NEC uPD75P3116 User Manual

DATA SHEET
MOS INTEGRATED CIRCUIT
µ
PD75P3116
4-BIT SINGLE-CHIP MICROCONTROLLER
The µPD75P3116 replaces the µPD753108’s internal mask ROM with a one-time PROM, and features expanded
ROM capacity.
µ
Because the
development stage using the
Detailed information about functions is provided in the following User’s Manual. Be sure to read it before
designing:
µ
PD753104, 753106, or 753108, and for use in small-scale production.
µ
PD753108 User’s Manual: U10890E

FEATURES

Compatible with µPD753108
Memory capacity:
• PROM: 16384 × 8 bits
• RAM: 512 × 4 bits
Can be operated in same power supply voltage range as the mask version µPD753108
• VDD = 1.8 to 5.5 V
On-chip LCD controller/driver
QTOPTM microcontroller
Remark QTOP microcontrollers are microcontrollers with on-chip one-time PROM that are totally supported by NEC.
This support includes writing application programs, marking, screening, and verification.

ORDERING INFORMATION

Part Number Package
µ
PD75P3116GC-AB8 64-pin plastic QFP (14 × 14)
µ
PD75P3116GK-8A8 64-pin plastic LQFP (12 × 12)
µ
PD75P3116GC-8BS 64-pin plastic LQFP (14 × 14)
Caution This device does not provide an internal pull-up resistor connection function by means of mask
option.
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
Document No. U11369EJ3V0DS00 (3rd edition) Date Published March 2002 N CP(K) Printed in Japan
The mark shows major revised points.
1994
µ
PD75P3116

FUNCTION OUTLINE

Item Function
Instruction execution time • 0.95, 1.91, 3.81, or 15.3 µs (main system clock: @ 4.19 MHz)
• 0.67, 1.33, 2.67, or 10.7 µs (main system clock: @ 6.0 MHz)
• 122 µs (subsystem clock: @ 32.768 kHz)
Internal memory PROM 16384 × 8 bits
RAM 512 × 4 bits
General-purpose registers • 4-bit manipulation: 8 × 4 banks
• 8-bit manipulation: 4 × 4 banks
I/O ports CMOS input 8 Internal pull-up resistor connection can be specified by software setting: 7
CMOS I/O 20
N-ch open-drain I/O 4 13 V withstanding voltage Total 32
LCD controller/driver • Segment number selection: 16/20/24 segments (switchable to CMOS I/O ports
Timers 5 channels: • 8-bit timer/event counter: 3 channels
Serial interface • 3-wire serial I/O mode ··· MSB/LSB first switchable
Bit sequential buffer (BSB) 16 bits Clock output (PCL) Φ, 524, 262, and 65.5 kHz (main system clock: @ 4.19 MHz)
Buzzer output (BUZ) • 2, 4, and 32 kHz (
Vectored interrupts • External: 3
Test inputs • External: 1
System clock oscillator • Ceramic/crystal oscillator for main system clock
Standby function STOP/HALT mode Power supply voltage VDD = 1.8 to 5.5 V Package • 64-pin plastic QFP (14 × 14)
Internal pull-up resistor connection can be specified by software setting: 12 Shared with segment pins: 8
in a batch of 4 pins, max. 8 pins)
• Display mode selection: Static, 1/2 duty (1/2 bias), 1/3 duty (1/2 bias), 1/3 duty (1/3 bias), 1/4 duty (1/3 bias)
(Can be used as 16-bit timer/event counter, carrier generator,
and timer with gate)
• Basic interval timer/watchdog timer: 1 channel
• Watch timer: 1 channel
• 2-wire serial I/O mode
• SBI mode
Φ, 750, 375, and 93.8 kHz (main system clock: @ 6.0 MHz)
main system clock: @ 4.19 MHz or subsystem clock: @ 32.768 kHz
• 2.93, 5.86, 46.9 kHz (main system clock: @ 6.0 MHz)
• Internal: 5
• Internal: 1
• Crystal oscillator for subsystem clock
• 64-pin plastic LQFP (12 × 12)
• 64-pin plastic LQFP (14 × 14)
)
2
Data Sheet U11369EJ3V0DS
µ
PD75P3116
CONTENTS
1. PIN CONFIGURATION (TOP VIEW)................................................................................................. 4
2. BLOCK DIAGRAM ............................................................................................................................ 6
3. PIN FUNCTIONS ............................................................................................................................... 7
3.1 Port Pins ................................................................................................................................................... 7
3.2 Non-Port Pins ........................................................................................................................................... 9
3.3 Pin I/O Circuits ......................................................................................................................................... 11
3.4 Recommended Connection of Unused Pins ......................................................................................... 13
4. Mk I AND Mk II MODE SELECTION FUNCTION ............................................................................. 14
4.1 Differences Between Mk I Mode and Mk II Mode................................................................................... 14
4.2 Setting of Stack Bank Selection (SBS) Register ................................................................................... 15
5. DIFFERENCES BETWEEN µPD75P3116 AND µPD753104, 753106, 753108 ............................... 16
6. MEMORY CONFIGURATION ........................................................................................................... 17
7. INSTRUCTION SET .......................................................................................................................... 19
8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY ................................................... 28
8.1 Operation Modes for Program Memory Write/Verify ............................................................................ 28
8.2 Program Memory Write Procedure......................................................................................................... 29
8.3 Program Memory Read Procedure ......................................................................................................... 30
8.4 One-Time PROM Screening .................................................................................................................... 31
9. ELECTRICAL SPECIFICATIONS .....................................................................................................32
10. CHARACTERISTIC CURVES (REFERENCE VALUES).................................................................. 47
11. PACKAGE DRAWINGS ................................................................................................................... 49
12. RECOMMENDED SOLDERING CONDITIONS ................................................................................ 52
APPENDIX A. LIST OF µPD75308B, 753108, AND 75P3116 FUNCTIONS......................................... 54
APPENDIX B. DEVELOPMENT TOOLS................................................................................................ 56
APPENDIX C. RELATED DOCUMENTS ............................................................................................... 65
Data Sheet U11369EJ3V0DS
3

1. PIN CONFIGURATION (TOP VIEW)

• 64-pin plastic QFP (14 × 14):µPD75P3116GC-AB8
µ
• 64-pin plastic LQFP (12 × 12):
• 64-pin plastic LQFP (14 × 14):
PD75P3116GK-8A8
µ
PD75P3116GC-8BS
COM363COM262COM161COM060S059S158S257S356S455S554S653S752S851S950S1049S11
µ
PD75P3116
BIAS
LC0
V
LC1
V
LC2
V
P30/LCDCL/MD0
P31/SYNC/MD1
P32/MD2 P33/MD3
Vss P50/D4 P51/D5 P52/D6 P53/D7
P60/KR0/D0 P61/KR1/D1 P62/KR2/D2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Note Always connect the V
64
17
18
19
21
22X123X224
25
26
27
28
29
Note
VPP
VDD
P00/INT4
P01/SCK
P03/SI/SB1
P02/SO/SB0
XT120XT2
RESET
P63/KR3/D3
PP pin directly to VDD during normal operation.
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
30
31
32
P13/TI0
P10/INT0
P11/INT1
P12/INT2/TI1/TI2
S12 S13 S14 S15 P93/S16 P92/S17 P91/S18 P90/S19 P83/S20 P82/S21 P81/S22 P80/S23 P23/BUZ P22/PCL/PTO2 P21/PTO1 P20/PTO0
4
Data Sheet U11369EJ3V0DS
µ
PD75P3116
PIN IDENTIFICATIONS
P00 to P03: Port 0 COM0 to COM3: Common output 0 to 3 P10 to P13: Port 1 V P20 to P23: Port 2 BIAS: LCD power supply bias control P30 to P33: Port 3 LCDCL: LCD clock P50 to P53: Port 5 SYNC: LCD synchronization P60 to P63: Port 6 TI0 to TI2: Timer input 0 to 2 P80 to P83: Port 8 PTO0 to PTO2: Programmable timer output 0 to 2 P90 to P93: Port 9 BUZ: Buzzer clock KR0 to KR3: Key return 0 to 3 PCL: Programmable clock SCK: Serial clock INT0, 1, 4: External vectored interrupt 0, 1, 4 SI: Serial input INT2: External test input 2 SO: Serial output X1, X2: Main system clock oscillation 1, 2 SB0, SB1: Serial data bus 0, 1 XT1, XT2: Subsystem clock oscillation 1, 2 RESET: Reset V MD0 to MD3: Mode selection 0 to 3 V D0 to D7: Data bus 0 to 7 Vss: Ground S0 to S23: Segment output 0 to 23
LC0 to VLC2: LCD power supply 0 to 2
PP: Programming power supply DD: Positive power supply
Data Sheet U11369EJ3V0DS
5

2. BLOCK DIAGRAM

µ
PD75P3116
BUZ/P23
PTO0/P20
TI1/TI2/
P12/INT2
PTO1/P21
PTO2/
PCL/P22
TOUT0
SI/SB1/P03
SO/SB0/P02
SCK/P01
INT0/P10 INT1/P11 INT4/P00
INT2/P12/TI1/TI2
P60/KR0 to P63/KR3
TI0/P13
timer/event counter #1
timer/event counter #2
INTT1
8-bit
8-bit
INTT2
4
Watch timer
INTW f
Basic interval timer/ watchdog timer
INTBT
8-bit timer/event counter #0
INTT0 TOUT0
Cascaded 16-bit timer/ event counter
Clocked serial interface
INTCSI
INT1
Interrupt control
Bit sequential buffer (16)
LCD
TOUT0
Program
counter (14)
Program
memory (PROM)
16384 × 8 bits
Clock
output
control
PCL/PTO2/P22
fx/2
Clock
divider
Decode
control
N
System clock generator
Main Sub
X2X1 XT2XT1
ALU
and
CPU clock Φ
CY
General-
512 × 4 bits
Standby
control
SP (8)
SBS
Bank
purpose
register
Data
memory
(RAM)
V
DD
Port 0
Port 1
Port 2
Port 3
Port 5
Port 6
Port 8
Port 9 P90 to P93
f
LCD
V
PP
RESETVss
4
4
4
4
4
4
4
4
4
4
LCD
controller/driver
P00 to P03
P10 to P13
P20 to P23
P30/MD0 to P33/MD3
P50/D4 to P53/D7
P60/D0 to P63/D3
P80 to P83
S0 to S1516
S16/P93 to S19/P90
S20/P83 to S23/P80
COM0 to COM34 BIAS
V
LC0
V
LC1
V
LC2
SYNC/P31 LCDCL/P30
6
Data Sheet U11369EJ3V0DS

3. PIN FUNCTIONS

3.1 Port Pins (1/2)
µ
PD75P3116
Pin Name I/O Alternate Function 8-Bit Status I/O Circuit
Function I/O After Reset Type
P00 Input INT4 4-bit input port (Port 0) Input <B>
Connection of an internal pull-up resistor can be
P01 SCK specified by a software setting in 3-bit units. <F>-A
P02 SO/SB0 <F>-B
P03 SI/SB1 <M>-C
P10 Input INT0 4-bit input port (Port 1) Input <B>-C
Connection of an internal pull-up resistor can be
P11 INT1 specified by a software setting in 4-bit units.
P10/INT0 can be used to select a noise eliminator.
P12 TI1/TI2/INT2
P13 TI0
P20 I/O PTO0 4-bit I/O port (Port 2) Input E-B
Connection of an internal pull-up resistor can be
P21 PTO1 specified by a software setting in 4-bit units.
P22 PCL/PTO2
P23 BUZ
P30 I/O LCDCL/MD0 Programmable 4-bit I/O port (Port 3) Input E-B
Input and output can be specified in 1-bit units.
P31 SYNC/MD1 Connection of an internal pull-up resistor can be
specified by a software setting in 4-bit units.
P32 MD2
Note 1
P33 MD3
Note 2
P50
P51
P52
P53
Note 2
Note 2
Note 2
I/O D4 N-ch open-drain 4-bit I/O port (Port 5) High M-E
When set to open-drain, the withstanding voltage impedance
D5 is 13 V.
D6
D7
Notes 1. Circuit types enclosed in angle brackets indicate Schmitt-triggered input.
2. The low-level input leakage current increases when input instructions or bit manipulation instructions are
executed.
Data Sheet U11369EJ3V0DS
7
3.1 Port Pins (2/2)
µ
PD75P3116
Pin Name I/O Alternate Function 8-Bit Status I/O Circuit
P60 I/O KR0/D0 Programmable 4-bit I/O port (Port 6) Input <F>-A
P61 KR1/D1 Connection of an internal pull-up resistor can be
P62 KR2/D2
P63 KR3/D3
P80 I/O S23 4-bit I/O port (Port 8) Input H
P81 S22 specified by a software setting in 4-bit units
P82 S21
P83 S20
P90 I/O S19 Programmable 4-bit I/O port (Port 9) Input H
P91 S18 specified by a software setting in 4-bit units
P92 S17
P93 S16
Function I/O After Reset Type
Input and output can be specified in 1-bit units.
specified by a software setting in 4-bit units.
Connection of an internal pull-up resistor can be
Connection of an internal pull-up resistor can be
Note 2
Note 2
.
.
Notes 1. Circuit types enclosed in angle brackets indicate Schmitt-triggered input.
2. Do not connect an internal pull-up resistor by software when these pins are used as segment signal outputs.
Note 1
8
Data Sheet U11369EJ3V0DS
3.2 Non-Port Pins (1/2)
µ
PD75P3116
Pin Name I/O Alternate Function Status I/O Circuit
Function After Reset Type TI0 Input P13 External event pulse input to timer/event counter Input <B>-C TI1 P12/INT2/TI2 TI2 P12/INT2/TI1 PTO0 Output P20 Timer/event counter output Input E-B PTO1 P21 PTO2 P22/PCL PCL P22/PTO2 Clock output BUZ P23 Frequency output (for buzzer or system clock trimming) SCK I/O P01 Serial clock I/O Input <F>-A SO/SB0 P02 Serial data output <F>-B
Serial data bus I/O
SI/SB1 P03 Serial data input <M>-C
Serial data bus I/O
INT4 Input P00 Edge detection vectored interrupt input <B>
(valid for detecting both rising and falling edges)
INT0 Input P10 Edge detection vectored interrupt
input (detection edge is selectable) asynchronous is
INT0/P10 can be used to select a selectable INT1 P11 INT2 Input P12/TI1/TI2 Rising edge detection testable input Asynchronous KR0 to KR3 I/O P60 to P63 Parallel falling edge detection testable input Input <F>-A X1 Input Ceramic/crystal resonator connection for main system
X2 — XT1 Input Crystal resonator connection for subsystem clock oscillation.
XT2
RESET Input System reset input (low-level active) <B> MD0 to MD3 Input P30 to P33 Mode selection for program memory (PROM) write/verify Input E-B D0 to D3 I/O D4 to D7 P50 to P53 M-E
Note 2
VPP
VDD Positive power supply — Vss Ground potential
P60/KR0 to P63/KR3
Programmable power supply voltage applied for program
noise eliminator.
clock oscillation. If using an external clock, input the signal
to X1 and input the inverted signal to X2.
If using an external clock, input the signal to XT1 and input
the inverted signal to XT2. XT1 can be used as a 1-bit (test)
input.
Data bus for program memory (PROM) write/verify Input <F>-A
memory (PROM) write/verify.
During normal operation, connect directly to VDD.
Apply +12.5 V for PROM write/verify.
With noise eliminator/
Asynchronous
Input <B>-C
Note 1
Notes 1. Circuit types enclosed in angle brackets indicate Schmitt-triggered input.
2. The V
PP pin does not operate correctly when it is not connected to the VDD pin during normal operation.
Data Sheet U11369EJ3V0DS
9
µ
PD75P3116
3.2 Non-Port Pins (2/2)
Pin Name I/O Alternate Function Status I/O Circuit
Function After Reset Type S0 to S15 S16 to S19 S20 to S23 COM0 to COM3 VLC0 to VLC2 Power supply for driving LCD — BIAS Output Output for external split resistor cut Note 2
Note 3
LCDCL
Note 3
SYNC
Output Segment signal output Note 1 G-A Output P93 to P90 Segment signal output Input H Output P83 to P80 Segment signal output Input H Output Common signal output Note 1 G-B
Output P30/MD0 Clock output for driving external expansion driver Input E-B Output P31/MD1 Clock output for synchronization of external expansion driver Input E-B
Notes 1. VLCX (X = 0, 1, 2) is selected as the input source for the display outputs as shown below.
S0 to S23: V
LC1, COM0 to COM2: VLC2, COM3: VLC0
2. When the split resistor is incorporated: Low level When the split resistor is not incorporated: High impedance
3. These pins are provided for future system expansion. Currently, only P30 and P31 are used.
10
Data Sheet U11369EJ3V0DS

3.3 Pin I/O Circuits

The I/O circuits for the µPD75P3116’s pins are shown in abbreviated form below.
Type A Type D
V
DD
µ
PD75P3116
V
DD
IN
P-ch
N-ch
CMOS standard input buffer
IN
Data
Output
disable
Push-pull output that can be set to high impedance output (with both P-ch and N-ch OFF).
Type E-BType B
P.U.R. enable
Data
Type D
Output
disable
P-ch
N-ch
V
DD
OUT
P.U.R.
P-ch
IN/OUT
Schmitt-triggered input with hysteresis characteristics.
Type B-C Type F-A
V
DD
P.U.R.
P-ch
IN
P.U.R. : Pull-Up Resistor
P.U.R. enable
Data
Output
disable
Type A
P.U.R. : Pull-Up Resistor
P.U.R.
enable
Type D
Type B
P.U.R. : Pull-Up Resistor
V
DD
P.U.R.
P-ch
IN/OUT
(Continued)
Data Sheet U11369EJ3V0DS
11
Type F-B Type H
VDD
P.U.R.
µ
PD75P3116
(Continued)
Output
disable
(P)
Data
Output
disable
Output
disable
(N)
P.U.R. : Pull-Up Resistor
VLC0
VLC1
SEG
data
V
LC2
P-ch N-ch
P-ch N-ch
enable
P-ch N-ch
P.U.R.
VDD
P-ch
N-ch
N-chP-ch
N-ch
P-ch
IN/OUT
OUT
SEG
data
Data
Output
disable
Type M-CType G-A
Output
disable
Data
Type G-A
Type E-B
P.U.R. enable
N-ch
P-ch N-ch
IN/OUT
VDD
P.U.R.
P-ch
IN/OUT
Type G-B
COM
V
LC0
VLC1
data
VLC2
P-ch N-ch
N-ch
P-ch N-ch
P-ch N-ch
N-ch
P.U.R. : Pull-Up Resistor
Type M-E
IN/OUT
Data
Output
disable
N-chP-ch
P-chN-ch
OUT
Input instruction
Pull-up resistor that operates only when an input
Note
instruction is executed. (The current flows from VDD to a pin when the pin is at low level.)
VDD
P-ch
P.U.R.
N-ch
Note
Voltage
controller
(+13 V withstand­ing voltage)
(+13 V withstanding voltage)
12
Data Sheet U11369EJ3V0DS

3.4 Recommended Connection of Unused Pins

Table 3-1. List of Unused Pin Connections
Pin Recommended Connection
P00/INT4 Connect to Vss or VDD.
P01/SCK Input: Independently connect to Vss or VDD via a resistor.
P02/SO/SB0 Output: Leave open.
P03/SI/SB1 Connect to Vss.
P10/INT0 and P11/INT1 Connect to Vss or VDD.
P12/TI1/TI2/INT2
P13/TI0
P20/PTO0 Input: Independently connect to Vss or VDD via a resistor.
P21/PTO1 Output: Leave open.
P22/PTO2/PCL
P23/BUZ
P30/LCDCL/MD0
P31/SYNC/MD1
P32/MD2
P33/MD3
P50/D4 to P53/D7 Input: Connect to Vss.
P60/KR0/D0 to P63/KR3/D3 Input: Independently connect to Vss or VDD via a resistor.
S0 to S15 Leave open.
COM0 to COM3
S16/P93 to S19/P90 Input: Independently connect to Vss or VDD via a resistor.
S20/P83 to S23/P80 Output: Leave open.
VLC0 to VLC2 Connect to Vss.
BIAS Connect to Vss only when none of VLC0, VLC1 or VLC2 is used.
Note
XT1
Note
XT2
VPP Always connect to VDD directly.
Output: Connect to Vss.
Output: Leave open.
In other cases, leave open.
Connect to Vss.
Leave open.
µ
PD75P3116
Note When the subsystem clock is not used, select SOS.0 = 1 (on-chip feedback
resistor not used).
Data Sheet U11369EJ3V0DS
13
µ
PD75P3116

4. Mk I AND Mk II MODE SELECTION FUNCTION

Setting the stack bank selection (SBS) register for the µPD75P3116 enables the program memory to be switched
between the Mk I mode and Mk II mode. This function is applicable when using the
µ
PD753104, 753106, or 753108.
When bit 3 of SBS is set to 1: Sets the Mk I mode (supports the Mk I mode for the
When bit 3 of SBS is set to 0: Sets the Mk II mode (supports the Mk II mode for the µPD753104, 753106, and 753108)

4.1 Differences Between Mk I Mode and Mk II Mode

Table 4-1 lists the differences between the Mk I mode and the Mk II mode for the
Table 4-1. Differences Between Mk I Mode and Mk II Mode
Item Mk I Mode Mk II Mode
Program counter PC13-0
Program memory (bytes) 16384
Data memory (bits) 512 × 4
Stack Stack bank Selectable via memory banks 0 and 1
No. of stack bytes 2 bytes 3 bytes
Instruction BRA !addr1 instruction Not available Available
CALLA !addr1 instruction
Instruction CALL !addr instruction 3 machine cycles 4 machine cycles
execution time CALLF !faddr instruction 2 machine cycles 3 machine cycles
Supported mask ROM products When set to Mk I mode: When set to Mk II mode:
µ
PD753104, 753106, and 753108
µ
µ
PD75P3116 to evaluate the
µ
PD753104, 753106, and 753108)
µ
PD75P3116.
PD753104, 753106, and 753108
Caution The Mk II mode supports a program area exceeding 16 KB for the 75X and 75XL Series. Therefore, this
mode is effective for enhancing software compatibility with products that have a program area of more
than 16 KB.
With regard to the number of stack bytes during execution of subroutine call instructions, the usable
area increases by 1 byte per stack compared to the Mk I mode when the Mk II mode is selected.
However, when the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes
longer by 1 machine cycle. Therefore, if more emphasis is placed on RAM use efficiency and
processing performance than on software compatibility, the Mk I mode should be used.
14
Data Sheet U11369EJ3V0DS
µ
PD75P3116

4.2 Setting of Stack Bank Selection (SBS) Register

Use the stack bank selection register to switch between the Mk I mode and Mk II mode. Figure 4-1 shows the format
of the stack bank selection register.
The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be
Note
sure to initialize the stack bank selection register to 100×B
Note
be sure to initialize it to 000×B
.
at the beginning of the program. When using the Mk II mode,
Note Set the desired value for ×.
Figure 4-1. Format of Stack Bank Selection Register
Address 3 2 1 0
SBS3 SBS2 SBS1 SBS0F84H
Symbol
SBS
Stack area specification
0
0
Memory bank 0
0
1
Memory bank 1
1
0
Setting prohibited
1
1
0 Be sure to enter “0” for bit 2.
Mode selection specification
01Mk II mode
Mk I mode
Caution SBS3 is set to 1 after RESET input, and consequently the CPU operates in the Mk I mode. When using
instructions for the Mk II mode, set SBS3 to 0 and set the Mk II mode before using the instructions.
Data Sheet U11369EJ3V0DS
15
µ
PD75P3116
5. DIFFERENCES BETWEEN µPD75P3116 AND µPD753104, 753106, 753108
The µPD75P3116 replaces the internal mask ROM in the µPD753104, 753106, and 753108 with a one-time PROM
and features expanded ROM capacity. The
and 753108 and the µPD75P3116’s Mk II mode supports the Mk II mode in the µPD753104, 753106, and 753108.
Table 5-1 lists differences between the
differences between these products before using them with PROMs for debugging or prototype testing of application
systems or, later, when using them with a mask ROM for full-scale production.
For details of the CPU functions and internal hardware, refer to the User’s Manual.
Table 5-1. Differences Between
µ
PD75P3116’s Mk I mode supports the Mk I mode in the µPD753104, 753106,
µ
PD75P3116 and the µPD753104, 753106, and 753108. Be sure to check the
µ
PD75P3116 and µPD753104, 753106, and 753108
Item
Program counter 12 bits 13 bits 14 bits
Program memory (bytes) Mask ROM Mask ROM Mask ROM One-time PROM
Data memory (× 4 bits) 512
Mask options Pull-up resistor for Available Not available
Port 5 (On chip/not on chip can be specified.) (Not on chip)
Split resistor for LCD driving power supply
Wait time after Available Not available RESET (Selectable between 217/fX and 215/fX)
Feedback resistor Available Not available of subsystem clock (Use/not use can be selected.) (Enable)
Pin configuration Pins 5 to 8 P30 to P33
Pins 10 to 13 P50 to P53 P50/D4 to P53/D7
Pins 14 to 17 P60/KR0 to P63/KR3
Pin 21 IC VPP
Other Noise resistance and noise radiation may differ due to the different circuit sizes and mask
µ
PD753104
4096 6144 8192 16384
layouts.
µ
PD753106
Note
µ
PD753108
µ
(Fixed to 215/fX)
P30/MD0 to P33/MD3
P60/KR0/D0 to P63/KR3/D3
PD75P3116
Note 217/fX: 21.8 ms at 6.0 MHz operation, 31.3 ms at 4.19 MHz operation
215/fX: 5.46 ms at 6.0 MHz operation, 7.81 ms at 4.19 MHz operation
Note
Caution There are differences in the amount of noise tolerance and noise radiation between flash memory
versions and mask ROM versions. When considering changing from a flash memory version to a mask
ROM version during the process from experimental manufacturing to mass production, make sure to
sufficiently evaluate commercial samples (CS) (not engineering samples (ES)) of the mask ROM
versions.
16
Data Sheet U11369EJ3V0DS

6. MEMORY CONFIGURATION

765 0
MBE
RBE
0000H
0002H
0004H
0006H
0008H
000AH
000CH
MBE
MBE
MBE
MBE
MBE
MBE
Internal reset start address (higher 6 bits) Internal reset start address (lower 8 bits)
RBE
INTBT/INT4 start address (higher 6 bits) INTBT/INT4 start address (lower 8 bits)
RBE
INT0 start address (higher 6 bits) INT0 start address (lower 8 bits)
RBE
INT1 start address (higher 6 bits) INT1 start address (lower 8 bits)
RBE
INTCSI start address (higher 6 bits) INTCSI start address (lower 8 bits)
RBE
INTT0 start address (higher 6 bits) INTT0 start address (lower 8 bits)
RBE
INTT1/INTT2 start address (higher 6 bits) INTT1/INTT2 start address (lower 8 bits)
Figure 6-1. Program Memory Map
CALLF
!faddr instruction
entry address
BRCB
!caddr instruction
branch address
µ
PD75P3116
Branch addresses for the following instructions
BR !addr
CALL !addr
BRA !addr1
CALLA !addr1
BR BCDE
BR BCXA
Note
Note
Branch/call
0020H
007FH 0080H
07FFH
0800H
0FFFH
1000H
1FFFH
2000H
2FFFH
3000H
3FFFH
Reference table for GETI instruction
BRCB
!caddr instruction
branch address
BRCB
!caddr instruction
branch address
BRCB
!caddr instruction
branch address
address by GETI
BR $addr instruction
relative branch address
(–15 to –1,
+2 to +16)
Note Can only be used in the Mk II mode.
Remark For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to branch
to addresses with changes in the PC’s lower 8 bits only.
Data Sheet U11369EJ3V0DS
17
Figure 6-2. Data Memory Map
µ
PD75P3116
Data area
static RAM
(512 × 4)
Stack area
Note
Display data memory
General-purpose register area
000H
01FH
020H
0FFH
100H
1DFH
1E0H
1F7H 1F8H
1FFH
Data memory
(32 × 4)
256 × 4
(224 × 4)
256 × 4
(224 × 4)
(24 × 4)
(8 × 4)
Not incorporated
Memory bank
0
1
F80H
Peripheral hardware area
FFFH
Note Memory bank 0 or 1 can be selected as the stack area.
128 × 4
15
18
Data Sheet U11369EJ3V0DS
µ
PD75P3116

7. INSTRUCTION SET

(1) Representation and coding formats for operands
In the instruction’s operand area, use the following coding format to describe operands corresponding to the
instruction’s operand representations (for further details, refer to the RA75X Assembler Package Language User’s
Manual (U12385E)). When there are several codes, select and use just one. Codes that consist of uppercase letters and
+ or – symbols are keywords that should be entered as they are.
For immediate data, enter an appropriate numerical value or label.
Enter register flag symbols as label descriptors instead of mem, fmem, pmem, bit, etc. (for further details, refer to the
User’s Manual). The number of labels that can be entered for fmem and pmem are restricted.
Representation Coding Format
reg X, A, B, C, D, E, H, L
reg1 X, B, C, D, E, H, L
rp XA, BC, DE, HL
rp1 BC, DE, HL
rp2 BC, DE
rp’ XA, BC, DE, HL, XA’, BC’, DE’, HL’
rp’1 BC, DE, HL, XA’, BC’, DE’, HL’
rpa HL, HL+, HL–, DE, DL
rpa1 DE, DL
n4 4-bit immediate data or label
n8 8-bit immediate data or label
mem 8-bit immediate data or label
bit 2-bit immediate data or label
fmem FB0H to FBFH, FF0H to FFFH immediate data or label
pmem FC0H to FFFH immediate data or label
addr 0000H to 3FFFH immediate data or label
addr1 0000H to 3FFFH immediate data or label (Mk II mode only)
caddr 12-bit immediate data or label
faddr 11-bit immediate data or label
taddr 20H to 7FH immediate data (however, bit 0 = 0) or label
PORTn Port 0 to Port 3, Port 5, Port 6, Port 8, Port 9
IE××× IEBT, IECSI, IET0 to IET2, IE0 to IE2, IE4, IEW
RBn RB0 to RB3
MBn MB0, MB1, MB15
Note
Note When processing 8-bit data, only even-numbered addresses can be specified.
Data Sheet U11369EJ3V0DS
19
(2) Operation conventions
A: A register; 4-bit accumulator B: B register C: C register D: D register E: E register H: H register L: L register X: X register XA: Register pair (XA); 8-bit accumulator BC: Register pair (BC) DE: Register pair (DE) HL: Register pair (HL) XA’: Expansion register pair (XA’) BC’: Expansion register pair (BC’) DE’: Expansion register pair (DE’) HL’: Expansion register pair (HL’) PC: Program counter SP: Stack pointer CY: Carry flag; bit accumulator PSW: Program status word MBE: Memory bank enable flag RBE: Register bank enable flag PORTn: Port n (n = 0 to 3, 5, 6, 8, 9) IME: Interrupt master enable flag IPS: Interrupt priority selection register IE×××: Interrupt enable flag RBS: Register bank selection register MBS: Memory bank selection register PCC: Processor clock control register .: Delimiter for address and bit (××): Data addressed with ××
××H: Hexadecimal data
µ
PD75P3116
20
Data Sheet U11369EJ3V0DS
(3) Description of symbols used in addressing area
MB = MBE MBS
*1
MB = 0
*2
MBE = 0:
*3
MBE = 1:
MB = 15, fmem = FB0H to FBFH, FF0H to FFFH
*4
MB = 15, pmem = FC0H to FFFH
*5
addr = 0000H to 3FFFH
*6
addr, addr1 =*7(Current PC) – 15 to (Current PC) – 1
caddr = 0000H to 0FFFH (PC
*8
MBS = 0, 1, 15
MB = 0 (000H to 07FH)
MB = 15 (F80H to FFFH)
MB = MBS
MBS = 0, 1, 15
(Current PC) + 2 to (Current PC) + 16
13,12
= 00B) or
1000H to 1FFFH (PC
2000H to 2FFFH (PC
3000H to 3FFFH (PC
13,12
13,12
13,12
= 01B) or
= 10B) or
= 11B)
µ
PD75P3116
Data memory
addressing
Program memory
addressing
faddr = 0000H to 07FFH
*9
taddr = 0020H to 007FH
*10
addr1 = 0000H to 3FFFH (Mk II mode only)
*11
Remarks 1. MB indicates access-enabled memory banks.
2. In area *2, MB = 0 for both MBE and MBS.
3. In areas *4 and *5, MB = 15 for both MBE and MBS.
4. Areas *6 to *11 indicate corresponding address-enabled areas.
(4) Description of machine cycles
S indicates the number of machine cycles required for skipping skip-specified instructions. The value of S varies as
shown below.
• No skip ..................................................................... S = 0
• Skipped instruction is 1-byte or 2-byte instruction .... S = 1
Note
• Skipped instruction is 3-byte instruction
.............. S = 2
Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, and CALLA !addr1
Caution The GETI instruction is skipped for one machine cycle.
One machine cycle equals one cycle (= t
times.
CY) of the CPU clock Φ. Use the PCC setting to select from among four cycle
Data Sheet U11369EJ3V0DS
21
Loading...
+ 49 hidden pages