element,
2 pcs
14
DC–jack 2,3,4
Contact 5
Contacts
8...13 Contact 14
Figure 1. System Connector – module
Cable/Cradle connector guiding/fixing hole, 2 pcs
Amendment 07/00
Page 2– 5
NSE–5 System Module
B side view
Fixing pads (2 pcs)
PAMS
Technical Documentation
IBI connector
(6 pads)
14
8
1
7
PCB
DC Jack
Microphone
acoustic ports BB
Bottom
connector (6 pads)
A
B
Charger pads (3 pcs)
A side view
Figure 2. System Connector – detailed.
Table 1. System connector signals.
Cable locking holes (3 pcs)
Pin Name Function Description
1 V_IN Bottom charger contacts Charging voltage. 2 L_GND DC Jack Logic and charging ground. 3 V_IN DC Jack Charging voltage. 4 CHRG_CTRL DC Jack Charger control. 5 CHRG_CTRL Bottom charger contacts Charger control. 6 MIC–P Slide Detect Holder Slide Detect 7 MIC–N Slide Detect Holder Gnd 8 XMIC Bottom & IBI connectors Analog audio input, DLR–3
power
9 SGND Bottom & IBI connectors Audio signal ground,
10 XEAR Bottom & IBI connectors Analog audio output.
11 MBUS Bottom & IBI connectors Bidirectional serial bus.
Page 2– 6
Amendment 07/00
PAMS
NSE–5
Technical Documentation
Table 1. System connector signals.
(continued)
12 FBUS_RX Bottom & IBI connectors Serial data in. 13 FBUS_TX Bottom & IBI connectors Serial data out. 14 L_GND Bottom charger contacts Logic and charging ground.
DescriptionFunctionNamePin
DC Connector
The electrical specifications in NO TAG shows the idle voltage produced by the acceptable chargers at the DC connector input. The absolute maximum input voltage is 18V due to the transient suppressor that is protecting the charger input.
Slide Microphone
The microphone is connected to the slide by means of springs it has a microphone input level specified in NO TAG. The microphone requires bias current to operate which is generated by the COBBA_GJP ASIC.
Slide Connector
An Interrupt signal to MAD2PR1 determines whether the slide is in an open or closed position.
Roller Interface
A mechanical solution is implemented and three interrupts are fed to the MAD2PR1
Keys and Keymatrix
0–9, *, #, send, end, soft_1, soft_2, power_on_off, roller_push,
Headset Connector
The external headset device is connected to the system connector, from which the signals are routed to COBBA_GJP microphone inputs and earphone outputs.
Issue 1 07/99
Page 2 – 7
NSE–5
aud u
(from
y
accessory
de ec
)
NA
MICN
mouted
in slide
PAMS
Technical Documentation
Table 2. Mic signals of the system connector
0 2 12.5 mV Connected to COBBA_GJP MIC2N
input. The maximum value corre­sponds to1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maximum value – 16 dB.
NA
MICP
0 2 12.5 mV Connected to COBBA_GJP MIC2P
mounted
in slide
Pin IB-
Name Function Min Typ Max Unit Description
pin
10 Yes XEAR Analog
audio out­put
phone to accessor
input. The maximum value corre­sponds to1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maximum value – 16 dB.
Table 3. System/IBI connector
47 W Output AC impedance (ref.
GND) resistor tol. is 5%
10 mF Series output capacitance
16 300 W Load AC impedance to GND:
Headset
4.7 10 kW Load AC impedance to SGND: External accessory.
Page 2 – 8
Accessory detection (fom ac­cessory to p
phone
1.0 V
Max. output level. No load
p–p
100 kW Resistance to accessory
ground (in accessory)
0.5 V DC Voltage (ref. SGND). Ex­ternal accessory
6.8 kW Load DC resistance to SGND. External accessory
0 0.2 V DC Voltage (ref. SGND).
Headset with closed switch
16 1500 W Load DC resistance to
SGND. Headset with closed switch
2.8 V DC Voltage (ref. SGND). No accessory, or headset with open switch
47 kW Pull–up resistor to VBB in
phone
Issue 1 07/99
PAMS
t
)
to hone)
(
(f
g
(from hone to
NSE–5
Technical Documentation
8 Yes XMIC Analog audio in-
put (from acces­sory to phone)
Headset micro­phone inpu (from accessory to phone
Accessory mute.
Voltage
p
compared to SGND. (from phone to accessory)
System Module
2.0 2.2 k Input AC impedance 100
1
V
2.0 2.2 k Input AC impedance
2.5 k Headset source AC im-
100 600 A Bias current
200
2.5 2.9 V Not muted
0 1.55 V Muted, without headset
1.6 2.0 2.4 V Comparator reference in
mV-
p–p
Accessory source AC im-
pedance Maximum signal level
p–
p
pedance
Maximum signal level
accessory
Headset detection (from accessory to phone)
DLR–3 detection
rom accessory to
phone)
9 Yes SGND Audio signal
ground. Separated from phone GND
p
accessory)
1.47 2.9 V No headset (ref. SGND).
0 1.33 V Headset connected
(ref. SGND).
49 k Pull–up resistor to VBB
in phone
1.47 2.9 440 733
49
mV
k
No DLR–3 ((ref SGND)
V
DLR–3 connected (ref. SGND).
Pull–up resistor to VBB in phone
47 Output AC impedance
(ref. GND)
10 F Series output capaci-
tance
380 Resistance to phone
ground (DC) (in phone)
Amendment 07/00
100 k Resistance to accesso-
ry ground (in accesso­ry)
–0.2 +0.2 V DC voltage compared
to phone GND
–5 +5 V DC voltage compared
to accessory GND
Page 2– 9
NSE–5
to hone)
System Module
PAMS
Technical Documentation
13 Yes FBUS_TXSerial data out
(from phone to accessory)
12 Yes FBUS_RXSerial data in
(from accesso­ry to phone)
0.1 0.8 V Output low voltage @
I
4 mA (ref. GND)
OL
1.7 2.8 V Output high voltage @
I
4 mA (ref. GND)
OH
47 k Pull–up resistor in
phone
220 k Pull–down resistor in
accessory
47 100 Serial (EMI filtering) re-
sistor in phone
150 pF Cable capacitance
1 s Rise/Fall time
0 0.8 V Input low voltage (ref.
GND)
2.0 2.8 V Input high voltage (ref.
GND)
220 k Pull–down resistor in
phone
47 k Pull–up resistor in ac-
cessory
11 Yes MBUS
FLASH_
CLK
Bidirectional seri­al bus
Flash serial data clock (from accessory
p
2.2 k Serial (EMI filtering) re­sistor in accessory
150 pF Cable capacitance
2 s Rise/Fall time @
115kbits/s
1 s Rise/Fall time @
230kbits/s
0 0.8 V Input low voltage (ref.
GND)
2.0 2.8 V Input high voltage (ref. GND)
0 0.8 V
2.1 2.9 V
4.7 k Pull–up resistor in phone
220 k Pull–down resistor in ac-
100 Serial (EMI filtering) resis-
Output low voltage @ I
4 mA (ref. GND)
OL
Output high voltage @ I
100 A (ref. GND)
OH
cessory
tor in phone
Page 2– 10
200 pF Cable capacitance
5
Rise/Fall time @ 9600
s
bits/s
Amendment 07/00
PAMS
(f
)
to hone)
NSE–5
Technical Documentation
2,
14
4,5
1,3
L_GND Logic and charg-
ing ground (sep­arated from phone GND by EMI compo­nents)
CHRG_
CTRL
VIN Fast charger
Charger control (from phone to accessory
rom accessory
to phone
Slow charger (fom accessory to phone)
System Module
0 1.0 A Ground current
0 0.8 V Output low voltage @ I
20 A
1.7
1 99 % PWM duty cycle
0 8.5 V Charging voltage. 0 0.85 A Charging current.
2.9 V Output high voltage @ I
20 A
OH
32 37 Hz PWM frequency
20 k Serial (EMI filtering) resis-
tor in phone
30 k Pull–down resistor in
phone
100
mV-
p–p
Ripple voltage @ f =
20...200Hz, load = 3 & 10
100
100
200
0
15 V
mV-
p–p
mV-
p–p
mV-
p–p
peak
Ripple voltage @ f =
0.2...30 kHz, load = 3 & 10
Ripple voltage @ f > 30 kHz, load = 3 & 10
Total ripple voltage @ f > 20 Hz, load = 3 & 10
Charging voltage (max. = unloaded, +20 % overvol­tage in mains).
OL
0 1.0
A
Amendment 07/00
Charging current (max. =
pea
shorted, +20 % overvol-
k
tage in mains).
Page 2– 11
NSE–5 System Module
PAMS
Technical Documentation
Baseband
HOOKDET
MAD
HEADDET
CCONT
EAD
HF
COBBA –GJP
AUX OUT
PD2
GND
10
10k
100n
GND
10u
27p
100n
1u
220k
220k
VBB VBB
2k2 47k
2k2
VBB
47k
47R
100MHz
33R
GND
XEAR
LGND
PC–Board
R01
SW01
+
+
+
C01
C03
C02
HFCM
MIC1N
MIC1P
MIC3N
MIC3P
GND
100n
100n
100n
100n
GND
27p
2k2
27p
2k2
100R
100R
330R
XMIC
SGND
R01= 100R C01=33uF
L01
C02=1000pF
GND GND GND
C03=22pF L01=MMZ2012Y6 01BT/TDK
Note 1: Grey resistor are in the border of ”EMI clean” and ”dirty” areas. Note 2: ESD protection diodes are not shown.
Figure 1. Combined headset, system connector audio signals
Z01
Page 2– 12
Amendment 07/00
PAMS
NSE–5
Technical Documentation
Battery Connector
The BSI contact on the battery connector is used to detect when the battery is removed with power switched on enabling the SIM card operation to shut down first. The BSI contact in the battery pack should be shorter than the supply power contacts to give enough time for the SIM shut down.
12
34
No metal in these areas! old connector type
B side view.
phone
Vibra Alerting Device
A vibra alerting device is used to give a silent signal to the user of an incoming call it is mounted in the B–cover. A special battery pack contains a vibra motor. The vibra is controlled with one PWM signal by the MAD2PR1 via the BTEMP battery terminal.
Figure 4. Battery connector locations
+VBATT
1
BSI
2
BTEMP
3
–VBATT
4
Issue 1 07/99
Page 2 – 13
NSE–5 System Module
SIM Card Connector
The SIM card connector is located on the PCB. Only small SIM cards are supported.
PAMS
Technical Documentation
321
456
Figure 5. Sim Card Reader Ultra phone
Table 4. SIM Connector Electrical Specifications
Pin Name Parameter Min Typ Max Unit Notes
1 GND GND 0 0 V Ground 2 VSIM 5V SIM
Card
4.8
2.8
5.0
3.0
5.2
3.2
V Supply voltage
3V SIM
Card
3 DATA 5V Vin/Vout
3V Vin/Vout
4 SIMRS
T
5V SIM
Card
4.0 0
2.8 0
4.0
2.8
”1” ”0” ”1” ”0”
”1” ”1”
VSIM
0.5
VSIM
0.5
VSIM VSIM
V SIM data
Trise/Tfall max 1us
V SIM reset
3V SIM
Card
5 SIMCLKFrequency
3.25
MHz
SIM clock
Trise/Tfall
6 VPP 5V SIM
Card
3V SIM
Card
VSIM supply voltages are specified to meet type approval requirements regardless the tolerances in components.
Page 2 – 14
4.8
2.8
5.0
3.0
25
5.2
3.2
ns
V Programming voltage
pin6 and pin2 tied to-
gether
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
Infrared Transceiver Module
An infrared transceiver module is designed as a substitute for hardwired connections between the phone and a PC. The infrared transceiver module is a stand alone component. In DCT3 the module is located inside and at the top of the phone.
The Rx and Tx is connected to the FBUS via a dual bus buffer. The module and buffer is activated from the MAD2_pr1 with a pull up on IRON. The Accif in MAD2_pr1 performs pulse encoding and shaping for transmitted data pulses and detection and decoding for received data pulses.
The data is transferred over the IR link using serial FBUS data at speeds
9.6, 19.2, 38.4, 57.6 or 115.2 kbits/s, which leads to maximum throughput of 92.160 kbits/s. The used IR module complies with the IrDA SIR specification (Infra Red Data Association), which is based on the HP SIR (Hewlett–Packard‘s Serial Infra Red) consept.
The Following figure gives an example of IR transmission pulses. In IR transmission a light pulse correspondes to 0–bit and a ”dark pulse” correspondes to 1–bit.
constant pulse
IR TX
UART TX
startbit stopbit1 0100110
Figure 6. IR transmission frame – example
The FBUS cannot be used for external accessory communication, when the infrared mode is selected. Infrared communication reserves the FBUS completely.
Issue 1 07/99
Page 2 – 15
NSE–5 System Module
Real Time Clock
Requirements for a real time clock implementation are a basic clock (hours and minutes), a calender and a timer with alarm and power on/off –function and miscellaneous calls. The RTC will contain only the time base and the alarm timer but all other functions (e.g. calendar) will be implemented with the MCU software. The RTC needs a power backup to keep the clock running when the phone battery is disconnected. The backup power is supplied from a rechargable polyacene battery that can keep the clock running for approximately ten minutes. If the backup has expired, the RTC clock restarts after the main battery is connected. The CCONT resets the MCU in approx 62ms and the 32kHz source is settled (after approx. 1s).
The CCONT is an ideal place for an integrated real time clock as the asic already contains the power up/down functions and a sleep control with the 32kHz sleep clock, which is always running when the phone battery is connected. This sleep clock is used for a time source to a RTC block.
PAMS
Technical Documentation
Page 2 – 16
Issue 1 07/99
PAMS
NSE–5
Technical Documentation

Baseband Module

Technical Summary

The baseband architecture is basically similar to DCT3 GSM phones. DCT3.5 differs from DCT3 in the single pcb koncept and the seriel interface between MAD2PR1 and COBBA_GJP and MAD2PR1 and CCONT. In DCT3.5 the MCU, the system specific ASIC and the DSP are intergrated into one ASIC, called the MAD2PR1 chip, which takes care of all the signal processing and operation controlling tasks of the phone.
The baseband architecture supports a power saving function called ”sleep mode”. This sleep mode shuts off the VCTCXO, which is used as system clock source for both RF and baseband. During the sleep mode the system runs from a 32 kHz crystal. The phone is waken up by a timer running from this 32 kHz clock supply. The sleeping time is determined by some network parameters. When the sleep mode is entered both the MCU and the DSP are in standby mode and the normal VCTCXO clock has been switched off.
The battery voltage range in DCT3 family is 3.0V to 4.5V depending on the battery charge and used cell type (Li–Ion or NiMH). Because of the lower battery voltage the baseband supply voltage is lowered to a nominal of 2.8V.
The baseband is running from a 2.8V power rail which is supplied by a power controling asic (CCONT). In the CCONT there are seven individually controlled regulator outputs for the RF section, one 2.8V output for the baseband plus a core voltage for MAD2PR1. However this is not used in NSE–5 because the chipset supports 2.8Volts. In addition there is one +5V power supply output(V5V). TheCCONTalso contains a SIM interface which supports both 3V and 5V SIM cards. A real time clock function is integrated into the CCONT which utilises the same 32KHz clock supply as the sleep clock. A backup power supply is provided for the RTC which keeps the real time clock running when the main battery is removed. The backup power supply is a rechargeable polyacene battery with a backup time of ten minutes.
The interface between the baseband and the RF section is handled by a specific asic. The COBBA_GJP asic provides A/D and D/A conversion of the in–phase and quadrature receive and transmit signal paths and also A/D and D/A conversions of received and transmitted audio signals to and from the UI parts. Data transmission between the COBBA_GJP and the MAD2PR1 is implemented using serial connections. Digital speech processing is handled by the MAD2PR1 asic. The COBBA_GJP asic is a dual supply voltage circuit, the digital parts are running from the baseband supply VBB and the analog parts are running from the analog supply VCOBBA (VR6).
Issue 1 07/99
Page 2 – 17
NSE–5 System Module
PAMS
Technical Documentation
LCD
vibra motor
IR
roller
TX/RX SIGNALS
COBBA_GJP
AUDIOLINES
BASEBAND
COBBA SUPPLY
MAD2pr1 +
MEMORIES
RF SUPPLIES
CCONT
BB SUPPLY
core voltage
SYSCON
CHAPS
PA SUPPLY
SIM
32kHz CLK
SLEEP CLOCK
VBAT
13MHz CLK
SYSTEM CLOCK
BATTERY NiMH LiIon

Power Distribution

In normal operation the baseband is powered from the phone‘s battery. The battery consists of one Lithium–Ion cell. There is also a possibility to use batteries consisting of three Nickel Metal Hydride cells or one Solid state cell. An external charger can be used for recharging the battery and supplying power to the phone. The charger can be either so called fast charger, which can deliver supply current up to 1600 mA or a standard charger that can deliver approx 300 mA.
The CCONT provides voltage to the circuitry excluding the RF PA, LCD and IrDa which are supplied via a continuous power rail direct from the battery. The RF PA module has a cutoff voltage of 3.1V. The battery
note)
feeds power directly to several parts of the system: CCONT, PA and UI circuitry (display lights, buzzer). The four dedicated control lines, RxPwr, TxPwr, SIMCardPwr and SynthPwr from MAD2 to CCONT have changed to a serial control signal between MAD2PR1 and CCONT. Figure 8 shows a simplified block diagram of the power distribution.
Figure 7. Block Diagram
(see
Note : In battery terms there is VBATT and VB, the difference is a filter (coil and capacitors)
Page 2 – 18
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
The power management circuitry provides protection against overvoltages, charger failures and pirate chargers etc. that could cause damage to the phone.
PA SUPPLY
LCD MODULE
VBB
COBBA_GJP
VBAT
MEMORIES
VCOBBA
MAD2pr1
+
RF SUPPLIES
CCONT
PWRONX
CNTVR
VBB
core voltage
PURX
POWER MGMT
VSIM
VBAT
PWM
SIM
RTC
BACKUP
sram
BATTERY
BASEBAND
CONNECTOR
VIN
Figure 8. Baseband power distribution
The heart of the power distrubution is the CCONT. It includes all the voltage regulators and feeds the power to most of the system. The whole baseband is powered from the same regulator which provides 2.8V baseband supply VBB. The baseband regulator is active always when the phone is powered on. The core baseband regulator feeds, amongst others, MAD2PR1 and memories, COBBA_GJP digital parts and the LCD driver in the UI section. COBBA_GJP analog parts are powered from a dedicated 2.8V supply VCOBBA by the CCONT. There is a separate regulator for a SIM card which is selectable between 3V and 5V and controlled by the SIMPwr line from MAD2PR1 to CCONT.
The CCONT contains a real time clock function, which is powered from a RTC backup when the main battery is disconnected. The RTC backup is rechargable polyacene battery.
CCONT includes also six additional 2.8V regulators providing power to the RF section. These regulators can be controlled by the seriel interface from MAD2PR1 ie RF regulator control register in CCONT which MAD2PR1 can update.
Issue 1 07/99
Page 2 – 19
NSE–5 System Module
CCONT supply a core voltage to the MAD2PR1. The core voltage is by default 1.975V.
RAM backup as in PDC3 phone. CCONT generates also a 1.5 V reference voltage VREF to COBBA_GJP,
SUMMA. The VREF voltage is also used as a reference to some of the CCONT A/D converters and as a reference for al the other regulators.
In additon to the above mentioned signals MAD2PR1 includes also TXP control signal which goes to SUMMA power control block and to the power amplifier. The transmitter power control TXC is led from COBBA_GJP to SUMMA.
PAMS
Technical Documentation
Table 5. CCONT current output capability/ nominal voltage
Regulator Maximum
Unit Vout Unit Notes
current
VR1 25 mA 2.8 V VCTCXO VR2 25 mA 2.8 V CRFU Rx VR3/switch 50 mA 2.8 V PLL VSYN VR4 90 mA 2.8 V VCO VSYN VR5 80 mA 2.8 V PLUSSA Rx VR6 100 mA 2.8 V COBBA_GJP VR7 150 mA 2.8 V PLUSSA+CRFU Tx VBB ON
VBB SLEEP VSIM 30 mA 3.0/
125 1
mA mA
2.8
2.8
5.0
V V
V V
current limit 250mA current limit 5mA
VSIM outout voltage selectable
V_core 50 mA 1.975 V programmable core sup-
ply for cpu/dsp/sys asic dV=225mV
V_RAM_bck/ VR3
50 mA 2.8 V nomal mode 2.8V. 2.0V
for data retention.
VSIM must fullfill the GSM11.10 current spike requirements. VSIM and V5V can give a total of 30 mA.
Page 2 – 20
Issue 1 07/99
PAMS
NSE–5
Technical Documentation

Power Up

The baseband is powered up by:
1. Pressing the power key, that generates a PWRONX interrupt signal from the power key to the CCONT, which starts the pow­er up procedure.
2. Connecting a charger to the phone. The CCONT recognizes the charger from the VCHAR voltage and starts the power up procedure.
3. A RTC interrupt. If the real time clock is set to alarm and the phone is switched off, the RTC generates an interrupt signal, when the alarm is gone off. The RTC interrupt signal is con­nected to the PWRONX line to give a power on signal to the CCONT just like the power key.
4. A battery interrupt. Intelligent battery packs have a possibility to power up the phone. When the battery gives a short (10ms) voltage pulse through the BTEMP pin, the CCONT wakes up and starts the power on procedure.
Power up with a charger
When the charger is connected CCONT will switch on the CCONT digital voltage as soon as the battery voltage exeeds 3.0V. The reset for CCONT’s digital parts is released when the operating voltage is stabilized ( 50 us from switching on the voltages). Operating voltage for VCXO is also switched on. The counter in CCONT digital section will keep MAD in reset for 62 ms (PURX) to make sure that the clock provided by VCXO is stable. After this delay MAD reset is relased, and VCXO –control (SLEEPX) is given to MAD. The diagram assumes empty battery, but the situation would be the same with full battery:
When the phone is powered up with an empty battery pack using the standard charger, the charger may not supply enough current for standard powerup procedure and the powerup must be delayed.
Power Up With The Power Switch (PWRONX)
When the power on switch is pressed the PWRONX signal will go low. CCONT will switch on the CCONT digital section and VCXO as was the case with the charger driven power up. If PWRONX is low when the 64 ms delay expires, PURX is released and SLEEPX control goes to MAD. If PWRONX is not low when 64 ms expires, PURX will not be released, and CCONT will go to power off ( digital section will send power off signal to analog parts)
Issue 1 07/99
Page 2 – 21
NSE–5 System Module
PAMS
Technical Documentation
SLEEPX
PURX
CCPURX
PWRONX
VR1,VR6 VBB (2.8V)
Vchar
12 3
1:Power switch pressed ==> Digital voltages on in CCONT (VBB) 2: CCONT digital reset released. VCXO turned on 3: 62 ms delay to see if power switch is still pressed.
Power Up by RTC
RTC ( internal in CCONT) can power the phone up by changing RTCPwr to logical ”1”. RTCPwr is an internal signal from the CCONT digital section.
Power Up by IBI
IBI can power CCONT up by sending a short pulse to logical ”1”. RTCPwr is an internal signal from the CCONT digital section.
Acting Dead
If the phone is off when the charger is connected, the phone is powered on but enters a state called ”acting dead”. To the user the phone acts as if it was switched off. A battery charging alert is given and/or a battery charging indication on the display is shown to acknowledge the user that the battery is being charged.
Active Mode
In the active mode the phone is in normal operation, scanning for channels, listening to a base station, transmitting and processing information. All the CCONT regulators are operating. There are several substates in the active mode depending on if the phone is in burst reception, burst transmission, if DSP is working etc..
Page 2 – 22
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
Sleep Mode
In the sleep mode all the regulators except the baseband VBB, Vcore and the SIM card VSIM regulators are off. Sleep mode is activated by the MAD2PR1 after MCU and DSP clocks have been switched off. The voltage regulators for the RF section are switched off and the VCXO power control, VCXOPwr is set low. In this state only the 32 kHz sleep clock oscillator in CCONT is running. The flash memory power down input is connected to the VCXO power control, so that the flash is deep powered down during sleep mode.
The sleep mode is exited either by the expiration of a sleep clock counter in the MAD2PR1 or by some external interrupt, generated by a charger connection, key press, headset connection etc. The MAD2PR1 starts the wake up sequence and sets the VCXOPwr control high. After VCXO settling time other regulators and clocks are enabled for active mode.
If the battery pack is disconnect during the sleep mode, the CCONT shall power down the SIM in the sleep mode as there is no time to wake up the MCU.
Battery charging
MAD
VBAT
MAD
CCONTINT
CCONT
The electrical specifications give the idle voltages produced by the acceptable chargers at the DC connector input. The absolute maximum input voltage is 30V due to the transient suppressor that is protecting the charger input. At phone end there is no difference between a plug–in charger or a desktop charger. The DC–jack pins and bottom connector charging pads are connected together inside the phone.
0R22
PWM_OUT
ICHAR
VCHAR
LIM VOUT
CHAPS
RSENSE
PWM
VCH
GND
22k
1n
TRANSCEIVER
27pf
47k
33R/100MHz
1u
30V
1.5A
EMI
VIN
CHRG_CTRL
CHARGER
NOT IN ACP–7/8
GND
Issue 1 07/99
47k
Figure 9. Battery Charging
L_GND
Page 2 – 23
NSE–5 System Module
Startup Charging
When a charger is connected, the CHAPS is supplying a startup current minimum of 130mA to the phone. The startup current provides initial charging to a phone with an empty battery. Startup circuit charges the battery until the battery voltage level is reaches 3.0V (+/– 0.1V) and the CCONT releases the PURX reset signal and program execution starts. Charging mode is changed from startup charging to PWM charging that is controlled by the MCU software. If the battery voltage reaches 3.55V (3.75V maximum) before the program has taken control over the charging, the startup current is switched off. The startup current is switched on again when the battery voltage is sunken 100mV (nominal).
Parameter Symbol Min Typ Max Unit
PAMS
Technical Documentation
Table 6.
VOUT Start– up mode cutoff limit Vstart 3.45 3.55 3.75 V
VOUT Start– up mode hysteresis
NOTE: Cout = 4.7 uF
Start–up regulator output current
VOUT = 0V ... Vstart
Vstarthys 80 100 200 mV
Istart 130 165 200 mA
Battery Overvoltage Protection
Output overvoltage protection is used to protect phone from damage. This function is also used to define the protection cutoff voltage for different battery types (Li or Ni). The power switch is immediately turned OFF if the voltage in VOUT rises above the selected limit VLIM1 or VLIM2.
Table 7.
Parameter Symbol LIM input Min Typ Max Unit
Output voltage cutoff limit
(during transmission or Li–
battery)
Output voltage cutoff limit
(no transmission or Ni–bat-
tery)
VLIM1 LOW 4.4 4.6 4.8 V
VLIM2 HIGH 4.8 5.0 5.2 V
The voltage limit (VLIM1 or VLIM2) is selected by logic LOW or logic HIGH on the CHAPS (N101) LIM– input pin. Default value is lower limit VLIM1.
When the switch in output overvoltage situation has once turned OFF, it stays OFF until the the battery voltage falls below VLIM1 (or VLIM2) and PWM = LOW is detected. The switch can be turned on again by setting PWM = HIGH.
Page 2 – 24
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
VCH
VCH<VOUT
VOUT
VLIM1 or VLIM2
t
t
SWITCH
PWM (32Hz)
ON OFF
Battery Removal During Charging
Output overvoltage protection is also needed in case the main battery is removed when charger connected or charger is connected before the battery is connected to the phone.
With a charger connected, if VOUT exceeds VLIM1 (or VLIM2), CHAPS turns switch OFF until the charger input has sunken below Vpor (nominal
3.0V, maximum 3.4V). MCU software will stop the charging (turn off PWM) when it detects that battery has been removed. The CHAPS remains in protection state as long as PWM stays HIGH after the output overvoltage situation has occured.
ON
Issue 1 07/99
Page 2 – 25
NSE–5 System Module
PAMS
Technical Documentation
VCH (Standard Charger)
VOUT
PWM
SWITCH
Vpor
VLIM
4V
Vstart
”1”
”0”
ON
OFF
Droop depends on load
& C in phone
2
4
5
6
7
Istart off due to VCH<Vpor
Vstarthys
t
t
t
1.1Battery removed, (standard) charger connected, VOUT rises (follows charger voltage)
2. VOUT exceeds limit VLIM(X), switch is turned immediately OFF
3.3VOUT falls (because no battery) , also VCH<Vpor (standard chargers full–rectified output). When VCH > Vpor and VOUT < VLIM(X) –> switch turned on again (also PWM is still HIGH) and VOUT again exceeds VLIM(X).
4. Software sets PWM = LOW –> CHAPS does not enter PWM mode
5. PWM low –> Startup mode, startup current flows until Vstart limit reached
6. VOUT exceeds limit Vstart, Istart is turned off
7. VCH falls below Vpor
Different PWM Frequencies ( 1Hz and 32 Hz)
When a travel charger (2– wire charger) is used, the power switch is turned ON and OFF by the PWM input when the PWM rate is 1Hz. When PWM is HIGH, the switch is ON and the output current Iout = charger current – CHAPS supply current. When PWM is LOW, the switch is OFF and the output current Iout = 0. To prevent the switching transients inducing noise in audio circuitry of the phone soft switching is used.
The performance travel charger (3– wire charger) is controlled with PWM at a frequency of 32Hz. When the PWM rate is 32Hz CHAPS keeps the power switch continuously in the ON state.
Page 2 – 26
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
SWITCH
PWM (1Hz)
SWITCH
PWM (32Hz)
ON ONON OFF OFF
ON
Battery Identification
Different battery types are identified by a pulldown resistor inside the battery pack. The BSI line inside transceiver has a 100k pullup to VBB. The MCU can identify the battery by reading the BSI line DC–voltage level with a CCONT (N100) A/D–converter.
BATTERY
R
BVOLT
Vibra Schematic
BTEMP
BSI
s
BGND
Vbb
100k
10k
10n
TRANSCEIVER
BSI
SIMCardDetX
CCONT
MAD
Issue 1 07/99
Figure 10. Battery Identification
Page 2 – 27
NSE–5 System Module
The battery identification line is used also for battery removal detection. The BSI line is connected to a SIMCardDetX line of MAD2 (D200). SIMCardDetX is a threshold detector with a nominal input switching level
0.85xVcc for a rising edge and 0.55xVcc for a falling edge. The battery removal detection is used as a trigger to power down the SIM card before the power is lost. The BSI contact in the battery pack is made 0.7mm shorter than the supply voltage contacts so that there is a delay between battery removal detection and supply power off,
0.850.05 Vcc
0.550.05 Vcc
GND
PAMS
Technical Documentation
Vcc
SIMCARDDETX
SIGOUT
Battery Temperature
The battery temperature is measured with a NTC inside the battery pack. The BTEMP line inside transceiver has a 100k pullup to VREF. The MCU can calculate the battery temperature by reading the BTEMP line DC–voltage level with a CCONT (N100) A/D–converter.
BATTERY
R
T
NTC
BVOLT
BSI
BTEMP
BGND
1k
TRANSCEIVER
VREF
Vibra Schematic
100k
10k
2k2
10n
BTEMP
VibraPWM
CCONT
MAD
Page 2 – 28
MCUGenIO4
Figure 11. Battery Temperature
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
Supply Voltage Regulators
The heart of the power distrubution is the CCONT. It includes all the voltage regulators and feeds the power to the whole system. The baseband digital parts are powered from the VBB regulator which provides 2.8V baseband supply. The baseband regulator is active always when the phone is powered on. The VBB baseband regulator feeds MAD and memories, COBBA digital parts and the LCD driver in the UI section. There is a separate regulator for a SIM card. The regulator is selectable between 3V and 5V and controlled by the SIMPwr line from MAD to CCONT. The COBBA analog parts are powered from a dedicated 2.8V supply VCOBBA. The CCONT supplies also 5V for RF and for flash VPP. The CCONT contains a real time clock function, which is powered from a RTC backup when the main battery is disconnected.
The RTC backup is rechargable polyacene battery, which has a capacity of 50uAh (@3V/2V) The battery is charged from the main battery voltage by the CHAPS when the main battery voltage is over 3.2V. The charging current is 200uA (nominal).
Table 8.
Operating mode Vref RF REG VCOB-
VBB VSIM SIMIF
BA
Power off Off Off Off Off Off Pull
down Power on On On/Off On On On On/Off Reset On Off
VR1 On
On On Off Pull
down Sleep On Off On On On On/Off
Note: CCONT includes also five additional 2.8V regulators providing power to the RF section. These regulators can be controlled either by the direct control signals from MAD or by the RF regulator control register in CCONT which MAD can update. Below are the listed the MAD control lines and the regulators they are controlling.
TxPwr controls VTX regulator (VR5)
RxPwr controls VRX regulator (VR2)
SynthPwr controls VSYN_1 and VSYN_2 regulators (VR4 and VR3)
VCXOPwr controls VXO regulator (VR1)
CCONT generates also a 1.5 V reference voltage VREF to COBBA, PLUSSA and CRFU. The VREF voltage is also used as a reference to some of the CCONT A/D converters.
In additon to the above mentioned signals MAD includes also TXP control signal which goes to PLUSSA power control block and to the power amplifier. The transmitter power control TXC is led from COBBA to PLUSSA.
Issue 1 07/99
Page 2 – 29
NSE–5 System Module

Audio Control

The audio control and processing is taken care by the COBBA–GJP, which contains the audio and RF codecs, and the MAD2, which contains the MCU, ASIC and DSP blocks handling and processing the audio signals.
Slide
PAMS
Technical Documentation
EMI
System
Connector
Display
XMIC SGND XEAR
EMI
Bias +
EMI+ACC
Interf.
EMI
HFCM
AuxOut
Preamp
MIC2 MIC1
MIC3
HF EAR
COBBA
Multipl.Premult.
Amp Multipl.
Figure 12. Audio Control
Pre & LP
LP
MAD
DSP
MCU
A
D
Buzzer Driver Circuit
D
A
Buzzer
The baseband supports three microphone inputs and two earphone outputs. The inputs can be taken from an internal microphone, a headset microphone or from an external microphone signal source. The microphone signals from different sources are connected to separate inputs at the COBBA–GJP asic. Inputs for the microphone signals are differential type.
The MIC1 inputs are used for a headset microphone that can be connected directly to the system connector. The internal microphone is connected to MIC2 inputs and an external pre–amplified microphone (handset/handfree) signal is connected to the MIC3 inputs. In COBBA there are also three audio signal outputs of which dual ended EAR lines are used for internal earpiece and HF line for accessory audio output. The third audio output AUXOUT is used only for bias supply to the headset microphone. As a difference to DCT2 generation the SGND ( = HFCM at COBBA) does not supply audio signal (only common mode). Therefore there are no electrical loopback echo from downlink to uplink.
Page 2 – 30
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. The output for the external accessory and the headset is single ended with a dedicated signal ground SGND. Input and output signal source selection and gain control is performed inside the COBBA–GJP asic according to control messages from the MAD2. Keypad tones, DTMF, and other audio tones are generated and encoded by the MAD2 and transmitted to the COBBA–GJP for decoding.
Internal Microphone and Earpiece
The baseband supports three microphone inputs and two earphone outputs. The inputs can be taken from an internal microphone, a headset microphone or from an external microphone signal source. The microphone signals from different sources are connected to separate inputs to the COBBA_GJP asic. Inputs for the microphone signals are of a differential type.
External Audio Connections
The external audio connections are presented in figure 16. A headset can be connected directly to the system connector. The headset microphone bias is supplied from COBBA AUXOUT output and fed to microphone through XMIC line. The 330ohm resistor from SGND line to AGNDprovides a return path for the bias current.
Issue 1 07/99
Page 2 – 31
NSE–5 System Module
PAMS
Technical Documentation

Baseband

HOOKDET
MAD
HEADDET
EADCCONT
H F
COBBA– GJP
AUX­OUT
10
10k
AGND
100n
AGND
27p
100n
220k
220k
VBB VBB
2k2 47k
VBB
47k
33R
100MHz
47R
XEAR
LGN D
PC–Board
R01
SW01
+
+
+
C01
C03
C02
PD2
HFC M
MIC1 N
MIC1 P
MIC3 N
MIC3 P
330R
AGND
100R
100R
XMI C
SGN D
R01= 100R C01=33uF C02=1000pF C03=22pF L01=MMZ2012Y6 01BT/TDK
1u
10u
AGND
AGND
100n
100n
100n
100n
Note 1: Grey resistor are in the border of ”EMI clean” and ”dirty” areas. Note 2: AGND is connected directly to the GND on PCB close to HF parts. Note 3: ESD protection diodes are not shown.
27p
AGND AGND AGND
2k2
2k2
2k2
27p
Figure 13. Combined headset and system connector audio signal
L01
Z01
Page 2 – 32
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
Analog Audio Accessory Detection In XEAR signal there is a 47 k pullup in the transceiver and 6.8 k
pull–down to SGND in accessory. The XEAR is pulled down when an accessory is connected, and pulled up when disconnected. The XEAR is connected to the HookDet line (in MAD), an interrupt is given due to both connection and disconnection. There is filtering between XEAR and HookDet to prevent audio signal giving unwanted interrupts.
External accessory notices powered–up phone by detecting voltage in XMIC line. In Table 9 there is a truth table for detection signals.
Table 9.
Accessory connected HookDet HeadDet Notes
No accessory connected High High Pullups in the transceiver Headset HDC–9 with a button switch
pressed Headset HDC–9 with a button switch re-
leased
Low Low XEAR and XMIC loaded (dc)
High Low *) XEAR unloaded (dc)
Handsfree (HFU–1) Low High XEAR loaded (dc)
Internal Audio Connections
The speech coding functions are performed by the DSP in the MAD2 and the coded speech blocks are transferred to the COBBA–GJP for digital to analog conversion, down link direction. In the up link direction the PCM coded speech blocks are read from the COBBA–GJP by the DSP.
There are two separate interfaces between MAD2 and COBBA–GJP: a parallel bus and a serial bus. The parallel bus has 12 data bits, 4 address bits, read and write strobes and a data available strobe. The parallel interface is used to transfer all the COBBA–GJP control information (both the RFI part and the audio part) and the transmit and receive samples. The serial interface between MAD2 and COBBA–GJP includes transmit and receive data, clock and frame synchronisation signals. It is used to transfer the PCM samples. The frame synchronisation frequency is 8 kHz which indicates the rate of the PCM samples and the clock frequency is 1 MHz. COBBA is generating both clocks.
4–wire PCM Serial Interface
The interface consists of following signals: a PCM codec master clock (PCMDClk), a frame synchronization signal to DSP (PCMSClk), a codec transmit data line (PCMTX) and a codec receive data line (PCMRX). The COBBA–GJP generates the PCMDClk clock, which is supplied to DSP SIO. The COBBA–GJP also generates the PCMSClk signal to DSP by dividing the PCMDClk. The PCMDClk frequency is 1.000 MHz and is generated by dividing the RFIClk 13 MHz by 13. The COBBA–GJP further divides the PCMDClk by 125 to get a PCMSClk signal, 8.0 kHz.
Issue 1 07/99
Page 2 – 33
NSE–5 System Module
PCMDClk
PCMSClk
PAMS
Technical Documentation
PCMTxData
PCMRxData
The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. The output for the external accessory and the headset is single ended with a dedicated signal ground SGND. Input and output signal source selection and gain control is performed inside the COBBA_GJP asic according to control messages from the MAD2PR1. Keypad tones, DTMF, and other audio tones are generated and encoded by the MAD2PR1 and transmitted to the COBBA_GJP for decoding. MAD2PR1 generates two separate PWM outputs, one for a buzzer and one for vibra (internal and external via BTEMP).
Speech Processing
The speech coding functions are performed by the DSP in the MAD2PR1 and the coded speech blocks are transferred to the COBBA_GJP for digital to analog conversion, down link direction. In the up link direction the PCM coded speech blocks are read from the COBBA_GJP by the DSP.
sign extended 15 14 13 12 011 10 sign extended
MSB
MSB
LSB
LSB
There are two options for the PCM interface between MAD2PR1 and COBBA_GJP. The 4 pin solution and a one pin solution. The four pin serial interface between MAD2PR1 and COBBA_GJP includes transmit and receive data, clock and frame synchronisation signals. It is used to transfer the PCM samples. The frame synchronisation frequency is 8 kHz which indicates the rate of the PCM samples and the clock frequency is 1 MHz. COBBA_GJP generates both clocks. NSE–5 uses the 4–pin solution.
Alert Signal Generation
A buzzer is used for giving alerting tones and/or melodies as a signal of an incoming call. Also keypress and user function response beeps are generated with the buzzer. The buzzer is controlled with a BuzzerPWM output signal from the MAD2PR1. A dynamic type of buzzer is used since the supply voltage available can not produce the required sound pressure for a piezo type buzzer. The low impedance buzzer is connected to an output transistor that gets drive current from the PWM output. The alert volume can be adjusted either by changing the pulse width causing the level to change or by changing the frequency to utilize the resonance frequency range of the buzzer.
Page 2 – 34
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
A vibra alerting device is used for giving a silent signal to the user of an incoming call. The device is controlled with a VibraPWM output signal from the MAD2PR1. The vibra alert can be adjusted either by changing the pulse width or by changing the pulse frequency. The vibra device is inside the phone, but a special vibra battery can also be used.

Digital Control

MAD2PR1
The baseband functions are controlled by the MAD2PR1 asic, which consists of a MCU, a system ASIC and a DSP. The GSM/PCN specific asic is named as MAD2. There are separate controller asics in TDMA and JDC named as MAD1 and MAD3. All the MAD2PR1 asics contain the same core processors and similar building blocks, but differ from each other in system specific functions, pinout and package types.
MAD2PR1 contains following building blocks:
– ARM RISC processor with both 16–bit instruction set (THUMB mode)
and 32–bit instruction set (ARM mode)
– TMS320C542 DSP core with peripherials:
– API (Arm Port Interface memory) for MCU–DSP commu-
nication, DSP code download, MCU interrupt handling vec-
tors (in DSP RAM) and DSP booting – Serial port (connection to PCM) – Timer – DSP memory
– BUSC (BusController for controlling accesses from ARM to API, Sys-
tem Logic and MCU external memories, both 8– and 16–bit memories)
– System Logic
– CTSI (Clock, Timing, Sleep and Interrupt control) – MCUIF (Interface to ARM via BUSC). Contains MCU Boo-
tROM – DSPIF (Interface to DSP) – MFI (Interface to COBBA_GJP AD/DA Converters) – CODER (Block encoding/decoding and A51&A52 ciphering) – AccIF(Accessory Interface) – SCU (Synthesizer Control Unit for controlling 2 separate
synthesizer) – UIF (Keyboard interface, serial control interface for COB-
BA_GJP PCM Codec, LCD Driver and CCONT) – UIF+ (roller/ slide handling) – SIMI (SimCard interface with enhanched features) – PUP (Parallel IO, USART and PWM control unit for vibra
and buzzer)
Issue 1 07/99
Page 2 – 35
NSE–5 System Module
The MAD2PR1 operates from a 13 MHz system clock, which is generated from the 13Mhz VCXO frequency. The MAD2PR1 supplies a 6,5MHz or a 13MHz internal clock for the MCU and system logic blocks and a 13MHz clock for the DSP, where it is multiplied to TBD MHz DSP clock. The system clock can be stopped for a system sleep mode by disabling the VCXO supply power from the CCONT regulator output. The CCONT provides a 32kHz sleep clock for internal use and to the MAD2PR1, which is used for the sleep mode timing. The sleep clock is active when there is a battery voltage available i.e. always when the battery is connected.
MAD2PR1 pinout
MAD2PR1 pins and their usage are described in the following table.
PAMS
Technical Documentation
– FLEXPOOL (DAS00308 FlexPool Specification) – SERRFI (DAS00348 COBBA_GJP Specifications)
Table 10. MAD2PR1 pin list
Pad
No
1 MCUGenIO0 IO 2 BattIO x205 ee-
2fp Col0 IO 2 down keypad matrix key
3 LEADGND0 PWR digital gnd gnd 4 Col1 IO 2 keypad matrix key 5 Col2 IO 2 keypad matrix key 6 Col3 IO 2 keypad matrix key 7 Col4 IO 2 no connection Vol up 8 LCDCSX IO 2 seriel LCD chip select 9 GND0 PWR digital gnd gnd
10 Row5LCDCD IO 2 up Seriel LCD command/data
11 Row4 IO 2 up keypad matrix 12 LEADVCC0 PWR V_core 13 Row3 IO 2 up keypad matrix
Pad Name Direction Drive +
pull
Explanation macro
functions
prom ser-
iel data
sda
and row5
14 Row2 IO 2 up keypad matrix
15 Row1 IO 2 up keypad matrix 16fp Row0 IO 2 up keypad matrix (+powerkey) 17fp (JTDO) IO 2 up flex pool JTDO de-
18 VCCSYS0 PWR V_core 19fp (JTRst) IO 2 down flex pool JTRst 20fp (JTClk) IO 2 up flex pool JTClk
21 VCCIO0 PWR Vbb
Page 2 – 36
fault on
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
No
22fp (JTDI) IO 2 up flex pool JTDi 23fp (JTMS) IO 2 up flex pool JTMS
24 LEADGND1 PWR digital gnd 25fp (CoEmu0) IO 2 up flex pool CoEmu0
26fp (CoEmu1) IO 2 up flex pool CoEmu1
27 GND1 PWR digital gnd
28 MCUAd0 O 2 lsb sram+flash adresse 0 mcu ad0
29 MCUAd1 O 2 sram+flash adresse 1 mcu ad1
30 MCUAd2 O 2 sram+flash adresse 2 mcu ad2
31 MCUAd3 O 2 sram+flash adresse 3 mcu ad3
Table 10. MAD2PR1 pin list
DirectionPad NamePad
pull
ExplanationDrive +
macro
functions
DSP,MCU
DSP,MCU
32 ARMGND PWR digital gnd gnd
33 MCUAd4 O 2 sram+flash adresse 4 mcu ad4
34 MCUAd5 O 2 sram+flash adresse 5 mcu ad5
35 MCUAd6 O 2 sram+flash adresse 6 mcu ad6
36 MCUAd7 O 2 sram+flash adresse 7 mcu ad7
37 MCUAd8 O 2 sram+flash adresse 8 mcu ad8
38 MCUAd9 O 2 sram+flash adresse 9 mcu ad9
39 MCUAd10 O 2 sram+flash adresse 10 mcu ad10
40 MCUAd11 O 2 sram+flash adresse 11 mcu ad11
41 ARMVCC PWR V_core
42 MCUAd12 O 2 sram+flash adresse 12 mcu ad12
43 MCUAd13 O 2 sram+flash adresse 13 mcu ad13
44 VCCSYS1 PWR V_core
45 MCUAd14 O 2 sram+flash adresse 14 mcu ad14
46 GND2 PWR digital gnd
47 MCUAd15 O 2 sram+flash adresse 15 mcu ad15
48 MCUAd16 O 2 msb sram+flash adresse 16 mcu ad16
49 MCUAd17 O 2 flash adresse 17 mcu ad17
50 MCUAd18 O 2 flash adresse 18 mcu ad18
51 MCUAd19 O 2 flash adresse 19 mcu ad19 52fp MCUAd20 IO 2 down reserved for 32Mbit flash 20 /
roller ?
53fp (MCUAd21) IO 2 down roller nWait
54 MCURdX O 2 read strobe
55 MCUWrX O 2 write strobe
Issue 1 07/99
mcu ad20
Page 2 – 37
NSE–5 System Module
PAMS
Technical Documentation
Table 10. MAD2PR1 pin list
DirectionPad NamePad
No
56 VCCIO1 PWR Vbb
57 ExtMCUDa0 IO 2 down lsb sram+flash data 0
58 ExtMCUDa1 IO 2 down sram+flash data 1
59 ExtMCUDa2 IO 2 down sram+flash data 2
60 ExtMCUDa3 IO 2 down sram+flash data 3
61 ExtMCUDa4 IO 2 down sram+flash data 4
62 ExtMCUDa5 IO 2 down sram+flash data 5
63 ExtMCUDa6 IO 2 down sram+flash data 6
64 GND3 PWR digital gnd
65 ExtMCUDa7 IO 2 down msb sram+flash data 7
66 VCCSYS2 PWR V_core
67 MCUGenIODa0 IO 2 down flash data 8
68 MCUGenIODa1 IO 2 down flash data 9
69 MCUGenIODa2 IO 2 down flash data 10
70 MCUGenIODa3 IO 2 down flash data 11
71 MCUGenIODa4 IO 2 down flash data 12
pull
ExplanationDrive +
macro
functions
72 MCUGenIODa5 IO 2 down flash data 13
73 MCUGenIODa6 IO 2 down flash data 14
74 MCUGenIODa7 IO 2 down msb flash data 15
75 SCVCC PWR Vbb
76 RFClk clock slicer 13MHz VCTXO
77 RFClkGND clock slicer system clock ref gnd input
78 SIMCardDetX input
threshold
cell 79 SCGND PWR speciel cell gnd 80 ROM1SelX O 2 chip sel for flash 81 RAMSelX O 2 chip sel for sram
82fp (ROM2SelX) IO 2 up nc trust mcu
83 GND4 PWR digital gnd
84fp EEPROMSelX IO 2 up roller trace pod
85 LEADVCC1 PWR V_core 86 MCUGenIO1 IO 2 up roller input battio
to BSI terminal
clk
87fp BuzzPWM IO 2 down buzzer contol signal nOPC 88fp DSPXF IO 2 up ext flag no connection hOPC(tra
Page 2 – 38
ce)
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
No
89f VibraPWM IO 2 down vibra motor control signal nEXEC
90 VCCIO2 PWR Vbb 91 AccRxData I FBUS Rx / flash Rx 92 AccTxData IO 4 FBUS Tx / flash Tx 93 MBUS IO 2 MBUS / flash clk 94 VCCSYS3 PWR V_core 95 VCXOPwr O 2 CCONT VR1 Regulator 96 LEADGND2 PWR digital gndbb
97fp GenDet interrupt IO 2 slide input nc 98fp HookDet interrupt IO 8 headdet 99fp HeadDet interrupt IO 2 hookdet
Table 10. MAD2PR1 pin list
DirectionPad NamePad
pull
ExplanationDrive +
macro
functions
100 GND5 PWR digital gnd 101 MCUGenIO2 IO 2 up IrDA select eeprom
scl 102 MCUGenIO3 IO 2 up LCD reset ironx/bc0 103 MCUGenIO4 IO 2 up WP to flash irnxen/bc1
104f (SynthPwr) not used IO 2 down CCONT reg
105 GenCCONTCSX O 2 to CCONT bus enable 106 LEADVCC2 PWR V_core 107 GenSDIO IO 2 seriel bidirectional databus
to/from CCONT 108 GenSClk O 2 clk for seriel databus 109 SIMCardData IO 2 CCONT SIM level shift
110 PURX I power on reset from CCONT 111 CCONTInt charger
detect 112 VCCIO3 PWR Vbb 113 Clk32k I sleep clk from CCONT 114 SIMCardClk O 2 CCONT SIM level shift
I interrupt from CCONT
115 SIMCardRstX O 2 CCONT SIM level shift 116 SIMCardIOC O 2 CCONT SIM data direction
control
117 GND6 PWR digital gnd
1 18f (SIMCardPwr) not
used
119f (RxPwr) not used IO 2 down not used 120f (TxPwr) not used IO 2 down not used
IO 2 up CCONT reg
Issue 1 07/99
Page 2 – 39
NSE–5 System Module
PAMS
Technical Documentation
Table 10. MAD2PR1 pin list
DirectionPad NamePad
No
121 TestMode I down Testmode
122 ExtSysResetX O 2 nc routed to via 123f (PCMIO) not used IO 2 up single pin audio pcm option 124f PCMTxData IO 2 up audio data to COBBA_GJP 125f PCMRxData IO 2 up audio data from COBBA_GJP 126f PCMDClk IO 2 up pcm data transfer clk 127f PCMSClk IO 2 down 8 kHz frame sync
128 VCCSYS4 PWR v_core
129 COBBAClk O 4 rfi system clk to COBBA_GJP
130 Idata IO 2 COBBA_GJP I
131 Qdata IO 2 COBBA_GJP Q
132 COBBACSX O 2 COBBA_GJP seriel chip se-
133 COBBASD IO 2 COBBA_GJP seriel data
134 DSPGenOut0 O 2 COBBA_GJP reset
135 DSPGenOut1 O 2 chaps Vlim
pull
ExplanationDrive +
lect
macro
functions
select
136 VCCIO4 PWR Vbb
137 DSPGenOut2 IO 2 seq
138 DSPGenOut3 IO 2 mas0 139f FrACtrl (pdata 0) IO 2 down RF LNA AGC /CRFU
140 SynthEna O 2 RF /PLUSSA
141 SynthClk O 2 RF /PLUSSA
142 GND7 PWR digital gnd
143 SynthData O 2 RF /PLUSSA 144f TxPA IO 2 down PA + PLUSSA
fp=f=pin in the flex pool
Page 2 – 40
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
Table 11. COBBA_GJP pin list
Name Type Description
1 MIC1P I Positive high impedance input for microphone. 2 V
SA5
P Negative analog power supply for PCM ADC 3 VSUBA P Audio Codec substrate contact 4 MIC3N I Third negative high impedance input for micro-
phone. 5 MIC3P I Third positive high impedance input for microphone. 6 V
DA5
P Positive analog power supply for PCM ADC 7 AUXOUT O Auxiliary audio output 8 V
DA4
P Positive analog power supply for PCM DAC 9 EARP O Positive earpiece output.
10 EARN O Negative earpiece output. 11 V
SA4
P Negative analog power supply for PCM DAC
12 HF O Output for phone external audio circuitry. 13 HFCM O Common mode output for phone external audio cir-
cuitry.
14 V
DA2
P Positive analogue power supply for the transmitters.
15 VREF I Reference voltage input ( 1.5 V ) 16 IREF O Reference current output. Absolutely no capacitance
allowed on this pin. 17 AFCOut O Automatic frequency control output. 18 V
SA2
P Negative analogue power supply for the transmit-
ters. 19 TxIOutN O Negative in–phase transmit output. 20 TxIOutP O Positive in–phase transmit output. 21 TxQOutN O Negative quadrature transmit output. 22 TxQOutP O Positive quadrature transmit output. 23 V
DA3
P Positive analogue power supply. 24 TxIPhsN O Negative in–phase PHS transmit output. 25 TxIPhsP O Positive in–phase PHS transmit output. 26 TxQPhsN O Negative quadrature PHS transmit output. 27 TxQPhsP O Positive quadrature PHS transmit output. 28 TxCOut O Transmit power control output. 29 AGCOut O Second output of TxC DAC 30 AuxDAC O Third output of TxC DAC
Issue 1 07/99
Page 2 – 41
NSE–5 System Module
PAMS
Technical Documentation
Table 11. COBBA_GJP pin list (continued)
DescriptionTypeName
31 V
SA3
P Negative analogue power supply. 32 RxRef O Rx path internal reference buffered output. 33 V
DA1
P Positive analogue power supply for the receivers. 34 RxInN I Negative receive input. 35 RxInP I Positive receive input. 36 V
SA1
P Negative analogue power supply for the receivers. 37 ResetX I Master system reset. 38 PData(0) O PData(0). Lim control for chaps 39 Pdata(1) O PData(1). light control 40 Pdata(2) O PData(2). 41 Pdata(3) O PData(3). 42 Pdata(4) O Pdata(4) 43 Pdata(5) O PData(5). 44 Pdata(6) O PData(6) 45 V 46 V
SS2
DD2
P Negative digital power supply.
P Positive digital power supply. 47 RFIClk I System clock input. 48 RFIDAX O Data available strobe for JDC+PHS/
Pdata(7) in GSM,GSMV
49 V
SUB
P Negative power supply for substrate 50 COBBACSX I Serial port chip select 51 COBBASD I/O Serial data for the general interface 52 COBBAIdata I/O Bi–directional transfer of I–samples 53 COBBAQdata I/O Bi–directional transfer of Q–samples 54 TEST I Test pin 55 V
SS1
P Negative digital power supply. 56 PCMSCLK O 8 kHz Frame Sync (4–wire) / PData(8) (1–wire) 57 PCMDCLK O PCM bus data transfer clock (4–wire) / PData(9)
(1–wire) 58 PCMTxData I/O PCM bus transmit data (4–wire) / IO –data (1–wire) 59 PCMRxData I PCM bus receive data (4–wire) / PData(10) (1–wire) 60 V
DD1
P Positive digital power supply.
61 MBIAS O Bias output for microphone 2.35 V.
Page 2 – 42
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
Table 11. COBBA_GJP pin list (continued)
DescriptionTypeName
62 MIC2N I Second negative high impedance input for micro-
phone. 63 MIC2P I Second positive high impedance input for micro-
phone. 64 MIC1N I Negative high impedance input for microphone.
Table 12. CCONT 3V Pin assignment
Pin Symbol Type State In Reset Description
1 RSSI I Receive Signal Strength Indica-
tor 2 ICHAR I V(ICHAR) Voltage input 3 MODE_SEL I High Z / GND Mode select High Z=normal
mode
GND=RAM_Bck
4 VR3/RAM_bck O 0V/2.8V VR3 regulator output/RAM
backup 5 CNTVR3 I High Z Control VR3 regulator 6 CNTVR2 I High Z Control VR2 regulator 7 CNTVR5 I High Z Control VR5 regulator 8 VBAT P Unregulated supply voltage
(RF) 9 VR2 O High Z VR2 regulator output 10 GROUND P (RF) 11 VR5 O High Z VR5 regulator output 12 VBAT P Unregulated supply voltage
(RF) 13 VREF O 1.244/1.5V Reference voltage output 14 GROUND P (RF) 15 VR4 O High Z VR4 regulator output 16 VBAT P Unregulated supply voltage
(RF) 17 CNTVR4 I High Z Control VR4 regulator 18 TXPWR I High Z Control VR7 regulator
(CNTVR7) 19 VR7BASE O High Z VR7 regulator base current 20 VR7 O High Z VR7 regulator output
Issue 1 07/99
Page 2 – 43
NSE–5 System Module
Technical Documentation
Table 12. CCONT 3V Pin assignment (continued)
PAMS
DescriptionState In ResetTypeSymbolPin
21 VBAT P Unregulated supply voltage
(RF) 22 VR6 O 2.8V VR6 regulator output (COB-
BA_GJP) 23 GROUND P (RF) 24 SLEEPX I ”1” Control VR1 regulator
(CNTVR1) 25 VR1 O 2.8V VR1 regulator output (VCXO) 26 VR1_sw O High Z VR1 switched output 27 VBAT P Unregulated supply voltage
(RF) 28 VBAT2 P Unregulated supply voltage
(VSIM, V5V, SMR, SIMIf) 29 PWRONX/
WDDISX
I VBAT/GND Power on control from keyboard
Watchdog disable 30 SIM_PWR I ”1”/”0” SIM regulator enable 31 GROUND P (VSIM, V5V, SMR, SIMIf) 32 V5V O High Z 5V dc voltage output 33 V5V_2 O High Z Reserved for 5V SMR 34 V5V_4 O High Z Reserved for 5V SMR 35 V5V_3 O High Z Reserved for 5V SMR 36 VSIM O 3.0V/High Z SIM regulator output 37 GROUND P (VSIM, V5V, SMR, SIMIf) 38 SIMCLK_O O ”0” Clock output from SIM interface
(5MHz) 39 SIM I/O_C I High Z SIM data I/O control 40 SIMRST_A I High Z SIM interface reset (from
MAD2PR1) 41 SIMCLK I High Z Clock to SIM interface (5MHz) 42 SIMRST_O O ”0” Reset output from SIM–inter-
face (to SIM) 43 DATA_O I/O ”0” SIM data I/O line 44 DATA_A I/O ”0” SIM–Interface MAD2PR1 Data 45 VBACK P Backup Battery Backup Battery Input 46 CRA I Crystal for 32kHz sleep clock 47 CRB I Crystal for 32kHz sleep clock
Page 2 – 44
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
Table 12. CCONT 3V Pin assignment (continued)
DescriptionState In ResetTypeSymbolPin
48 SLCLK O Sleep clock output 49 DATACLK I High Z MAD2PR1 bus clock 50 DATASELX I High Z MAD2PR1 bus enable 51 DATA_IN/OUT I/O High Z MAD2PR1 Bus serial data 52 CCONTINT O ”0” CCONT interrupt output 53 TEST I GND Test Pin
(Ground =>normal operation) 54 PURX O ”0” Power up reset signal 55 VBB O 2.8V Baseband regulator output 56 PWMOUT O ”0” PWM out (3/0 V) 57 VBAT1 P Unregulated supply voltage
(VBB, V2V, ADC, 32kHz) 58 GROUND P (VBB, V2V, ADC, 32kHz) 59 V2V O 1.975V MAD2PR1 core regulator output 60 VCHAR I Charger Voltage 61 VCXOTEMP I VCXO–temperature 62 BSI I Battery type input 63 BTEMP I Battery temperature input 64 EAD I External Accessory Detection
Issue 1 07/99
Page 2 – 45
NSE–5 System Module

Memories

The MCU program code resides in an external program memory, size is16Mbits. MCU work (data) memory size is 1Mbits. A special block in the flash is used for storing the system and tuning parameters, user settings and selections, a scratch pad and a short code memory.
A target is to eliminate the separate EEPROM memories and store the non–volatile data into a dedicated block inside the flash memory in products where the flash memory will not be replaced by an otp or a mask prom for either technical or marketing reasons. Flash solution gives a cost benefit in products where large EEPROM sizes are required. The used flash memories are capable to perform erase and write operations with the supplied 2.8V programming voltage.
The BusController (BUSC) section in the MAD2PR1 decodes the chip select signals for the external memory devices and the system logic. BUSC controls internal and external bus drivers and multiplexers connected to the MCU data bus. The MCU address space is divided into access areas with separate chip select signals. BUSC supports a programmable number of wait states for each memory range.
PAMS
Technical Documentation
Program Memory 32MBit Flash
The MCU program code resides in the flash program memory. The program memory size is 32Mbits (2Mx16) . The default package is uBGA48.
The flash memory has a power down pin that shall be kept low, during the power up phase of the flash to ensure that the device is powered up in the correct state, read only. The power down pin is utilized in the system sleep mode by connecting the VCXOPwr to the flash power down pin to minimize the flash power consumption during the sleep.
SRAM Memory
The work memory size is 2Mbits (256kx8) static ram in a shrinked TSOP–32 package.Vcc is 2.8V and access time is 85 ns The work memory is supplied from the common baseband VBB voltage and the memory contents are lost when the baseband voltage is switched off. All retainable data should be stored into the flash memory when the phone is powered down.
EEPROM Emulated in FLASH Memory
An block in flash is used for a nonvolatile data memory to store the tuning parameters and phone setup information. The short code memory for storing user defined information is also implemented in the flash. The flash size can vary between 2k to 8kbytes depending on the amount of short code number locations supported. The memory is accessed through the parallel bus.
Page 2 – 46
Issue 1 07/99
PAMS
NSE–5
Technical Documentation

MCU Memory Requirements

The MCU memory requirements are shown below.
Table 13. HD945 Memory Requirements
Product Device Organiza-
tion
DCT3.5 ROM 2Mx16 100 1 2.8V/2.8V Read/Write DCT3.5 SRAM 256Kx8 85 1 120ns @ 2.8V Read/Write
Ac-
cess
Time
ns
Wait
States
Used
Remarks

Flash Programming

The system connector can be used as a flash prom programming interface for flash memories for updating (i.e. re–programming) the flash program memory. Used system connector pins and their functions are listed in Table 3.
To flash the phone use service battery (BBD–3) this will automatically power up the phone via BTEMP. When flashing, the phone has to be initialised after each file has been flashed. The flash prommer controls the power up of the phone via the service battery.
The program execution starts from the BOOT ROM and the MCU investigates in the early start–up sequence if the flash prommer is connected. This is done by checking the status of the MBUS–line. Normally this line is high but when the flash prommer is connected the line is forced low by the prommer. The flash prommer serial data receive line is in receive mode waiting for an acknowledgement from the phone.
The data transmit line from the baseband to the prommer is initially high. When the baseband has recognized the flash prommer, the FBUS TX–line is pulled low. This acknowledgement is used to start the data transfer of the first two bytes from the flash prommer to the baseband on the FBUS RX–line. The data transmission begins by starting the serial transmission clock (MBUS–line) at the prommer.
The 2.8V programming voltage is supplied inside the transceiver from the CCONT.
For protecting the MAD2PR1 against ESD spikes at the system connector, the data transmission lines (MBUS, RX and TX) are equipped with EMI fitters.
Issue 1 07/99
Page 2 – 47
NSE–5 System Module
Table 14. Flash Programming, DC connector
Pin Name Parameter Min Typ Max Unit Remark
Technical Documentation
PAMS
1 VIN Supply
V oltage
2 GND GND 0 0 V Supply ground
11 MBUS Serial clock
from the
Prommer
12 FBUS_RXSerial data
from the
Prommer
13 FBUS_TXData ac-
knowledge
to the
Prommer
14 GND GND 0 0 V Supply ground
6.8 7.8 8.8 V Supply Voltage
2.0 0
2.0v 0v
2.0 0,1
2.8
0.8
2.8
0.8
2.8
0.8
V Prommer detection and
Serial Clock for syn-
chronous communica-
tion
V Receive Data from
Prommer to Baseband
V Transmit Data from
Baseband to Prommer

IBI Accessories

All accessories which can be connected between the transceiver and the battery or which itself contain the battery, are called IBI accessories.
Either the phone or the IBI accessory can turn the other on, but both possibilities are not allowed in the same accessory.
Phone Power–on by IBI
IBI accessory can power the phone on by pulling the BTEMP line up to 3 V.
Page 2 – 48
Issue 1 07/99
PAMS
NSE–5
Vibra
Technical Documentation
IBI power–on by phone
Phone can power the IBI accessory on by pulling the BTEMP line up by MCUGenIO4 of MAD2. BTEMP measurement is not possible during this time.
The accessory is commanded back to power–off by MBUS message.
VBAT
VB
M
3x3Ru
22k
100n
BATTERY
10n
R 47k
NTC
T
BSI
BTEMP
1k
GND
Figure 14. IBI Power on
VREF
100k
R214 2k2
C105 10n
10k
10k
100n
BTEMP
CCONT
VIBRAPWM
MCUGenIO4
TRANSCEIVER
4k7
220k
MAD
Issue 1 07/99
Page 2 – 49
NSE–5 System Module
Technical Documentation

MCU Memory Map

MAD2PR1 supports maximum of 4GB internal and 4MB external address space. External memories use address lines MCUAd0 to MCUAd21 and 8–bit/16–bit databus. The BUSC bus controller supports 8– and 16–bit access for byte, double byte, word and double word data. Access wait states (0, 1 or 2) and used databus width can be selected separately for each memory block.
Table 15. MCU Memory map
Memory block Chip select Start address Stop address Size Size
boot ROM (*) internal 0000 0000 0000 FFFF 64k 64k API RAM internal 0001 0000 0001 FFFF 64k 64k System logic internal 0002 0000 0002 FFFF 64k 64k API ctl reg. internal 0003 0000 0003 FFFF 64k 64k
PAMS
Bus Controller Internal 0004 0000 0007 FFFF 256k 256k The same as
0008 0000 000F FFFF 512 k 512 k
0–7FFFF ext. RAM (*) RAMSelX 0010 0000 001F FFFF 1M 1M ext. ROM1 ROM1SelX 0020 0000 005F FFFF 4M 4M (ext.
(ROM2SelX) (0060 0000) (009F FFFF) (4M) (4M) ROM2sel is in flexpool in MAD2PR1) 144pin (*)
(ext. EE-
(EEPROMSelX)
(00A0 0000) (00DF FFFF) (4M) (4M) PROM is in flex pool in MAD2PR1)
reserved 00E0 0000 00FF FFFF 4M 4M The same as
0–FF FFFF
0100 0000 FFFF FFFF 4G –
16 M
4G – 16 M
(*) After reset and when BootROMDis and ROM2Boot are low. MCU can boot from different memory locations, depending on hardware
(GenSDIO0) and software settings.
Start
address
0000 0000
0000 FFFF
Page 2 – 50
Stop
address
Table 16. MCU boot memory selection
BootROMDis=0
ROM2Boot=0
BootROMDis=1
ROM2Boot=0
BootROMDis=0
ROM2Boot=1
BootROMDis=1
ROM2Boot=1
boot ROM External RAM ext. ROM2 External RAM
Issue 1 07/99
PAMS
NSE–5
Technical Documentation

RF Module

The RF module converts the signal received by the antenna to a baseband signal and vice versa.
It consists of a conventional superheterodyne receiver and a transmitter for each band and also two frequency synthesizers for the required mixing.
The architecture contains two integrated circuits, a CRFU3_D1 and a SUMMA. They are both BiCMOS ASICs, which is a suitable technology for integration of RF functions.
The CFRU3 includes:
– A LNA for each band with a step AGC – Down converters for the receiver – Image rejection upconversion mixers for the transmitter
– A prescaler for the 2 UHF VCO
The SUMMA includes:
– An AGC amplifier for the receiver – A receiver mixer for the 13 MHz down conversion – PLLs for the UHF and VHF synthesizers – IQ–modulators for the transmitter – A power control circuit for the transmitter
The power amplifiers (PAs) are MMIC technology (Monolithic Microwave Integrated Circuit). They include three amplifier stages with input, interstage and output matching.
On the next page is a graphical presentation of the used Frequency Plan.
Issue 1 07/99
Page 2 – 51
NSE–5 System Module

RF Frequency Plan

PAMS
Technical Documentation
RX
13 MHz
58 MHz
VHF
PLL
13 MHz
VCTCXO
Divider System
UHF
PLL
116 MHz
232 MHz
TXI
IQ–
Mod
TXQ
IQ–
Mod
SUMMA
71 MHz
187 MHz
1805–1800 MHz
116 MHz
VCO
464 MHz
1992–2067 MHz
935–960 MHz
VCO
f / 2
1942–2067 MHz
1942–2017 MHz
f
1006–1031 MHz
232 MHz 116 MHz
1710–1785 MHz
890–915 MHz
CRFU3
Page 2 – 52
Issue 1 07/99
PAMS
NSE–5
Technical Documentation

DC Regulators

The transceiver has a multi function power management IC, which contains among other functions 7 pcs of 2.8 V regulators. All regulators can be controlled individually with 2.8 V logic directly or through a control register. However, in the chosen configuration of the CCONT, direct control is only used with VR1. The control register is used to switch off the regulators when they are not in use.
The CCONT also provides a 1.5 V reference voltage for the SUMMA. This reference voltage is used for the DACs and ADCs in the COBBA too.
The use of the regulators can be seen in the Power Distribution Diagram.
BATTERY
VBATT
PA
VCXOPWR
VXO
VR
1
VCTCXO
VSYN_2
CtrlReg1
D0
0
>=1
0
0
VRX_1 VRX_2
CRFU3
LO_BUF
RX/TX/SYN
VR
2
CRFU3
RX
D1
VR
SUMMA
PLL’s
VSYN_2
RFReg
D3 D4 D6
4
VR
5
SUMMA
RX
VR
7
CRFU3
SUMMA
VTX
TX
Serial
Interface
CCONT–ASIC
VR
REF
SUMMA
VREF
VCP
DATA_CLK
DATASELX
DATA_IN/OUT
V5V
SUMMA
CHARGE
PUMPS
Issue 1 07/99
Figure 15. Power Distribution
Page 2 – 53
NSE–5 System Module

Frequency Synthesizers

PAMS
Technical Documentation
LO to GSM1800
LO to GSM900
Figure 16. Frequency Synthesisers
Both the UHF- and the VHF-VCO are locked with PLLs to a stable frequency source, which is a VCTCXO-module (Voltage Controlled Temperature Compensated Crystal Oscillator). The VCTCXO is running at 13 MHz and is locked to the frequency of the base station by means of an AFC (Automatic Frequency Control).
The UHF PLL is common for both systems and is located in the SUMMA except for an external UHF–VCO. The part in the SUMMA includes a 64/65 (P/P+1) prescaler, a N- and A-divider, a reference divider, a phase detector and a charge pump for the external loop filter. The UHF–VCO is running at 2 GHz. The UHF local oscillator signal is generated by first dividing the UHF-VCO signal by two in the CRFU3 prescaler. After that the signal is fed to the SUMMA prescaler. The latter prescaler is a dual modulus divider. The output of the prescaler is fed to N- and A-divider, which produce the input to the phase detector. The phase detector compares this signal to the reference signal, which is derived by dividing the output from the VCTCXO.
The output of the phase detector is connected to the charge pump, which charges or discharges the integrator capacitor in the loop filter in accordance with the phase difference between the measured frequency and the reference frequency. The loop filter serves to filter the voltage across the integrator capacitor and generates a DC voltage that controls the frequency of UHF-VCO. The loop filter defines the step response of the PLL (settling time) and effects the stability of the loop. To preserve the stability of the loop a resistor is included for phase compensation. Other filter components are for sideband rejection.
The dividers are controlled via the serial bus. SDATA is for data, SCLK is the serial clock for the bus and SENA1 is a latch enable, which enables
Page 2 – 54
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
storing of new data into the dividers. The UHF-synthesizer is the channel synthesizer, so each step equals the channel spacing (200 kHz). When GSM900 operation is active, a 200 kHz reference frequency is used for the phase detector. For GSM1800 operation, a 100 kHz reference frequency has to be used.
This is because the GSM1800 UHF parts use a 2GHz LO–signal, but the UHF synthesizer is locked to a 1GHz LO–signal, which is derived by dividing the 2GHz LO–signal by two.
Except for the VHF–VCO the VHF PLL is located in the SUMMA. It is common for both systems like the UHF PLL. The part in the SUMMA includes a 16/17 (P/P+1) dual modulus prescaler, an N- and A-dividers, a reference divider, a phase detector and a charge pump for the loop filter. The VHF–VCO is running at 464MHz. The operation of the VHF PLL is identical to that of the UHF PLL, except for the use of the prescaler in the CRFU3. The used reference frequency is 333kHz.
Receiver
The receiver is a conventional dual conversion for GSM900 and triple conversion for GSM1800. Both receivers use upper side LO injection in the first RF mixer, after that lower side LO injection is used. Because of this there is no need for changing I/Q phasing in baseband when receiving band is changed between GSM1800 and GSM900.The two receiver chains are combined in 71 MHz IF so that they use the same RX chain from that point down to 13MHz AD converter. Because there is only used one external antenna connector, common for both bands, a dualband
Issue 1 07/99
Figure 17. Receiver Block Diagram
Page 2 – 55
NSE–5 System Module
diplexer that has one common antenna input/output is used. The selection between GSM900 and GSM1800 operation modes in the CRFU3 is done with the band selection signal (BAND_SEL) from the MAD in baseband.
GSM900 front–end
The GSM900 receiver is a dual conversion linear receiver. The front–end, which is located in the CRFU3 RF-, is activated with the band-selection signal (BAND_SEL) set to high-state. The received RF-signal from the antenna is fed via the diplex filter and the duplex filter to the LNA (Low Noise Amplifier) in the CRFU3. The active parts (RF-transistor and biasing and AGC-step circuitry) are integrated into this chip. Input and output matching networks are external. The Gain selection is done with the FRACTRL signal. The gain step in the LNA is activated when the RF-level at the antenna is about -47 dBm. After the LNA, the amplified signal (with low noise level) is fed to the bandpass filter, which is a SAW-filter (Surface Acoustic Wave). The duplex filter and the RX interstage bandpass filters together define how good the blocking characteristics are.
PAMS
Technical Documentation
The bandpass filtered signal is then mixed down to 71 MHz, which is the first GSM900 intermediate frequency. The first mixer is located in the CRFU3 and upper side injection is used for the down mixing. The integrated mixer is a double balanced Gilbert cell. It is driven balanced. All active parts and biasing are integrated. Matching components are external. Because it is an active mixer it also amplifies the IF-signal. Buffering of the local signal is integrated too. The first local signal is generated by the UHF-synthesizer.
GSM1800 front–end
The GSM1800 receiver is a triple conversion linear receiver. The received RF-signal from the antenna is fed via the diplex filter, the RX–TX switch and the first RX SAW filter to the LNA in CRFU3. The RX–TX switch is controlled by the band selection signal (BAND_SEL = low) and the supply voltage for the transmitter part (VTX = low). VTX ensures that the switch can not turn to transmit position when the transceiver is in receive mode. The front–end in the CRFU3 is activated with band-selection signal (BAND_SEL) set to low-state. The active parts (RF-transistor and biasing and AGC-step circuitry) are integrated in this chip. The input and output matching networks are external. The gain selection is done with the FRACTRL signal. The gain step in the LNA is activated when the RF-level at the antenna is about -47 dBm. After the LNA, the amplified signal (with low noise level) is fed to the second RX–SAW bandpass filter. The two RX–SAW bandpass filters together define how good the blocking characteristics are.
The bandpass filtered signal is then mixed down to 187 MHz IF, which is the first GSM1800 intermediate frequency. The first mixer is located in the CRFU3 and upper side injection is used for the down mixing. The integrated mixer is a double balanced Gilbert cell. It is driven balanced. All active parts and biasing are integrated. Matching components are
Page 2 – 56
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
external. Because it is an active mixer it also amplifies the IF-signal. Buffering of the local signal is integrated too. The first local signal is generated by the VHF-synthesizer.
There is a balanced discrete LC-bandpass filter in the output of the first mixer which e.g. attenuates the critical spurious frequencies 161 MHz and 277 MHz and also the 151,5 MHz half-IF. It also matches the impedance of 187MHz output to the input of the following stage. After this filter, the 187MHz IF-signal is mixed down to 71MHz IF, which is the second GSM1800 IF. The VHF-mixer is also a double balanced Gilbert cell and is located into the CRFU3. Lower side injection of the LO signal is used for this down conversion.
The 116MHz LO signal comes from the SUMMA-, where it is derived by dividing the 464MHz VHFLO signal by four. There is an external lowpass filter for the 116MHz LO signal that attenuates the harmonics (especially 232MHz) so that the critical mixing spurious will be attenuated.
Common Receiver parts for GSM900 and GSM1800
After the down conversions in the CRFU3– the RX-signal path is common for both systems. The 71MHz IF-signal is bandpass filtered with a selective SAW-filter. From the output of to IF-circuit input of the SUMMA, signal path is balanced. IF-filter provides selectivity for channels greater than +/-200 kHz. Also it attenuates image frequency of the following mixer and intermodulating signals. Selectivity is required in this place, because of needed linearity and without filtering adjacent channel interferes would be on too high signal level for the stages following.
Next stage in the receiver chain is an AGC-amplifier. It is integrated into the SUMMA. The AGC gain control is analog. The control voltage for the AGC is generated with a DA-converter in the COBBA in baseband. The AGC-stage provides an accurate gain control range (min. 57 dB) for the receiver. After the AGC-stage, the 71MHz IF-signal is mixed down to 13MHz. The needed 58MHz LO signal is generated in the SUMMA by dividing the VHF-synthesizer output (464 MHz) by eight.
The following IF-filter is a ceramic bandpass filter. It attenuates the signals in the adjacent channels, except for those separated +/- 200 kHz relative to the carrier. Very little attenuation is achieved for those signals in the filter, but they are filtered digitally by the baseband. Because of this the RX DACs has to be so good, that there is enough dynamic range for the faded 200 kHz interferers. The whole RX has to be able to handle signal levels in a linear way too. After the 13 MHz filter there is a buffer for the IF-signal, which also converts and amplifies the single–ended signal from filter to a balanced signal for the buffer and AD-converters in the COBBA. The Buffer in the SUMMA has a voltage gain of 36 dB and the buffer gain setting in the COBBA is 0 dB. It is possible to set the gainstep (95 dB) in the COBBA via the control bus, if needed.
Issue 1 07/99
Page 2 – 57
NSE–5 System Module
Transmitter
PAMS
Technical Documentation
The transmitter consists of an IQ-modulator that is common for the GSM900 and the GSM1800 chain, two image rejection upconversion mixers, two power amplifiers and a power control loop.
Common transmitter part
The I- and Q-signals are generated by the COBBA in baseband. After the post filtering (RC-network) they are fed into the IQ-modulator in the SUMMA.
GSM900 transmitter
The IQ–modulator generates a modulated TX IF-signal centered at 116 MHz, which is the VHF-synthesizer output divided by four. The TX-amplifier in the SUMMA has two selectable gain levels. The output, which is balanced, is set to maximum via a control register in the SUMMA. After the SUMMA there is a bandpass LC-filter for reduction of noise and harmonics before the signal is upconverted to the final TX-frequency. Both the input and output of the bandpass LC–filter are balanced. The upconversion mixer, which is located in the CRFU3, is a so–called image rejection mixer. It is able to attenuate unwanted frequency components in the upconverter output. The mixer type is a double balanced Gilbert cell. The phase shifters required for image rejection are also integrated. The local oscillator signal needed for the upconversion, is generated by the UHF-synthesizer, but buffers for the mixer are integrated in the CRFU3.
Figure 18. Transmitter Block Diagram
Page 2 – 58
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
The output of the upconverter is single–ended and requires an external matching.
The next stage is the TX interstage filter, which attenuates unwanted frequency components from the upconverter further. These unwanted component mainly originates from LO-leakage and insufficient suppression of the image frequency in the upconversion. The interstage filter attenuates wideband noise too. The filter is a bandpass SAW-filter.
Between the interstage filter and the GSM900 PA an attenuator is placed. The attenuator ensures both stability of the GSM900 PA because of constant 50 on the PA input and the right input level.
After the attenuator, the TX-signal is fed to the input of the GSM900 PA, which is a MMIC consisting of three amplifier stages and an interstage matching. It has a 50 input and output impedance. The gain control is integrated in the PA and is controlled with a power control loop circuit. The PA has more than 35 dB power gain and the maximum output power is approx. 35 dBm at an input level of 0 dBm. The gain control range is over 35 dB to ensure the desired power levels and power ramping up and down. The harmonics generated by the nonlinear PA (class AB) are filtered out with the duplexer.
After the duplexer the signal is fed to the diplexer. There is a directional coupler connected between the PA output and the duplex filter input to provide feedback for the power loop.
GSM1800 transmitter
The IQ–modulator generates a modulated TX IF-signal centered at 232 MHz, which is the VHF-synthesizer output divided by two. The TX-amplifier in the SUMMA has two selectable gain levels. The output (single-ended) is set to maximum via a control register in the SUMMA. After the SUMMA there is a SAW filter for reduction of noise and harmonics before the signal is fed for upconversion into the final TX-frequency in the CRFU3. The input of the SAW filter is single ended but the output is balanced. The upconversion mixer for GSM1800 is an image rejection mixer as well as the one for GSM900. The local oscillator signal needed in the upconversion is generated by the UHF-synthesizer. Buffers for the mixer are integrated into the CRFU3. The output of the upconverter is single ended and requires external matching to 50 impedance.
Then the GSM1800 TX signal passes through the first attenuator in the GSM1800 TX chain. This attenuator ensures the right input level to the buffer, also called pre–amplifier, which will be mentioned later.
The next stage is the first TX interstage filter, which attenuates unwanted frequency components from the upconverter. These unwanted component mainly originates from LO-leakage and insufficient suppression of the image frequency in the upconversion. The interstage filter attenuates wideband noise too. The filter is a bandpass SAW-filter.
Issue 1 07/99
Page 2 – 59
NSE–5 System Module
To ensure enough power gain in the GSM1800 TX chain the TX signal then passes through the buffer (pre amplifier). The buffer is driven into saturation to compensate for variations in CRFU3 output level and ripple in the first TX interstage filter and to ensure constant input level at the GSM1800 PA.
The next stage is the second TX interstage filter, which attenuates unwanted frequency components from the buffer. The interstage filter also attenuates wideband noise. Both interstage filters is the same type of bandpass SAW-filter.
Between the second interstage filter and the GSM1800 PA the second attenuator is placed. The attenuator ensures both stability of the PA because of constant 50 on the PA input and the right input level.
After the second attenuator in the GSM1800 TX chain, the TX–signal is fed into the input of the GSM1800 PA. The GSM1800 PA contains three amplifier stages, interstage, input and output matchings. The PA has more than 33 dB power gain and the maximum output power is approx. 33 dBm at an input level of 0 dBm. The gain control range is over 35 dB to get the desired power levels and power ramping up and down.
PAMS
Technical Documentation
The GSM1800 transmitter has no duplexer, but a TX/RX switch instead. This is due to space limitations. The TX/RX switch is set to transmit position with BAND_SEL = low and VTX = high.
After the TX/RX switch the signal is fed to the diplexer. There is a directional coupler connected between the PA output and the input of the TX/RX switch to provide feedback for the power loop.
Transmitter power control for GSM900 and GSM1800
The power control circuit consists of the gain control stage of the PA, a power detector at the PA output and an error amplifier in the SUMMA. There is a directional coupler connected after the PA output in both chains, but the power sensing line and detector are common for both bands. The GSM900 feedback signal is attenuated to the same level as the GSM1800 feedback signal. The combining of the two feedback signals is achieved with a diplexer. A sample is taken from the forward going power. This signal is rectified with a schottky-diode and after RC-filtering a DC-voltage is available. The DC–voltage reflects the output power. This power detector is linear on absolute scale, with the exception that it saturates on very low and high power levels, i.e. it forms an S-shaped curve.
The detected voltage is compared in the error-amplifier in the SUMMA to the TX power control voltage (TXC), which is generated by the DA-converter in the COBBA. The output of the error amplifier is fed to the gain control input of the PA. Because the gain control characteristics in the PA are linear in absolute scale, the control loop defines a voltage loop, when closed. The closed loop tracks the TXC-voltage. The shape of the
Page 2 – 60
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
TXC–voltage as function of time has a raised cosine form (cos4 - function). This shape reduces the switching transients, when the power is pulsed up and down.
Because the dynamic range of the detector is not wide enough to control the power (actually RF output voltage) over the whole range, there is a control signal named TXP (TX power enable) to work under detected levels. The burst is enabled and set to rise with TXP until the output level is high enough for the feedback loop to work. The loop controls the output power via the control pin on the PA to the desired output level.
Because the feedback loop could be unstable, it is compensated with a dominating pole. This pole decreases the gain on higher frequencies to get the phase margins high enough.
AGC
The purpose of the AGC-amplifier is to maintain a constant output level from the receiver. To accomplish this, pre-monitoring is used. This pre-monitoring is done in three phases and determines the settling time for the RX AGC. The receiver is switched on approximately 150 s before the burst begins and DSP measures the received signal level. The DSP then adjusts the AGC-DAC in accordance with the measured signal level and/or switches on/off the LNA with the front–end amplifier control line (FRACTRL). The AGC amplifier has a 57 dB continuos controllable gain (–17 dB to 40 dB) while the gain control of the LNA has two steps. That is the gain in the LNA is either –16 dB or 15 dB.
The requirement for the received signal level under static conditions is that the MS shall measure and report to the BS over the range -110 dBm to
-48 dBm. For RF levels above -48 dBm, the MS must report the same signal level to the BS. Because of those requirements, the LNA is turned ”ON” (FRACTRL = ”0”) for received levels below -48 dBm. This leaves the AGC in the SUMMA to adjust the gain to desired output value (56mVpp). This is accomplished in DSP by measuring the received IQ level after the selectivity filtering (IF-filters, Σ∆±converter and FIR-filter in DSP). For RF levels below -94 dBm, the output level of the receiver drops dB by dB with a level of 9 mVp-p @-110 dBm for GSM900 and 7.1 mVp-p @ -110 dBm for GSM1800.
This strategy is chosen as a compromise between avoiding saturation when strong interfering signals are present and not sacrificing the signal to noise ratio. The 56 mVpp target level is set, because the RX-DAC in the COBBA in baseband will saturate at 1.4 Vpp. This results in a headroom of 28 dB which is sufficient for the +/- 200 kHz faded adjacent channel (approximately 19 dB) and an extra 9 dB for pre-monitoring.
Issue 1 07/99
Page 2 – 61
NSE–5 System Module
AFC function
In order to maintain the clock of the transceiver, i.e. the 13 MHz VCTCXO, locked to the frequency of the base station an AFC (Automatic Frequency Control) is used. The AFC reduces variations in the frequency of the VCTCXO due to temperature drift. The AFC voltage is generated by baseband with an 11 bit DAC in the COBBA. There is a RC-filter in the AFC control line to reduce the noise from the converter.
The AFC voltage is obtained by means of Pure Sine Wave (PSW) slots, which are a part of the signaling from the base station. The PSW slots are repeated every 10 frames, meaning that there is a slot in every 46 ms. Since changes in the VCTCXO -output frequency due to temperature variations are relatively slow compared to the 46 ms, the transceiver has a stable clock frequency.
When the transceiver is in sleep mode and ”wakes” up to receive mode, there is only about 5 ms for the AFC-voltage to settle. When the first burst arrives the system clock has to be settled to +/- 0.1 ppm frequency accuracy. The VCTCXO-module requires about 4 ms to settle into the final frequency. The amplitude rises to maximum in about 3 ms, but because the frequency–settling time is higher, the oscillator must be powered up early enough to avoid frequency errors.
PAMS
Technical Documentation
Page 2 – 62
Issue 1 07/99
PAMS
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
NSE–5
Technical Documentation

Interfacing

The interfacing between RF and BB is comprised of the signals stated below.
SCLK
SDATA
SENA1
FRACTRL
BAND_SEL
БББББ
Clock for the PLL Serial Programming (3.25 MHz)
Data for the PLL Serial Programming
Latch Enable for the PLL Serial Programming
Front–end Amplifier Control - Turns the gain in the LNA on and off
Band Selection - Selects between GSM 900 and GSM 1800, i.e. it
ББББББББББББББББББББ
turns on the respective mixers and LNAs in the CRFU3.
RXC
БББББ
AFC
RFC
RXINN, RXINP
TXC
БББББ
TXP
TXIN, TXIP
TXQN, TXQP
БББББ
VTX
БББББ
Receiver Gain Control - The control voltage for the AGC amplifi-
ББББББББББББББББББББ
er.
Automatic Frequency Control Signal for the VCTCXO
A high stability clock signal for the logic circuits (13 MHz)
The differential RX signals to baseband
Transmitter power Control signal, that controls the shape of the
ББББББББББББББББББББ
burst.
Transmitter Power enable ??
Differential In–phase TX baseband signals for the RF modulator
Differential Quadrature–phase TX baseband signals for the RF modulator
ББББББББББББББББББББ
Supply voltage for the TX chain, which is also used for control of the GSM 1800 TX/RX switch together with BAND_SEL and
ББББББББББББББББББББ
VRX_1
VRX_1
БББББ
Issue 1 07/99
Supply voltage for a part of the RX chain, which is also used for
ББББББББББББББББББББ
control of the GSM 1800 TX/RX switch
Page 2 – 63
NSE–5 System Module

User Interface

The UI module includes the following:–
– LEDs for backlight – Plastic Window – Dust Seal, – LCD adhesive, – Light Guide – Reflector, – Connector – LCD cell (GD50) with display driver – ON/OFF key
PAMS
Technical Documentation
– Speaker Connections
The module is delivered as a single assembly, (refer to section).
disassembly
Page 2 – 64
Figure 19. UI module assembled
Issue 1 07/99
PAMS
NSE–5
Technical Documentation

LEDs

LEDs for the backlight of the LCD via the lightguide are mounted on the back side of the module’s FPC. There are 4 specially designed LEDs placed with a chip in the upper part of the LED.
Figure 20. Mounting of LEDs for backlight. Seen from underside.

Plastic W indow

The window is mounted on top of the LCD module. It snaps into the lightguide in three places. If a broken window needs replacing, it is replaced together with the dust seal.

Dust Seal

The dust seal is made of foam with adhesive backing on both sides. It keeps dust out of the LCD module and protects it from excessive pressure on the window, if pressed too hard. The dust seal is mounted inside the window and placed onto the LCD module. The window adhesive is high tack. The LCD adhesive is low tack to ease replacement of the window.

LCD Adhesive

This is a thin strip of foil with adhesive on both sides, it keeps the LCD module in place and protects it if the phone is dropped.

Reflector

The reflector is adhered to the underside of the lightguide to reflect the backlight up to the viewing area. A thin adhesive border holds it in place and also keeps out dust.
Issue 1 07/99
Page 2 – 65
NSE–5 System Module

Connector

The connector makes a mechanical connection between light guide and LCD, so the LCD can be clicked onto the light guide. Also it makes electrical connection between LCD cell and PCB. The connector is not attached to the PCB, but the 14 pin connector contains springs and makes the contact.

Light Guide

The Lightguide houses and connects the LCD module to the PCB and backlights the display. Several snap fits locate the Window and a Board to Board Connector.
Evenly distributed backlighting is controlled by a graduated etched pattern. The pattern becomes rougher the further it gets from the LEDs. This is on the underside, in the visual area. The rest of the Lightguide is polished to minimise light losses in the system.
PAMS
Technical Documentation
Page 2 – 66
Figure 21. Light guide.
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
The figure below, shows the code marking for the light guide.
Y W W
YWWE
ID code
E
Factory code Week Year
Figure 22. Marking specification for the light guide

UI Module Connection to main PCB

Table 17. Module interface
Pin Signal Symbol Parameter Mini-
mum
1 Temp Sen-
sor
LDCDCX tsas Control/display
2 tsah 150 ns/Hold time
3 SPKR_p Speaker connec-
Temperature at LCD for compensa­tion of contrast and brightness. Refer­ence to GND
150 ns/Setup time
data flag input.
low Control data
150
tion
Typical / Nomi-
nal
47 k NTC resis-
Maxi­mum
HIGH Display data
Unit / Notes
tor (@ 25°C).
LCDCSX tcss Chip select input,
active low.
4 tcsh 150 ns
0.7xVDD V/HIGH
0.2xVDDV/LOW
SCL Serial clock input. 0 3.250 MHz/
ns
VDD=2.7V
Issue 1 07/99
Page 2 – 67
NSE–5 System Module
PAMS
Technical Documentation
Table 17. Module interface (continued)
ParameterSymbolSignalPin
tscyc 250 ns
5 tshw 100 ns
tslw 100 ns
6 SPKR_n Speaker connec-
tion
7 ON/
OFF_key
8 LED– LED negative con-
9 LED+ LED positive con-
10 ESD–GND GND GND 0 V 11 GND GND GND 0 V
VDD Supply voltage. 2.7 2.8 3.3 V
12 100 200 uA/nominal
ON/OFF key con­nection. Refer­enced to GND
nection.
nection.
Mini-
mum
0 VDD V
Typical / Nomi-
nal
60 mA
60 mA
mum
Unit / NotesMaxi-
supply volt.,
text on dis­play @ 25°C
13 SDA tsds Serial data input.
tsdh 100 ns
RES Reset. 0.2xVDDV/LOW
14 1.0 us/Reset
Table 18. Input signals change time
Signal Symbol Parameter Mini-
data sig­nals
tr,tf 50 ns
mum
Typical / Nomi-
nal
Maxi-
mum
Unit / Notes
Page 2 – 68
Issue 1 07/99
PAMS
NSE–5
Technical Documentation
System Module

Parts Lists

System Module (O201180 UBG_8v15)
(EDMS V2.18) Item Code. Description Value/Type
R100 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R101 1825005 Chip varistor vwm14v vc30v 0805 R102 1419003 Chip resistor 22 5 % 0.063 W 0402 R103 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R104 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R105 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R106 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R107 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R108 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R110 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R111 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R112 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R113 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R114 1430718 Chip resistor 47 5 % 0.063 W 0402 R115 1620025 Res network 0w06 2x100k j 0404 R116 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R117 1430826 Chip resistor 680 k 5 % 0.063 W 0402 R118 1430830 Chip resistor 1.0 M 5 % 0.063 W 0402 R119 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R120 1620017 Res network 0w06 2x100r j 0404 R121 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R122 1430830 Chip resistor 1.0 M 5 % 0.063 W 0402 R123 1620019 Res network 0w06 2x10k j 0404 R124 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R125 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R126 1430826 Chip resistor 680 k 5 % 0.063 W 0402 R129 1430810 Chip resistor 180 k 5 % 0.063 W 0402 R130 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R131 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R132 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R133 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R134 1430740 Chip resistor 330 5 % 0.063 W 0402 R135 1430830 Chip resistor 1.0 M 5 % 0.063 W 0402 R136 1430690 Chip jumper 0402 R137 1430690 Chip jumper 0402 R138 1430784 Chip resistor 15 k 5 % 0.063 W 0402
Amendment 07/00
Page 2– 69
NSE–5 System Module
R139 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R140 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R141 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R145 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R146 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R147 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R148 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R149 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R150 1430726 Chip resistor 100 5 % 0.063 W 0402 R200 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R201 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R300 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R301 1430700 Chip resistor 10 5 % 0.063 W 0402 R302 1430690 Chip jumper 0402 R303 1430690 Chip jumper 0402 R304 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R306 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R350 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R351 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R352 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R353 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R354 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R355 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R357 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R358 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R400 1430748 Chip resistor 680 5 % 0.063 W 0402 R401 1430748 Chip resistor 680 5 % 0.063 W 0402 R402 1430714 Chip resistor 33 5 % 0.063 W 0402 R403 1430748 Chip resistor 680 5 % 0.063 W 0402 R404 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R405 1430714 Chip resistor 33 5 % 0.063 W 0402 R406 1430714 Chip resistor 33 5 % 0.063 W 0402 R407 1430730 Chip resistor 150 5 % 0.063 W 0402 R408 1430730 Chip resistor 150 5 % 0.063 W 0402 R409 1430744 Chip resistor 470 5 % 0.063 W 0402 R410 1430744 Chip resistor 470 5 % 0.063 W 0402 R411 1430730 Chip resistor 150 5 % 0.063 W 0402 R412 1430744 Chip resistor 470 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R414 1430714 Chip resistor 33 5 % 0.063 W 0402 R500 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R501 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402
Technical Documentation
PAMS
Page 2– 70
Amendment 07/00
PAMS
NSE–5
Technical Documentation
R502 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R503 1430734 Chip resistor 220 5 % 0.063 W 0402 R504 1430710 Chip resistor 22 5 % 0.063 W 0402 R505 1430734 Chip resistor 220 5 % 0.063 W 0402 R506 1430726 Chip resistor 100 5 % 0.063 W 0402 R507 1430718 Chip resistor 47 5 % 0.063 W 0402 R508 1430718 Chip resistor 47 5 % 0.063 W 0402 R509 1430726 Chip resistor 100 5 % 0.063 W 0402 R510 1430700 Chip resistor 10 5 % 0.063 W 0402 R511 1430744 Chip resistor 470 5 % 0.063 W 0402 R512 1430744 Chip resistor 470 5 % 0.063 W 0402 R513 1430744 Chip resistor 470 5 % 0.063 W 0402 R514 1430700 Chip resistor 10 5 % 0.063 W 0402 R515 1430744 Chip resistor 470 5 % 0.063 W 0402 R516 1430726 Chip resistor 100 5 % 0.063 W 0402 R601 1430700 Chip resistor 10 5 % 0.063 W 0402 R602 1430728 Chip resistor 120 5 % 0.063 W 0402 R603 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R604 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R605 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R606 1430832 Chip resistor 2.7 k 5 % 0.063 W 0402 R607 1430738 Chip resistor 270 5 % 0.063 W 0402 R608 1430722 Chip resistor 68 5 % 0.063 W 0402 R609 1430700 Chip resistor 10 5 % 0.063 W 0402 R610 1430700 Chip resistor 10 5 % 0.063 W 0402 R611 1430746 Chip resistor 560 5 % 0.063 W 0402 R612 1430746 Chip resistor 560 5 % 0.063 W 0402 R614 1430690 Chip jumper 0402 R615 1430832 Chip resistor 2.7 k 5 % 0.063 W 0402 R616 1430832 Chip resistor 2.7 k 5 % 0.063 W 0402 R618 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R619 1430710 Chip resistor 22 5 % 0.063 W 0402 R700 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R701 1430744 Chip resistor 470 5 % 0.063 W 0402 R702 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R703 1430734 Chip resistor 220 5 % 0.063 W 0402 R704 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R705 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R706 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R707 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R708 1620019 Res network 0w06 2x10k j 0404 R709 1430710 Chip resistor 22 5 % 0.063 W 0402
System Module
Amendment 07/00
Page 2– 71
NSE–5 System Module
R710 1620019 Res network 0w06 2x10k j 0404 R711 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R712 1430726 Chip resistor 100 5 % 0.063 W 0402 R713 1430710 Chip resistor 22 5 % 0.063 W 0402 R714 1620019 Res network 0w06 2x10k j 0404 R715 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R716 1430740 Chip resistor 330 5 % 0.063 W 0402 R717 1430734 Chip resistor 220 5 % 0.063 W 0402 R718 1430734 Chip resistor 220 5 % 0.063 W 0402 R719 1430724 Chip resistor 82 5 % 0.063 W 0402 R721 1430734 Chip resistor 220 5 % 0.063 W 0402 R722 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R723 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R724 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R725 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R726 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R727 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R728 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R729 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R730 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R731 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R732 1620103 Res network 0w06 2x22r j 0404 R733 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R735 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R736 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R737 1430742 Chip resistor 390 5 % 0.063 W 0402 R738 1430746 Chip resistor 560 5 % 0.063 W 0402 R739 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R740 1430792 Chip resistor 33 k 5 % 0.063 W 0402 C100 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C101 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C102 2320481 Ceramic cap. 5R 1 u 10 % 0603 C103 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C104 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C105 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C106 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C107 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C108 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C109 2320481 Ceramic cap. 5R 1 u 10 % 0603 C110 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C112 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C113 2320805 Ceramic cap. 100 n 10 % 10 V 0402
Technical Documentation
PAMS
Page 2– 72
Amendment 07/00
PAMS
NSE–5
Technical Documentation
C114 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C115 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C116 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C117 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C118 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C119 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C120 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C121 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C122 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C123 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C124 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C125 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C126 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C127 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C128 2310793 Ceramic cap. 2.2 u 10 % 10 V 0805 C129 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C130 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C131 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C132 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C133 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C134 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C135 2320481 Ceramic cap. 5R 1 u 10 % 0603 C136 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C137 2320481 Ceramic cap. 5R 1 u 10 % 0603 C138 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C139 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C140 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C141 2320481 Ceramic cap. 5R 1 u 10 % 0603 C142 2320481 Ceramic cap. 5R 1 u 10 % 0603 C143 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C144 2611715 Tantalum cap. 1.0 u 20 % 35 V 3.2x1.6x1.6 C145 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C146 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C147 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C148 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C149 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C150 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C151 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C152 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C153 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C154 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C155 2320620 Ceramic cap. 10 n 5 % 16 V 0402
System Module
Amendment 07/00
Page 2– 73
NSE–5 System Module
C156 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C157 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C158 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C159 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C160 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C161 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C162 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C163 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C164 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C165 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C166 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C167 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C168 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C169 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C170 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C171 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C172 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C173 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C174 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C175 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C176 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C178 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C179 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C180 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C181 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C200 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C201 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C202 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C203 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C204 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C205 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C300 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C301 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C302 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C303 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C304 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C305 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C306 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C307 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C308 2320481 Ceramic cap. 5R 1 u 10 % 0603 C309 2320481 Ceramic cap. 5R 1 u 10 % 0603 C310 2320481 Ceramic cap. 5R 1 u 10 % 0603
Technical Documentation
PAMS
Page 2– 74
Amendment 07/00
PAMS
NSE–5
Technical Documentation
C311 2320481 Ceramic cap. 5R 1 u 10 % 0603 C312 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C351 2320481 Ceramic cap. 5R 1 u 10 % 0603 C352 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C353 2320481 Ceramic cap. 5R 1 u 10 % 0603 C354 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C356 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C400 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C401 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C402 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C403 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C404 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C405 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C500 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C501 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C503 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C504 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C505 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C506 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C507 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C508 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C509 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C510 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C511 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C512 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C513 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C514 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C515 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C516 2320091 Ceramic cap. 2.2 n 5 % 50 V 0603 C518 2611691 Tantalum cap. 470 u 20 % 10 V 7.3x4.3x4.1 C519 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C520 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C521 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C522 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C523 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C524 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C525 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C526 2320091 Ceramic cap. 2.2 n 5 % 50 V 0603 C527 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C528 2310781 Ceramic cap. 220 n 10 % 16 V 0805 C529 2310781 Ceramic cap. 220 n 10 % 16 V 0805 C530 2310781 Ceramic cap. 220 n 10 % 16 V 0805
System Module
Amendment 07/00
Page 2– 75
NSE–5 System Module
C600 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C601 2320540 Ceramic cap. 15 p 5 % 50 V 0402 C602 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C603 2320540 Ceramic cap. 15 p 5 % 50 V 0402 C604 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C605 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C606 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C607 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C608 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C609 2320522 Ceramic cap. 2.7 p 0.25 % 50 V 0402 C610 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C611 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C612 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C613 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C614 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C615 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C616 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C617 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C618 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C619 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C621 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C622 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C623 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C624 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C625 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C626 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C627 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C628 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C629 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C630 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C631 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C632 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C633 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C634 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C635 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C636 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C637 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C638 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C639 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C640 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C641 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C642 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402
Technical Documentation
PAMS
Page 2– 76
Amendment 07/00
PAMS
NSE–5
Technical Documentation
C643 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C645 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C646 2320580 Ceramic cap. 680 p 5 % 50 V 0402 C647 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C700 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C701 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C702 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C703 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C704 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C705 2320572 Ceramic cap. 330 p 5 % 50 V 0402 C706 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C707 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C708 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C709 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C710 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C711 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C712 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C713 2320568 Ceramic cap. 220 p 5 % 50 V 0402 C714 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C715 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C716 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C717 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C718 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C719 2320568 Ceramic cap. 220 p 5 % 50 V 0402 C720 2320562 Ceramic cap. 120 p 5 % 50 V 0402 C721 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C722 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C723 2320550 Ceramic cap. 39 p 5 % 50 V 0402 C724 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C725 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C726 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C727 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C728 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C729 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C730 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C731 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C732 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C733 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C734 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C735 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C736 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C737 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805
System Module
Amendment 07/00
Page 2– 77
NSE–5 System Module
C738 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C739 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C740 2310209 Ceramic cap. 2.2 n 5 % 50 V 1206 C741 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C742 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C743 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C744 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C745 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C746 2320570 Ceramic cap. 270 p 5 % 50 V 0402 C747 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C748 2320091 Ceramic cap. 2.2 n 5 % 50 V 0603 C749 2320516 Ceramic cap. 1.5 p 0.25 % 50 V 0402 C750 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C751 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C752 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C753 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C754 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C755 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C756 2320620 Ceramic cap. 10 n 5 % 16 V 0402 L100 3203701 Ferrite bead 33r/100mhz 0805 L102 3203701 Ferrite bead 33r/100mhz 0805 L103 3203701 Ferrite bead 33r/100mhz 0805 L400 3203701 Ferrite bead 33r/100mhz 0805 L500 4551005 Dir.coupler 897.5+–17.5mhz 2x1.4 L501 3641521 Chip coil 6. Q n 5 % Q=50/250 MHz 0805 L502 3645185 Chip coil 10.Q n 5 % Q=12/100 MHz 0603 L503 4551007 Dir.coupler 1747.5+–37.5mhz 2x1.4 L504 3645167 Chip coil 2.–0 n Q=10/100M 0603 L505 3645121 Chip coil 6. Q n 5 % Q=32/800M 0603 L506 3645165 Chip coil 3. Q n 10 % Q=10/100 MHz 0603 L600 3643037 Chip coil 180 n 5 % Q=35/100 MHz 0805 L601 3643037 Chip coil 180 n 5 % Q=35/100 MHz 0805 L602 3645009 Chip coil 33 n 5 % Q=12/100 MHz 0603 L603 3645009 Chip coil 33 n 5 % Q=12/100 MHz 0603 L604 3645057 Chip coil 82 n 2 % Q=65/500 MHz 0805 L605 3645017 Chip coil 5. Q n 10 % Q=10/100 MHz 0603 L606 3645193 Chip coil 18.Q n 5 % Q=12/100 MHz 0603 L607 3645181 Chip coil 3. Q n 10 % Q=10/100 MHz 0603 L608 3645121 Chip coil 6. Q n 5 % Q=32/800M 0603 L609 3645229 Chip coil 120 n 5 % Q=32/150 MHz 0603 L610 3645229 Chip coil 120 n 5 % Q=32/150 MHz 0603 L611 3645001 Chip coil 4. Q n 10 % Q=10/100 MHz 0603
Technical Documentation
PAMS
Page 2– 78
Amendment 07/00
PAMS
NSE–5
Technical Documentation
L612 3645179 Chip coil 2.–0 n Q=8/100M 0603 L613 3645181 Chip coil 3. Q n 10 % Q=10/100 MHz 0603 L614 3645229 Chip coil 120 n 5 % Q=32/150 MHz 0603 L615 3645029 Chip coil 1. Q u 10 % Q=45/10 MHz 0805 L616 3646061 Chip coil 15.Q n 5 % Q=30/800 MHz 0402 L700 3645163 Chip coil 22.Q n 10 % Q=12/100 MHz 0603 L701 3645031 Chip coil 330 n 10 % Q=20/25 MHz 0805 L702 3641601 Chip coil 150 n 2 % Q=35/100 MHz 0805 L703 3641622 Chip coil 220 n 5 % Q=30/100 MHz 0805 L704 3641622 Chip coil 220 n 5 % Q=30/100 MHz 0805 L705 3645161 Chip coil 150 n 5 % Q=14/100 MHz 0603 L706 3641324 Chip coil 10 u 10 % Q=25/2.52 MHz 1008 L707 3645029 Chip coil 1. Q u 10 % Q=45/10 MHz 0805 L708 3641541 Chip coil 47.Q n 2 % Q=40/200 MHz 0805 L709 3645195 Chip coil 82.Q n 5 % Q=12/100 MHz 0603 B100 4510237 Crystal 32.768 k +–20PPM 12.5PF G700 4350149 Vco 1942–2067mhz 2.8v 10ma G701 4510217 VCTCXO 13.000 M +–5PPM 2.8V G702 4350155 Vco 464mhz 2.8v 7ma F100 5119019 SM, fuse f 1.5a 32v 0603 Z100 3640035 Filt z>450r/100m 0r7max 0.2a 0603 Z102 3640035 Filt z>450r/100m 0r7max 0.2a 0603 Z103 3640035 Filt z>450r/100m 0r7max 0.2a 0603 Z400 3640035 Filt z>450r/100m 0r7max 0.2a 0603 Z500 4512113 Dupl 890–915/935–960mhz 15.0x8.2 Z501 4550073 Cer filt 1842.5+–37.5mhz 4.3x3.8 Z502 4511087 Saw filter 1747.5+–37.5 M 3.8x3.8 Z503 4550071 Dipl 890–960/1710–1880mhz 3.2x2.5 Z504 4512097 Ant.sw+filt 1747.5/1842.5 4.9x3.2 Z505 4550071 Dipl 890–960/1710–1880mhz 3.2x2.5 Z600 4511049 Saw filter 947.5+–12.5 Z601 4511015 Saw filter 902.5+–12.5 Z602 4511103 Saw filter 1842.5+–37.5 Z603 4511087 Saw filter 1747.5+–37.5 Z700 4511109 Saw filter 71+–0.09 Z701 4510009 Cer.filt 13+–0.09mhz Z702 4511085 Saw filter 232+–0.5 T600 3640413 Transf balun 1.8ghz+/–100mhz 1206 V100 4113601 Emi filter emif01–5250sc5 sot23–5 V101 4113601 Emi filter emif01–5250sc5 sot23–5 V102 4113601 Emi filter emif01–5250sc5 sot23–5 V103 4210215 TransistorMMBT589pnp 30V 1A SOT23
System Module
Amendment 07/00
Page 2– 79
NSE–5 System Module
V104 4110067 Schottky diode MBR0520L 20V 0.5A V105 4110601 Diode FAST SOD323 V106 4113601 Emi filter emif01–5250sc5 sot23–5 V107 4113651 Trans. supr. QUAD 6V SOT23–5 V108 4108639 Diode x 2 BAS28 75V 250mA SOT143 V109 4200226 Darl. transistor BCV27 npn 30V 300mA SOT23 V110 4210100 TransistorBC848W npn 30V SOT323 V111 4210100 TransistorBC848W npn 30V SOT323 V112 4110601 Diode FAST SOD323 V113 4211621 MosFet SOT363 V350 4210052 TransistorDTC114EE npn RB V EM3 V351 4210102 TransistorBC858W pnp 30V 100mA 200MWSOT323 V400 4860005 Led Green 0603 V401 4860005 Led Green 0603 V402 4860005 Led Green 0603 V403 4860005 Led Green 0603 V404 4860005 Led Green 0603 V405 4860005 Led Green 0603 V406 4200836 TransistorBCX19 npn 50V 0.5A SOT23 V407 4100278 Diode x 2 BAV70 70 V 200 mA COMCAT.SOT23 V408 4200836 TransistorBCX19 npn 50 V 0..5A SOT23 V409 4200836 TransistorBCX19 npn 50 V 0.5A SOT23 V410 4110601 Diode FAST SOD323 V500 4110079 Sch. diode x 2 HSMS282C 15V SOT323 V701 4219908 Transistor x 2 SOT363 V702 4210100 TransistorBC848W npn 30V SOT323 D100 4340761 IC, MCU MC33464N SOT23–5 D300 4370489 Mad2pr1 v5 f721558 33C10 UBGA144UBGA144 D301 4340585 IC, flash mem. UBGA48 D302 4340681 IC, SRAM D303 4340585 IC, flash mem. UBGA48 D304 4340187 IC, 1xor 2input 1v sot3 TC7SL32FU SOT353 D305 4340187 IC, 1xor 2input 1v sot3 TC7SL32FU SOT353 D306 4340451 IC, 1xinv 1input 1v sot3 TC7SL04FU SOT353 D350 4340369 IC, dual bus buffer sso TC7W126FU SSOP8 D700 4340451 IC, 1xinv 1input 1v sot3 TC7SL04FU SOT353 N100 4370467 Ccont2i wfd163kg64t/8 lfbga8x8 N101 4370165 Chaps charger control so16 N200 4370575 Cobba_gjp v3.1 st7525bga bga64 N350 4860031 Tfdu4100 irda tx/rx>2.7v 115kbits N500 4350173 IC, pow.amp. 3.5 V N501 4350175 IC, pow.amp. 3.5 V
Technical Documentation
PAMS
Page 2– 80
Amendment 07/00
PAMS
NSE–5
Technical Documentation
N502 4340263 IC, RF amp. 21DB/900MHZ MM6 N503 4219941 Transistor x 2 US6 N600 437L176 Use code 4370483 N700 4370351 Summa v2 rx,tx,pll,pcontr. tqfp48 S416 5409077 SM, push button sw spst 15v 20ma X100 5409065 SM, sim card conn 2x3pol p2.54 X101 5469069 SM, batt conn 2pol spr p3.5 100v X102 5469069 SM, batt conn 2pol spr p3.5 100v X200 5469061 SM, system conn 6af+3dc+mic+jack X501 5429007 SM, coax conn m sw 50r 0.4–2ghz A600 9517025 Rx–tx shield assy dmc01305 A601 9517024 Pa shield assy dmc01304 pica A602 9510420 Filter shield dmd03521
9854270 PCB UG8 119.0X40.5X1.0 M4 4/PA
System Module
Amendment 07/00
Page 2– 81
NSE–5 System Module
Technical Documentation
System Module (O201180 UBG_8v22)
(EDMS V3.1) Item Code. Description Value/Type
R100 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R101 1825005 Chip varistor vwm14v vc30v 0805 R102 1419003 Chip resistor 0.22 5 % 1210 R103 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R104 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R105 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R106 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R107 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R108 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R109 1430115 Chip resistor 2.2 k 1 % 0.063 W 0402 R110 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R111 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R112 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R113 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R114 1430718 Chip resistor 47 5 % 0.063 W 0402 R115 1620025 Res network 0w06 2x100k j 0404 R116 1620031 Res network 0w06 2x1k0 j 0404 R117 1430826 Chip resistor 680 k 5 % 0.063 W 0402 R118 1430830 Chip resistor 1.0 M 5 % 0.063 W 0402 R119 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R120 1620017 Res network 0w06 2x100r j 0404 R121 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R122 1430830 Chip resistor 1.0 M 5 % 0.063 W 0402 R123 1620019 Res network 0w06 2x10k j 0404 R124 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R125 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R126 1430826 Chip resistor 680 k 5 % 0.063 W 0402 R129 1430810 Chip resistor 180 k 5 % 0.063 W 0402 R130 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R131 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R132 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R133 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R134 1430740 Chip resistor 330 5 % 0.063 W 0402 R135 1430830 Chip resistor 1.0 M 5 % 0.063 W 0402 R137 1430690 Chip jumper 0402 R138 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R139 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R140 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402
PAMS
Page 2– 82
Amendment 07/00
PAMS
NSE–5
Technical Documentation
R141 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R142 1411275 Chip resistor 3.9 5 % 0.063 W 0402 R144 1411275 Chip resistor 3.9 5 % 0.063 W 0402 R145 1620105 Res network 0w06 2x2k2 j 0404 R147 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R148 1430690 Chip jumper 0402 R150 1430726 Chip resistor 100 5 % 0.063 W 0402 R151 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R200 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R201 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R300 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R302 1430700 Chip resistor 10 5 % 0.063 W 0402 R304 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R306 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R350 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R351 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R352 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R353 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R354 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R355 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R357 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R358 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R400 1430748 Chip resistor 680 5 % 0.063 W 0402 R401 1430748 Chip resistor 680 5 % 0.063 W 0402 R402 1430714 Chip resistor 33 5 % 0.063 W 0402 R403 1430748 Chip resistor 680 5 % 0.063 W 0402 R404 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R405 1430714 Chip resistor 33 5 % 0.063 W 0402 R406 1430714 Chip resistor 33 5 % 0.063 W 0402 R407 1430730 Chip resistor 150 5 % 0.063 W 0402 R408 1430730 Chip resistor 150 5 % 0.063 W 0402 R409 1430744 Chip resistor 470 5 % 0.063 W 0402 R410 1430744 Chip resistor 470 5 % 0.063 W 0402 R411 1430730 Chip resistor 150 5 % 0.063 W 0402 R412 1430744 Chip resistor 470 5 % 0.063 W 0402 R413 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R414 1430714 Chip resistor 33 5 % 0.063 W 0402 R415 1430700 Chip resistor 10 5 % 0.063 W 0402 R416 1430700 Chip resistor 10 5 % 0.063 W 0402 R500 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R501 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R502 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402
System Module
Amendment 07/00
Page 2– 83
NSE–5 System Module
R503 1430734 Chip resistor 220 5 % 0.063 W 0402 R504 1430710 Chip resistor 22 5 % 0.063 W 0402 R505 1430734 Chip resistor 220 5 % 0.063 W 0402 R506 1430726 Chip resistor 100 5 % 0.063 W 0402 R507 1430718 Chip resistor 47 5 % 0.063 W 0402 R508 1430718 Chip resistor 47 5 % 0.063 W 0402 R509 1430726 Chip resistor 100 5 % 0.063 W 0402 R510 1430700 Chip resistor 10 5 % 0.063 W 0402 R511 1430744 Chip resistor 470 5 % 0.063 W 0402 R512 1430744 Chip resistor 470 5 % 0.063 W 0402 R513 1430744 Chip resistor 470 5 % 0.063 W 0402 R514 1430700 Chip resistor 10 5 % 0.063 W 0402 R515 1430744 Chip resistor 470 5 % 0.063 W 0402 R516 1430726 Chip resistor 100 5 % 0.063 W 0402 R601 1430700 Chip resistor 10 5 % 0.063 W 0402 R602 1430728 Chip resistor 120 5 % 0.063 W 0402 R603 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R604 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R605 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R606 1430832 Chip resistor 2.7 k 5 % 0.063 W 0402 R607 1430738 Chip resistor 270 5 % 0.063 W 0402 R608 1430722 Chip resistor 68 5 % 0.063 W 0402 R609 1430700 Chip resistor 10 5 % 0.063 W 0402 R610 1430700 Chip resistor 10 5 % 0.063 W 0402 R611 1430746 Chip resistor 560 5 % 0.063 W 0402 R612 1430746 Chip resistor 560 5 % 0.063 W 0402 R614 1430690 Chip jumper 0402 R619 1430710 Chip resistor 22 5 % 0.063 W 0402 R700 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R701 1430744 Chip resistor 470 5 % 0.063 W 0402 R702 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R703 1430734 Chip resistor 220 5 % 0.063 W 0402 R704 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R705 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R706 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R707 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R708 1620019 Res network 0w06 2x10k j 0404 R709 1430710 Chip resistor 22 5 % 0.063 W 0402 R710 1620019 Res network 0w06 2x10k j 0404 R711 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R712 1430726 Chip resistor 100 5 % 0.063 W 0402 R713 1430710 Chip resistor 22 5 % 0.063 W 0402
Technical Documentation
PAMS
Page 2– 84
Amendment 07/00
PAMS
NSE–5
Technical Documentation
R714 1620019 Res network 0w06 2x10k j 0404 R715 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R716 1430740 Chip resistor 330 5 % 0.063 W 0402 R717 1430734 Chip resistor 220 5 % 0.063 W 0402 R718 1430734 Chip resistor 220 5 % 0.063 W 0402 R719 1430724 Chip resistor 82 5 % 0.063 W 0402 R721 1430734 Chip resistor 220 5 % 0.063 W 0402 R722 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R723 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R724 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R725 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R726 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R727 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R728 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R729 1430790 Chip resistor 27 k 5 % 0.063 W 0402 R730 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R731 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R732 1620103 Res network 0w06 2x22r j 0404 R733 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R735 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R736 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R737 1430742 Chip resistor 390 5 % 0.063 W 0402 R738 1430746 Chip resistor 560 5 % 0.063 W 0402 R739 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R740 1430792 Chip resistor 33 k 5 % 0.063 W 0402 C100 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C101 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C102 2320481 Ceramic cap. 5R 1 u 10 % 0603 C103 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C104 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C105 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C106 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C107 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C108 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C109 2320481 Ceramic cap. 5R 1 u 10 % 0603 C110 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C112 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C113 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C114 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C115 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C116 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C117 2320783 Ceramic cap. 33 n 10 % 10 V 0402
System Module
Amendment 07/00
Page 2– 85
NSE–5 System Module
C118 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C119 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C120 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C121 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C122 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C123 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C124 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C125 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C126 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C127 2610031 Tantalum cap. 10 u 20 % 10 V (2610003)A C128 2310793 Ceramic cap. 2.2 u 10 % 10 V 0805 C129 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C130 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C131 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C132 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C133 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C134 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C135 2320481 Ceramic cap. 5R 1 u 10 % 0603 C136 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C137 2320481 Ceramic cap. 5R 1 u 10 % 0603 C138 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C139 2610207 Tantalum cap. 10 u 20 % 2.0x1.3x1.2 C140 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C141 2320481 Ceramic cap. 5R 1 u 10 % 0603 C142 2610207 Tantalum cap. 10 u 20 % 2.0x1.3x1.2 C143 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C144 2312411 Ceramic cap. 1.0 u 20 % 25 V 1206 C145 2610207 Tantalum cap. 10 u 20 % 2.0x1.3x1.2 C146 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C147 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C148 2610207 Tantalum cap. 10 u 20 % 2.0x1.3x1.2 C149 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C150 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C151 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C152 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C153 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C154 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C155 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C156 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C157 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C158 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C159 2320783 Ceramic cap. 33 n 10 % 10 V 0402
Technical Documentation
PAMS
Page 2– 86
Amendment 07/00
PAMS
NSE–5
Technical Documentation
C160 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C161 2610207 Tantalum cap. 10 u 20 % 2.0x1.3x1.2 C162 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C163 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C164 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C165 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C166 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C167 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C168 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C169 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C170 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C171 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C172 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C173 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C174 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C175 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C176 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C177 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C178 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C179 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C180 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C181 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C182 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C200 2320783 Ceramic cap. 33 n 10 % 10 V 0402 C201 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C202 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C203 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C204 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C205 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C206 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C300 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C301 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C302 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C303 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C304 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C306 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C307 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C308 2320481 Ceramic cap. 5R 1 u 10 % 0603 C309 2320481 Ceramic cap. 5R 1 u 10 % 0603 C310 2320481 Ceramic cap. 5R 1 u 10 % 0603 C311 2320481 Ceramic cap. 5R 1 u 10 % 0603 C312 2320805 Ceramic cap. 100 n 10 % 10 V 0402
System Module
Amendment 07/00
Page 2– 87
NSE–5 System Module
C351 2320481 Ceramic cap. 5R 1 u 10 % 0603 C352 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C354 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C356 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C400 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C401 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C402 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C403 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C404 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C405 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C500 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C501 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C503 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C504 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C505 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C506 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C507 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C508 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C509 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C510 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C511 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C512 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C513 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C514 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C515 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C516 2320091 Ceramic cap. 2.2 n 5 % 50 V 0603 C518 2611751 Tantalum cap. 470 u 20 % 10 V 7.3x4.3x4.1 C519 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C520 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C521 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C522 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C523 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C524 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C525 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C526 2320091 Ceramic cap. 2.2 n 5 % 50 V 0603 C527 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C528 2310781 Ceramic cap. 220 n 10 % 16 V 0805 C529 2310781 Ceramic cap. 220 n 10 % 16 V 0805 C530 2310781 Ceramic cap. 220 n 10 % 16 V 0805 C600 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C601 2320540 Ceramic cap. 15 p 5 % 50 V 0402 C602 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402
Technical Documentation
PAMS
Page 2– 88
Amendment 07/00
PAMS
NSE–5
Technical Documentation
C603 2320540 Ceramic cap. 15 p 5 % 50 V 0402 C604 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C605 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C606 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C607 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C608 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C609 2320522 Ceramic cap. 2.7 p 0.25 % 50 V 0402 C610 2320516 Ceramic cap. 1.5 p 0.25 % 50 V 0402 C611 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C612 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C613 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C614 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C615 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C616 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C617 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C618 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C619 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C621 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C622 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C623 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C624 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C625 2320805 Ceramic cap. 100 n 10 % 10 V 0402 C626 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C627 2320516 Ceramic cap. 1.5 p 0.25 % 50 V 0402 C628 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C629 2320516 Ceramic cap. 1.5 p 0.25 % 50 V 0402 C631 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C632 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C633 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C634 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C635 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C636 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C637 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C638 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C639 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C640 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C641 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C642 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C643 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C645 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C646 2320580 Ceramic cap. 680 p 5 % 50 V 0402 C647 2320620 Ceramic cap. 10 n 5 % 16 V 0402
System Module
Amendment 07/00
Page 2– 89
NSE–5 System Module
C700 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C701 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C702 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C703 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C704 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C705 2320572 Ceramic cap. 330 p 5 % 50 V 0402 C706 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C707 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C708 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C709 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C710 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C711 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C712 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C713 2320568 Ceramic cap. 220 p 5 % 50 V 0402 C714 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C715 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C716 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C717 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C718 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C719 2320568 Ceramic cap. 220 p 5 % 50 V 0402 C720 2320562 Ceramic cap. 120 p 5 % 50 V 0402 C721 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C722 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C723 2320550 Ceramic cap. 39 p 5 % 50 V 0402 C724 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C725 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C726 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C727 2320538 Ceramic cap. 12 p 5 % 50 V 0402 C728 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C729 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C730 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C731 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C732 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C733 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C734 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C735 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C736 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C737 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C738 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C739 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C740 2310209 Ceramic cap. 2.2 n 5 % 50 V 1206 C741 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402
Technical Documentation
PAMS
Page 2– 90
Amendment 07/00
PAMS
NSE–5
Technical Documentation
C742 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C743 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C744 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C745 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C746 2320570 Ceramic cap. 270 p 5 % 50 V 0402 C747 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C748 2320091 Ceramic cap. 2.2 n 5 % 50 V 0603 C749 2320516 Ceramic cap. 1.5 p 0.25 % 50 V 0402 C750 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C751 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C752 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C753 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C754 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C755 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C756 2320620 Ceramic cap. 10 n 5 % 16 V 0402 L100 3203705 Ferrite bead 0.015r 42r/100m 0805 L102 3203705 Ferrite bead 0.015r 42r/100m 0805 L103 3203705 Ferrite bead 0.015r 42r/100m 0805 L300 3203709 Ferrite bead 0.5r 120r/100m 0402 L400 3203705 Ferrite bead 0.015r 42r/100m 0805 L500 4551005 Dir.coupler 897.5+–17.5mhz 2x1.4 L501 3641521 Chip coil 6. Q n 5 % Q=50/250 MHz 0805 L502 3645185 Chip coil 10.Q n 5 % Q=12/100 MHz 0603 L503 4551007 Dir.coupler 1747.5+–37.5mhz 2x1.4 L504 3645167 Chip coil 2.–0 n Q=10/100M 0603 L505 3645121 Chip coil 6. Q n 5 % Q=32/800M 0603 L506 3645165 Chip coil 3. Q n 10 % Q=10/100 MHz 0603 L600 3643037 Chip coil 180 n 5 % Q=35/100 MHz 0805 L601 3643037 Chip coil 180 n 5 % Q=35/100 MHz 0805 L602 3645009 Chip coil 33 n 5 % Q=12/100 MHz 0603 L603 3645009 Chip coil 33 n 5 % Q=12/100 MHz 0603 L604 3645035 Chip coil 47.Q n 5 % Q=12/100 MHz 0603 L605 3645017 Chip coil 5. Q n 10 % Q=10/100 MHz 0603 L606 3645193 Chip coil 18.Q n 5 % Q=12/100 MHz 0603 L607 3645181 Chip coil 3. Q n 10 % Q=10/100 MHz 0603 L608 3645121 Chip coil 6. Q n 5 % Q=32/800M 0603 L609 3645151 Chip coil 100 n 5 % Q=3/800M 0603 L610 3645151 Chip coil 100 n 5 % Q=3/800M 0603 L611 3645001 Chip coil 4. Q n 10 % Q=10/100 MHz 0603 L612 3645179 Chip coil 2.–0 n Q=8/100M 0603 L613 3645181 Chip coil 3. Q n 10 % Q=10/100 MHz 0603 L614 3645229 Chip coil 120 n 5 % Q=32/150 MHz 0603
System Module
Amendment 07/00
Page 2– 91
NSE–5 System Module
L615 3645029 Chip coil 1. Q u 10 % Q=45/10 MHz 0805 L616 3646061 Chip coil 15.Q n 5 % Q=30/800 MHz 0402 L617 3645121 Chip coil 6. Q n 5 % Q=32/800M 0603 L618 3645035 Chip coil 47.Q n 5 % Q=12/100 MHz 0603 L700 3645163 Chip coil 22.Q n 10 % Q=12/100 MHz 0603 L701 3645031 Chip coil 330 n 10 % Q=20/25 MHz 0805 L702 3641601 Chip coil 150 n 2 % Q=35/100 MHz 0805 L703 3641622 Chip coil 220 n 5 % Q=30/100 MHz 0805 L704 3641622 Chip coil 220 n 5 % Q=30/100 MHz 0805 L705 3645161 Chip coil 150 n 5 % Q=14/100 MHz 0603 L706 3641324 Chip coil 10 u 10 % Q=25/2.52 MHz 1008 L707 3645029 Chip coil 1. Q u 10 % Q=45/10 MHz 0805 L708 3641541 Chip coil 47.Q n 2 % Q=40/200 MHz 0805 L709 3645195 Chip coil 82.Q n 5 % Q=12/100 MHz 0603 B100 4510237 Crystal 32.768 k +–20PPM 12.5PF G700 4350225 Vco 1942–2067mhz 2.8v 10ma G701 4510217 VCTCXO 13.000 M +–5PPM 2.8V G702 4350155 Vco 464mhz 2.8v 7ma F100 5119019 SM, fuse f 1.5a 32v 0603 Z100 3640035 Filt z>450r/100m 0r7max 0.2a 0603 Z101 3640035 Filt z>450r/100m 0r7max 0.2a 0603 Z102 3640035 Filt z>450r/100m 0r7max 0.2a 0603 Z103 3640035 Filt z>450r/100m 0r7max 0.2a 0603 Z104 3640035 Filt z>450r/100m 0r7max 0.2a 0603 Z500 4512113 Dupl 890–915/935–960mhz 15.0x8.2 Z501 4550073 Cer filt 1842.5+–37.5mhz 4.3x3.8 Z502 4511087 Saw filter 1747.5+–37.5M 3.8x3.8 Z503 4550071 Dipl 890–960/1710–1880mhz 3.2x2.5 Z504 4512097 Ant.sw+filt 1747.5/1842.5 4.9x3.2 Z505 4550071 Dipl 890–960/1710–1880mhz 3.2x2.5 Z600 4511049 Saw filter 947.5+–12.5M Z601 4511015 Saw filter 902.5+–12.5M Z602 4511103 Saw filter 1842.5+–37.5M Z603 4511087 Saw filter 1747.5+–37.5M Z700 4511109 Saw filter 71+–0.09M Z701 4510009 Cer.filt 13+–0.09mhz Z702 4511085 Saw filter 232+–0.5 M/3DB T600 3640413 Transf balun 1.8ghz+/–100mhz 1206 V100 4113601 Emi filter emif01–5250sc5 sot23–5 V101 4113611 Emifilt/tvs emif01–10005w5 sot353 V102 4113611 Emifilt/tvs emif01–10005w5 sot353 V103 4210215 TransistorMMBT589 pnp 30V 1A
Technical Documentation
PAMS
Page 2– 92
Amendment 07/00
PAMS
NSE–5
Technical Documentation
V104 4110067 Schottky diode MBR0520L 20v 0.5A SOD123 V105 4110601 Diode FAST SOD323 V106 4113601 Emi filter emif01–5250sc5 sot23–5 V107 4113651 Trans. supr. QUAD 6V SOT23–5 V108 4108639 Diode x 2 BAS28 75V 250mA SOT143 V109 4200226 Darl. transistor BCV27 npn 30V 300mA SOT23 V110 4210100 TransistorBC848W npn 30V SOT323 V111 4210121 Transistor SOT323 V112 4110601 Diode FAST SOD323 V113 4211621 MosFet SOT363 V350 4210052 TransistorDTC114EE npn RBV EM3 V351 4210102 TransistorBC858W pnp 30V 100mA 200MW SOT323 V400 4860005 Led Green 0603 V401 4860005 Led Green 0603 V402 4860005 Led Green 0603 V403 4860005 Led Green 0603 V404 4860005 Led Green 0603 V405 4860005 Led Green 0603 V406 4200836 TransistorBCX19 npn 50V 0.5A SOT23 V407 4100278 Diode x 2 BAV70 70V 200mA COMCAT.SOT23 V408 4200836 TransistorBCX19 npn 50V 0.5A SOT23 V409 4200836 TransistorBCX19 npn 50V 0.5A SOT23 V410 4110601 Diode FAST SOD323 V500 4110079 Sch. diode x 2 HSMS282C 15V SOT323 V701 4219908 Transistor x 2 SOT363 V702 4210100 TransistorBC848W npn 30V SOT323 D100 4340761 IC, MCU MC33464N SOT23–5 D300 4370591 Mad2pr1 v9 f731723 c07 ubga144 D301 4340585 IC, flash mem. UBGA48 D302 4340681 IC, SRAM D303 4340585 IC, flash mem. UBGA48 D304 4340187 IC, 1xor 2input 1v sot3 TC7SL32FU SOT353 D305 4340187 IC, 1xor 2input 1v sot3 TC7SL32FU SOT353 D306 4340451 IC, 1xinv 1input 1v sot3 TC7SL04FU SOT353 D350 4340369 IC, dual bus buffer sso TC7W126FU SSOP8 D700 4340451 IC, 1xinv 1input 1v sot3 TC7SL04FU SOT353 N100 4370467 Ccont2i wfd163kg64t/8 lfbga8x8 N101 4370165 Chaps uba2006t/n2/118 so16 N200 4370643 Cobba_gjp v4.1 v257bg64t/8 bga64 N350 4860031 Tfdu4100 irda tx/rx>2.7v 115kbits N500 4350173 IC, pow.amp. 3.5 V N501 4350175 IC, pow.amp. 3.5 V
System Module
Amendment 07/00
Page 2– 93
NSE–5 System Module
N502 4340263 IC, RF amp. 21DB/900MHZ MM6 N503 4219941 Transistor x 2US6 N600 4370483 Crfu3 rf asic gsm/pcn d1 tqfp–48 N700 4370351 Summa v2 wfd167ct48t tqfp48 S416 5409077 SM, push button sw spst 15v 20ma X100 5409065 SM, sim card conn 2x3pol p2.54 X101 5469069 SM, batt conn 2pol spr p3.5 100v X102 5469069 SM, batt conn 2pol spr p3.5 100v X200 5469061 SM, system conn 6af+3dc+mic+jack X501 5429007 SM, coax conn m sw 50r 0.4–2ghz A600 9517056 Rx–tx shield assy A601 9517024 Pa shield assy A602 9510420 Filter shield
7511017 Csp underfill ohmcoat 1572 50g 9854270 PCB UG8
Technical Documentation
PAMS
Page 2– 94
Amendment 07/00
Loading...