The µPD70208H (V40HL) is a high-speed, low-power 16-/8-bit microprocessor based on the µPD70208 (V40TM) with
16-bit architecture, 8-bit data bus, and general-purpose peripheral functions.
µ
PD70216H (V50HL) is a high-speed, low-power 16-bit microprocessor based on the µPD70216 (V50TM) with 16-
The
bit architecture, 16-bit data bus, and general-purpose peripheral functions.
The V40HL and V50HL offer 20 MHz operation, and in addition to the conventional standby functions, also allows the
clock to be stopped by the use of fully static internal circuitry, thus achieving greatly reduced power consumption. It is also
capable of 3 V operation in addition to the previous 5 V operation, making it ideally suited to battery driven systems.
Details are given in the following manuals. Be sure to read when carrying out design work.
• V40HL, V50HL User’s Manual – Hardware (U11610E)
TM
• 16-bit V series
FEATURES
User’s Manual – Instruction (U11301J: Japanese version)
5/6.25/8/10 MHz (at 3 V, with 10/12.5/16/20 MHz supplied externally)
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability
and additional information.
Document No. U13225EJ4V0DS00 (4th edition)
Date Published April 1999 N CP(K)
Printed in Japan
CPU : Central Processing UnitREFU : Reflesh Control Unit
CG: Clock GeneratorTCU: Timer/Count Unit
BIU : Bus Interface UnitSCU: Serial Control Unit
BAU : Bus Arbitration UnitICU: Interrupt Control Unit
WCU : Wait Control UnitDMAU : DMA Control Unit
2.2I/O SPACE ....................................................................................................................................................21
10. SCU (SERIAL CONTROL UNIT) ..........................................................................................................31
10.1 FEATURES ...................................................................................................................................................31
11. ICU (INTERRUPT CONTROL UNIT) ....................................................................................................32
11.1 FEATURES ...................................................................................................................................................32
12. DMAU (DMA CONTROL UNIT) ............................................................................................................33
12.1 FEATURES ...................................................................................................................................................33
16.1 AT 5 V OPERATION ....................................................................................................................................66
16.2 AT 3 V OPERATION ....................................................................................................................................75
AD0 to AD15
AD0 to AD7
A8 to A15
A16/PS0 to A19/PS3
REFRQOutputRefresh request
HLDRQInputBus hold request
HLDAKOutputBus hold acknowledge
RESETInputReset
RESOUTOutputSystem reset output
READYInputBus cycle end
NMIInputNon-maskable interrupt
MRD
MWR
IORD
IOWR
ASTBOutputAddress strobe
Note 1, 3
UBE
Note 2
High
BUSLOCK
POLLInputFloating-point operation processor polling
BUFR/W
BUFEN
X1InputCrystal/external clock
X2—
CLKOUTOutputClock output
BS0 to BS2
QS0, QS1OutputQueue status
TOUT2OutputTimer 2 output
TCTL2InputTimer 2 control
TCLKInputTimer clock
INTP1 to INTP7InputMaskable interrupts
INTAK/SRDY/TOUT1OutputInterrupt acknowledge/serial reception ready/timer 1 output
Notes 1. V50HL only
2. V40HL only
3. These pins are provided with a latch. Therefore, when they go into a high-impedance state, they hold
the status before the high-impedance state until driven by an external device. It is not necessary to pull
up or down the data bus. To invert the level of the pin that goes into a high-impedance state by an
external device, a drive current higher than the latch invert current (I
Data Sheet U13225EJ4V0DS00
ILH, IILL) is necessary.
15
µ
PD70208H, 70216H
Pin Name Input/OutputFunction
DMAAK3/TXDOutputDMA acknowledge 3/serial transmit data
DMARQ3/RXDInputDMA request 3/serial receive data
DMAAK0 to DMAAK2OutputDMA acknowledge
DMARQ0 to DMARQ2InputDMA request
END/TCI/ODMA service forcible termination/DMA service completion
VDD—Positive power supply pin
GND—Ground potential pin
IC—Internal connection pin (External connection impossible)
16
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
1.2 PROCESSING OF UNUSED PINS
Table 1-1 shows the processing (recommended connection) of the unused pins. Use of a resistor with a resistance of
1 to 10 kΩ is recommended to connect these pins to VDD or GND via resistor.
Table 1-1. Processing of Unused Pins
Pin NameInput/OutputRecommended Connection
AD0 to AD15
AD0 to AD7
A8 to A15
A16/PS0 to A19/PS33-state output
REFRQOutput
HLDRQInputConnect to GND via resistor
HLDAKOutputOpen
RESOUTOutputOpen
READYInputConnect to VDD via resistor
NMIInputConnect to GND via resistor
MRD3-state outputOpen
MWR3-state output
IORD3-state output
IOWR3-state output
ASTBOutput
Note 1
UBE
Note 2
High
BUSLOCK3-state output
POLLInputConnect to GND via resistor
BUFR/W3-state outputOpen
BUFEN3-state output
CLKOUTOutputOpen
BS0 to BS23-state output
QS0, QS1Output
TOUT2Output
TCTL2InputConnect to GND via resistor
TCLKInput
INTP1 to INTP7InputOpen
INTAK/SRDY/TOUT1Output
DMAAK3/TxDOutput
DMARQ3/RxDInputConnect to GND via resistor
DMAAK0 to DMAAK2OutputOpen
DMARQ0 to DMARQ2InputConnect to GND via resistor
END/TCI/OIndividually connect to VDD via resistor
Note 1
Note 2
Note 2
3-state I/OOpen
3-state I/O
3-state output
3-state output
Output
Notes 1. V50HL only
2. V40HL only
Data Sheet U13225EJ4V0DS00
17
µ
PD70208H, 70216H
Remark The circuit configuration of the latch is as illustrated below. To invert the level of the pin with a latch, a drive
current higher than the latch invert current is necessary.
(1) Output pin
(2) I/O pin
Hi-Z
control
Hi-Z
control
Output buffer
Output buffer
Input buffer
Latch
Output pin
address bus,
control bus
Latch
I/O pin
(data bus)
18
Data Sheet U13225EJ4V0DS00
2. MEMORY AND I/O CONFIGURATION
2.1MEMORY SPACE
The V40HL and V50HL can access a 1M-byte (512K-word) memory space.
Figure 2-1. Memory Map
FFFFFH
Reserved
FFFFCH
FFFFBH
Dedicated
FFFF0H
FFFEFH
General Use
µ
PD70208H, 70216H
A0-A19
00400H
003FFH
Interrupt Vector Table
00000H
Figure 2-2. Interface with Memory (1/2)
(a) V40HL
Address Bus (20)
Memory
1M Byte
8
D0-D7
Data Bus (8)
Data Sheet U13225EJ4V0DS00
19
Figure 2-2. Interface with Memory (2/2)
(b) V50HL
µ
PD70208H, 70216H
A1-A19
A0
UBE
D0-D15
Address Bus (19)
1919
BSELBSEL
Memory
Upper Bank
512K Byte
D8-D15D0-D7
8
Data Bus (16)
Memory
Lower Bank
512K Byte
8
20
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
2.2 I/O SPACE
In the V40HL and V50HL, I/Os up to 64K bytes (32K words) can be accessed in an area independent of the memory.
The various on-chip peripheral LSIs are set by accessing the system I/O area.
Extended functions added to those of the V40 and V50 are mapped onto unused V40 and V50 registers and the reserved
area.
The I/O map is shown in Figure 2-3.
Figure 2-3. I/O Map
FFFFH
Area used for setting of I/O boundary,
System I/O Area
FFE0H
FFDFH
Reserved Area
WCU, REFU, baud rate generator, etc.,
and DMAU, ICU, TCU and SCU allocation.
FF00H
FEFFH
256 Bytes
DMAU
ICU
The DMAU, ICU, TCU and SCU
are allocated within any 256 bytes.
TCU
SCU
Internal I/O Area
0000H
Data Sheet U13225EJ4V0DS00
External I/O Area
21
µ
PD70208H, 70216H
3. CPU
The CPU has the same functions as the V20HLTM and V30HLTM. In hardware terms, there are some changes regarding
the use of the bus with on-chip peripherals, but in software terms the CPU is fully compatible.
The internal block diagram of the CPU is shown in Figure 3-1.
Figure 3-1. Internal Block Diagram of CPU (1/2)
(a) V40HL
Internal Address/Data Bus (20)
To BIU
ADM
TC
TA
TB
Q0
Q2
PS
SS
DS0
DS1
PFP
DP
TEMP
LC
PC
AW
BW
CW
DW
IX
IY
BP
SP
SHIFTER
Q1
Q3
T-STATE
CONTROL
CYCLE
DECISION
QUEUE
CONTROL
EFFECTIVE ADDRESS
GENERATOR
ADDRESS
REGISTER
µ
Queue Data Bus (8)
INSTRUCTION DECODER
INTERRUPT
CONTROL
STANDBY
CONTROL
INSTRUCTION
µ
ROM
SEQUENCE
µ
CONTROL
BCU
EXU
29
Micro Data Bus
NMI
INT
(From ICU)
CLOCK
(From CG)
22
Sub Data Bus
(16)
ALU
PSW
Main Data Bus
(16)
Data Sheet U13225EJ4V0DS00
Figure 3-1. Internal Block Diagram of CPU (2/2)
(b) V50HL
Internal Address/Data Bus (20)
To BIU
ADM
µ
PD70208H, 70216H
PS
SS
DS0
DS1
PFP
DP
TEMP
Q0
Q2
Q4Q5
LC
PC
AW
BW
CW
DW
IX
IY
BP
SP
TC
TA
SHIFTER
TB
Q1
Q3
T-STATE
CONTROL
CYCLE
DECISION
QUEUE
CONTROL
EFFECTIVE ADDRESS
GENERATOR
ADDRESS
REGISTER
µ
Queue Data Bus (8)
INSTRUCTION DECODER
INTERRUPT
CONTROL
STANDBY
CONTROL
INSTRUCTION
µ
ROM
SEQUENCE
µ
CONTROL
BCU
EXU
29
Micro Data Bus
NMI
INT
(From ICU)
CLOCK
(From CG)
Sub Data Bus
(16)
ALU
PSW
Main Data Bus
(16)
Data Sheet U13225EJ4V0DS00
23
µ
PD70208H, 70216H
4. CG (CLOCK GENERATOR)
The CG generates a clock at a frequency of 1/2, 1/4, 1/8 or 1/16 that of the crystal and oscillator connected to the X1
and X2 pins, supplies it as the CPU operating clock and outputs it externally as the CLKOUT pin output.
The interrupt cycle time can be changed according to the oscillator scaling factor. The scaling factor can be set by a
system I/O area register.
Figure 4-1. Internal Block Diagram of CG
X1
X2
Oscillator
f
XX
Divide-by-2
Scaler
Divide-by-1-to-8
Scaler
Divide-by-2-to-16
Scaler
f
X
CPU, DMAU, REFU, SCU
CLKOUT
Baud Rate Counter (BRC)
TCU
5. BIU (BUS INTERFACE UNIT)
The BIU controls the data bus, address bus and control bus pins. These buses are used by the CPU, DMAU (DMA control
unit) and REFU (refresh control unit).
The BIU synchronizes the RESET input signal and READY input signal using the CLOCK signal generated by the clock
generator (CG). In addition to being supplied to the inside of the V40HL and V50HL, the synchronized reset signal is also
output externally from the RESOUT pin. The synchronized READY signal is supplied to the internal CPU, DMAU and REFU.
Figure 5-1. RESET and READY Signal Synchronization
24
RESET
READY
CLOCK
CK ↑
QD
Data Sheet U13225EJ4V0DS00
CK ↓
CK ↓
QD
QD
RESOUT
To Internal Units
To Internal Units
6. BAU (BUS ARBITRATION UNIT)
The BAU performs bus arbitration among bus masters.
A list of bus masters (units which can acquire the bus) is shown below.
Table 6-1. Bus Masters
Bus MasterBus Cycle
µ
PD70208H, 70216H
CPU
DMAU
REFU
External bus master
(HLDRQ pin input)
The relative priorities of the bus masters are shown below.
HighCPU (when BUSLOCK prefix is used)
REFU (highest priority: when given number of requests are reached)
DMAU
HLDRQ pin
CPU (normal CPU cycle)
LowREFU (lowest priority: cycle steal)
BAU bus arbitration is performed as follows.
A bus master such as the CPU, DMAU, REFU, etc., incorporated in the V40HL and V50HL normally release the bus at
the end of the bus cycle currently being executed, as shown in Figure 6-1. However, in the case of a bus master connected
to the HLDRQ pin, or cascaded external DMA controllers, for instance, the situation is as shown in Figure 6-2. The V40HL
and V50HL request return of the bus by inactivating the acknowledge signal (HLDAK), and on receiving this request, the
external bus master holding the bus should release the bus by dropping the bus hold request signal (HLDRQ). The V40HL
and V50HL-internal bus master with the highest priority is kept waiting until the bus hold request signal is dropped. This
is called a bus wait operation.
Program fetch, data read/write
DMA cycle
Refresh cycle
Bus cycle driven by external device
Data Sheet U13225EJ4V0DS00
25
Figure 6-1. Internal Bus Cycles
µ
PD70208H, 70216H
Bus Cycle
Internal DMA Request
Internal Refresh Request
(Highest Priority)
Bus Cycle
HLDRQ Pin
HLDAK Pin
CPUCPUDMARefreshRefreshRefresh
Figure 6-2. Bus Wait Operation
Bus Wait
Bus ReleaseRefresh
Note
Internal Refresh Request
(Highest Priority)
Note The period in which the external bus master which has been given the bus after its release by the V40HL and
V50HL can use the bus.
26
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
7. WCU (WAIT CONTROL UNIT)
The WCU has the function of automatically inserting a wait state (TW) of 0 to 3 clock cycles in a CPU, DMAU or REFU
bus cycle.
7.1 FEATURES
Automatic setting of 0 to 3 waits for a CPU memory bus cycle
•
1M-byte memory space can be divided into 5
•
64K-byte I/O space can be divided into 3
•
Automatic setting of 0 to 3 waits for an external I/O cycle
•
Automatic setting of 0 to 3 waits for a DMA cycle
•
Automatic setting of 0 to 3 waits for a refresh cycle
•
Same as V40 and V50 directly after a reset (memory space divided into 3, no division of I/O space)
•
Figure 7-1. Example of Memory Space Division
Upper Sub
FFFFFH
Memory Block
Upper Memory Block
1 M-Byte
Memory Area
00000H
Remark The division specification and the size of each block are set by means of a system I/O area register.
Middle Memory Block
Lower Memory Block
Lower Sub
Memory Block
Data Sheet U13225EJ4V0DS00
27
Figure 7-2. Example of I/O Space Division
FFFFH
Upper I/O Block
µ
PD70208H, 70216H
64K-Byte I/O Area
0000H
Remark The division specification and the size of each block are set by means of a system I/O area register.
7.2RELATION BETWEEN WCU AND READY PIN
When wait cycles exceeding 3 clock cycles are necessary, the WCU and the READY signal pin can be used in
combination. The number of wait cycles specified by the WCU set value or the number of wait cycles under READY control,
whichever is larger, is inserted.
Figure 7-3. WCU and READY Control
WCU
Middle I/O Block
Lower I/O Block
V40HL/V50HL
28
READY
Bus Control
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
8. REFU (REFRESH CONTROL UNIT)
The REFU generates refresh cycles required for refreshing of external DRAM. Refresh enabling/disabling and the refresh
interval can be set programmably.
REFRQ extended timing supported (REFRQ active from T1 state)
•
8.2REFRESH OPERATIONS
The REFU has two priorities. Normally, it has the lowest priority, and a refresh cycle cannot be started unless the bus
is completely idle. However, if there are 7 or more pending refresh requests, it is given the highest priority, and it requests
the bus master holding the bus to relinquish it. (See 6. BAU.)
The refresh address is output on A0 to A15. Every refresh cycle the refresh address is incremented by 1 (for the V40HL)
or by 2 (for the V50HL), and the next refresh address is generated.
In a refresh cycle, a low-level signal is output on the low address pins (A16 to A19).
This refresh address is not affected by a reset. When the device is powered on, the refresh address is undefined.
Data Sheet U13225EJ4V0DS00
29
µ
PD70208H, 70216H
9. TCU (TIMER/COUNTER UNIT)
The TCU incorporates 3 counters, and can be used as a timer, event counter, rate generator, etc. Functionally it is a
subset of the
9.1 FEATURES
3 × 16-bit counters
•
Six programmable count modes
•
Binary/BCD count
•
Multiple latch command
•
Choice of two input clocks: internal/external
•
9.2TCU INTERNAL BLOCK DIAGRAM
µ
PD71054.
IORDIOWR
Read/Write Control
Register)
Note 1
TMD
(Mode
Note 2
TCU
Selection
Signal
TCLK
(External)
TCT #0
Status
Register
(8)
Status
Latch
(8)(8)(8)
CLOCK
Prescaler
Down Counter (16)
H(8) L(8)
Count
Register
Internal Data Bus
Notes 1. A0 or A1 (Set by a system I/O area register)
2. A1 or A2 (Set by a system I/O area register)
Control Logic
(16)
H(8) L(8)
TCTL0=High
TOUT0 (To INTL0)
(16)
Count
Latch
TCTL1=High
TOUT1
(External
)
TCTL2
To INTL2/SCU
SWSWSW
TCT #1TCT #2
(External)
TOUT2
(External)
30
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
10. SCU (SERIAL CONTROL UNIT)
The SCU performs control of serial communication (asynchronous). Its functions are a subset of the µPD71051 excluding
synchronous communication. Also, what was the control word register in the
command register and a mode register.
Notes 1. A0 or A1 (Set by a system I/O area register)
2. A1 or A2 (Set by a system I/O area register)
Data Sheet U13225EJ4V0DS00
Interrupt
Generation Logic
SINT (To INTL1)
31
µ
PD70208H, 70216H
11. ICU (INTERRUPT CONTROL UNIT)
The ICU arbitrates among up to 8 interrupt requests (maskable interrupts) generated inside and outside the V40HL and
V50HL, and transfers one of them to the CPU. The ICU functions comprise the functions of the V40HL and V50HL minus
those functions not required by the V40HL and V50HL.
11.1 FEATURES
8 interrupt inputs
•
µ
PD71059 cascading possible
•
Edge- or level-triggered request input
•
(input from internally connected TCU is edge-triggered only)
Interrupt requests individually maskable
•
Programmable interrupt request priority order
•
Polling operation capability
•
11.2 ICU INTERNAL BLOCK DIAGRAM
Initialize &
Command Word
IORD
IOWR
Note 1
Note 2
ICU Selection Signal
Read/Write
Control
Register Group
Interrupt
In-Service
Register
(IIS)
Internal Data Bus
Notes 1. A0 or A1 (Set by a system I/O area register)
2. A1 or A2 (Set by a system I/O area register)
Control Logic
Priority
Determination Logic
Interrupt
Mask
Register
(IMK)
Slave Control
Interrupt
Request
Register
(IRQ)
INTL0
INTL1
INTL2
INTL3
INTL4
INTL5
INTL6
INTL7
SA0
SA1
To BIU
SA2
INTAK (From CPU)
INT (To CPU)
TOUT0 (From TCU)
SINT (From SCU)
TOUT1 (From TCU)
SW
SW
INTP1
INTP2
INTP3
INTP4
INTP5
INTP6
INTP7
A8
A9
A10
External Pins
32
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
12. DMAU (DMA CONTROL UNIT)
The DMAU has 4 DMA channels, and provides the functions (subset) of two LSIs, the µPD71071 and µPD71037.
12.1 FEATURES
Two operating modes (µPD71071 mode, µPD71037 mode)
•
20-bit address register
•
16-bit count register
•
Four independent DMA channels
•
Byte transfer/word transfer selectable
•
Three transfer modes (settable on an individual channel basis)
•
Single transfer mode, demand transfer mode, block transfer mode
Two bus modes (common to all channels: in µPD71037 mode, bus release mode only)
•
Bus release mode
Bus hold mode
DMA requests maskable on an individual channel basis
•
Auto initialization function
•
Transfer address increment/decrement
•
Two channel priority systems (fixed priority/rotating priority)
•
TC output at end of transfer
•
Forced termination of service by END input
•
Cascading capability
•
12.2 DMAU INTERNAL BLOCK DIAGRAM
Internal Address Bus
Internal Data Bus
Internal Control Bus
BUSRQ
BAU
BUSAK
DMARQ0DMARQ3
External
pins
DMAAK0DMAAK3
END/TC
(20)
(8)
Internal Bus
Interface
Priority Control
DMAU Address Bus (20)
Address
Registers
DMAU Data Bus
Count
Registers
Terminal Count
Address Increment/
Decrement
(20)
Current Address (20 × 4)
Base Address (20 × 4)
Base Count (16 × 4)
Current Count (16 × 4)
Count Decrementer
(16)
Control Register Group
Channel
Device Control
Status
Mode Control
Mask
Request
Note 1
Note 2
(4)
(10)
(8)
(7 × 4)
(4)
(4)
Notes 1. In µPD71071 mode
µ
2. In
PD71037 mode
Data Sheet U13225EJ4V0DS00
33
µ
PD70208H, 70216H
13. STANDBY FUNCTIONS
The V40HL and V50HL have two modes, the HALT mode and STOP mode, as standby functions.
(1) HALT mode
When the HALT instruction is executed, the clock to internal CPU circuitry (excluding the HALT mode release circuit)
is stopped.
(2) STOP mode
When the HALT instruction is executed, all clocks to the CPU and internal I/Os are stopped.
STOP mode should be used when a resonator is connected to the X1 and X2 pins.
Remark Switching between HALT mode and STOP mode is performed by setting a system I/O area register.
14. RESET OPERATION
When the RESET pin is driven low and this level is held for 4 clock cycles or more from the fall of the signal, the CPU
and on-chip peripheral LSIs are reset.
When the RESET pin subsequently returns to the high level, the CPU begins an instruction prefetch from address
FFFF0H.
When the V40HL and V50HL are reset, its status is fully compatible with the V40 and V50.
Extended functions added to those of the V40 and V50 are mapped onto unused V40 and V50 registers and the reserved
area.
Table 14-1 shows the main statuses of the on-chip peripheral LSIs when a reset is performed.
Table 14-1. Main Statuses of On-Chip Peripheral LSIs After Reset
WCU
REFU
SCU
DMAU
Memory, external I/O, DMA & refresh: 3-wait insertion
Upper & lower memory blocks: set to 512 KB
Refresh cycle: set to 72 clock cycles
Refresh enabling/disabling: not affected by reset
Baud rate: x 64
Character: 7 bits
Parity: None
Stop bits: 1 bit
Break detection : None
µ
PD71071 mode
Demand mode
Auto initialization disabled
Verify transfer, byte transfer
Bus release mode
DMA enabled
Caution When a reset is performed, the SCU, TCU, ICU and DMAU cannot be used.
8/16-bit general register
(destination register in an instruction using two 8/16-bit general registers)
Source register in an instruction using two 8/16-bit general registers
8-bit general register
(destination register in an instruction using two 8-bit general registers)
Source register in an instruction using two 8-bit general registers
16-bit general register
(destination register in an instruction using two 16-bit general registers)
Source register in an instruction using two 16-bit general registers
8/16-bit memory location
8/16-bit memory location
8-bit memory location
16-bit memory location
32-bit memory location
Constant in range 0 to FFFFH
Constant in range 0 to 7
Constant in range 0 to FH
Constant in range 0 to FFH
Constant in range 0 to FFFFH
Accumulator AW or AL
Segment register
Name of 256-byte conversion translation table
Name of block addressed by register IX
Name of block addressed by register IY
Procedure in current program segment
Procedure in a different program segment
Label in current program segment
Label in range –128 to +127 bytes from end of instruction
Label in a different program segment
Word containing location offset in a different program segment to which control is to be shifted and segment
base address
Doubleword containing location offset in a different program segment to which control is to be shifted and
segment base address
General register containing location offset in a different program segment to which control is to be shifted
Number of bytes to be removed from stack (0 to 64K, normally an even number)
Immediate value which identifies external floating-point operation coprocessor operation code
Register set
Data Sheet U13225EJ4V0DS00
35
Table 15-2. Operation Code Legend
µ
PD70208H, 70216H
Identifier
W
reg
reg’
mem
mod
s
X, XXX, YYY, ZZZ
Description
Byte/word specification bit (0: byte, 1: word). However, when s =1, byte data of sign extension is 16-bit
operand if W = 1.
Register field (000 to 111)
Register field (000 to 111) (source register in instruction which uses two registers)
Memory field (000 to 111)
Mode field (00 to 10)
Sign-extended specification bit (0: without sign extension, 1: with sign extension)
Data used to determine external floating-point coprocessor operation code
36
Data Sheet U13225EJ4V0DS00
AW
AH
AL
BW
CW
CL
DW
BP
SP
PC
PSW
IX
IY
PS
SS
DS0
DS1
AC
CY
P
S
Z
DIR
IE
V
BRK
MD
...
(
)
disp
ext-disp8
temp
TA
TB
TC
tmpcy
seg
offset
←
+
–
×
÷
%
∨
∨
∨
××H
××××H
Table 15-3. Operand Description Legend
Accumulator (16-bit)
Accumulator (high-order byte)
Accumulator (low-order byte)
Register BW (16-bit)
Register CW (16-bit)
Register CL (low-order byte)
Register DW (16-bit)
Base pointer (16-bit)
Stack pointer (16-bit)
Program counter (16-bit)
Program status word (16-bit)
Index register (source) (16-bit)
Index register (destination) (16-bit)
Program segment register (16-bit)
Stack segment register (16-bit)
Data segment 0 register (16-bit)
Data segment 1 register (16-bit)
Auxiliary carry flag
Carry flag
Parity flag
Sign flag
Zero flag
Direction flag
Interrupt enable flag
Overflow flag
Break flag
Mode flag
Contents of memory indicated by contents of ( )
Displacement (8/16-bit)
16 bits with 8-bit displacement sign-extended
Temporary register (8/16/32-bit)
Temporary register A (16-bit)
Temporary register B (16-bit)
Temporary register C (16-bit)
Temporary carry flag (1-bit)
Immediate segment data (16-bit)
Immediate offset data (16-bit)
Transfer direction
Addition
Subtraction
Multiplication
Division
Modulo
Logical product
Logical sum
Exclusive logical sum
Two-digit hexadecimal number
Four-digit hexadecimal number
µ
PD70208H, 70216H
DescriptionIdentifier
Data Sheet U13225EJ4V0DS00
37
Table 15-4. Flag Operation Legend
Identifier Description
(Blank)No change
0Cleared to 0
1Set to 1
×Set or cleared depending upon result
UUndefined
RPreviously saved value is restored
Table 15-5. Memory Addressing
µ
PD70208H, 70216H
mem
000
001
010
011
100
101
110
111
mod
BW + IX
BW + IY
BP + IX
BP + IY
IX
IY
DIRECT ADDRESS
BW
00
BW + IX + disp 8
BW + IY + disp 8
BP + IX + disp 8
BP + IY + disp 8
IX + disp 8
IY + disp 8
BP + disp 8
BW + disp 8
BW + IX + disp 16
BW + IY + disp 16
BP + IX + disp 16
BP + IY + disp 16
IX + disp 16
IY + disp 16
BP + disp 16
BW + disp 16
Table 15-7. Segment Register Selection
sreg
00DS1
01PS
10SS
11DS0
38
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
The instruction set is shown in tabular form on the following pages.
Clock cycle shown in table is the time required for execution of instruction by the execution unit and is based on the
following conditions.
• Prefetch time and wait time for using bus, etc. are not included.
• 0 wait is assumed for memory access. That is, the clock number of one bus cycle is four clock cycle.
• 0 wait is assumed for I/O access.
• Primitive block transfer instruction and primitive input/output instruction is included repeat prefixes.
The number of clock cycle of instruction with byte processing and word processing (with W bit) is shown as the followings.
(1) V40HL
On the left of "/": The value corresponding to byte processing (W= 0) or word processing (W = 1) of even
address
On the right of "/": The value corresponding to word processing (W =1) of odd address
For the clock of block transfer related instruction of V40HL, see Table 15-8.
Table 15-8. Number of Clock Cycles in Block Transfer Related Instruction (V40HL)
Instruction
Byte Processing (W = 0)Word Processing (W = 1)
MOVBK9 + 8 × rep9 + 16 × rep
(9)(17)
CMPBK7 + 14 × rep7 + 22 × rep
(13)(21)
CMPM7 + 10 × rep7 + 14 × rep
(7)(11)
LDM7 + 9 × rep7 + 13 × rep
(7)(11)
STM5 + 4 × rep5 + 8 × rep
(5)(9)
INM9 + 8 × rep9 + 16 × rep
(10)(18)
OUTM9 + 8 × rep9 + 16 × rep
(10)(18)
Number of Clock Cycles
RemarkThe figures in parentheses apply to one-time processing only.
Data Sheet U13225EJ4V0DS00
39
µ
PD70208H, 70216H
(2) V50HL
On the left of "/": The value corresponding to byte processing (W= 0) or word processing (W = 1) of even
address
On the right of "/" : The value corresponding to word processing (W =1) of odd address
For the clock of block transfer related instruction of V50HL, see Table 15-9.
Table 15-9. Number of Clock Cycles in Block Transfer Related Instruction V50HL (1/2)
Number of Clock Cycles
InstructionByte ProcessingWord Processing (W = 1)
(W = 0)Odd/Odd AddressOdd/Even AddressEven/Even Address
While CW ≠ 0, the following byte primitive block transfer
instruction is executed and CW is decremented (–1).
If there is a pending interrupt, it is serviced.
If CY ≠ 1 the loop is exited.
Same as above
If CY ≠ 0 the loop is exited.
While CW ≠ 0, the following byte primitive block transfer
instruction is executed and CW is decremented (–1).
If there is a pending interrupt, it is serviced.
If the primitive block transfer instruction is CMPBK or
CMPM and Z ≠ 1 the loop is exited.
Same as above
If Z ≠ 0 the loop is exited.
If W = 0: (IY) ← (IX)
DIR = 0 : IX ← IX + 1, IY ← IY + 1
DIR = 1 : IX ← IX – 1, IY ← IY – 1
If W = 1: (IY + 1, IY) ← (IX + 1, IX)
DIR = 0 : IX ← IX + 2, IY ← IY + 2
DIR = 1 : IX ← IX – 2, IY ← IY – 2
If W = 0: (IX) – (IY)
DIR = 0 : IX ← IX + 1, IY ← IY + 1
DIR = 1 : IX ← IX – 1, IY ← IY – 1
If W = 1: (IX + 1, IX) – (IY + 1, IY)
DIR = 0 : IX ← IX + 2, IY ← IY + 2
DIR = 1 : IX ← IX – 2, IY ← IY – 2
reg8 bit NO.CL = 0 : Z ← 1
reg8 bit NO.CL = 1 : Z ← 0
(mem8) bit NO.CL = 0 : Z← 1
(mem8) bit NO.CL = 1 : Z← 0
reg16 bit NO.CL = 0 : Z ← 1
reg16 bit NO.CL = 1 : Z ← 0
(mem16) bit NO.CL = 0 : Z← 1
(mem16) bit NO.CL = 1 : Z← 0
reg8 bit NO.imm3 = 0 : Z ← 1
reg8 bit NO.imm3 = 1 : Z ← 0
(mem8) bit NO.imm3 = 0 : Z← 1
(mem8) bit NO.imm3 = 1 : Z← 0
reg16 bit NO.imm4 = 0 : Z ← 1
reg16 bit NO.imm4 = 1 : Z ← 0
(mem16) bit NO.imm4 = 0 : Z← 1
(mem16) bit NO.imm4 = 1 : Z← 0
reg8 bit NO.CL← reg8 bit NO.CL
(mem8) bit NO.CL← (mem8) bit NO.CL
reg16 bit NO.CL← reg16 bit NO.CL
(mem16) bit NO.CL← (mem16) bit NO.CL
reg8 bit NO.imm3← reg8 bit NO.imm3
(mem8) bit NO.imm3← (mem8) bit NO.imm3
reg16 bit NO.imm4← reg16 bit NO.imm4
(mem16) bit NO.imm4← (mem16) bit NO.imm4
AC CY V P S Z
reg8 bit NO.CL ← 0
(mem8) bit NO.CL ← 0
reg16 bit NO.CL ← 0
(mem16) bit NO.CL ← 0
reg8 bit NO.imm3 ← 0
(mem8) bit NO.imm3 ← 0
reg16 bit NO.imm4 ← 0
(mem16) bit NO.imm4 ← 0
reg8 bit NO.CL ← 1
(mem8) bit NO.CL ← 1
reg16 bit NO.CL ← 1
(mem16) bit NO.CL ← 1
reg8 bit NO.imm3 ← 1
(mem8) bit NO.imm3 ← 1
reg16 bit NO.imm4 ← 1
(mem16) bit NO.imm4 ← 1
CLR1
SET1
CY
DIR
CY
DIR
2nd byte*
11111000
11111100
11111001
11111101
3rd byte*
* 1st byte = 0FH
1
1
1
1
2
2
2
2
2
2
2
2
CY ← 0
DIR ← 0
CY ← 1
DIR ← 1
0
1
µ
PD70208H, 70216H
Instruction
Group
Data Sheet U13225EJ4V0DS00
Mnemonic
SHL
Shift instructions
Operand(s)Operation
reg, 1
mem, 1
reg, CL
mem, CL
reg, imm8
mem, imm8
7654321076543210
1101000W
1101000W
1101001W
1101001W
1100000W
1100000W
Operation CodeFlags
11100 reg
mod
100 mem
11100 reg
mod
100 mem
11100 reg
mod
100 mem
Bytes
2
2-4
2
2-4
3
3-5
Clock Cycles
V40HL V50HL
6
13/21
7 + n
16/24
+ n
7 + n
16/24
+ n
6
13/21
7 + n
16/24
+ n
7 + n
16/24
+ n
CY ← reg MSB, reg ← reg × 2
If reg MSB ≠ CY: V ← 1
If reg MSB = CY: V ← 0
CY ← (mem) MSB, (mem) ← (mem) × 2
If (mem) MSB ≠ CY: V ← 1
If (mem) MSB = CY: V ← 0
temp ← CL, while temp ≠0 the following operation are repeated:
CY ← reg MSB, reg ← reg × 2
temp ← temp – 1
temp ← CL, while temp ≠0 the following operation are repeated:
CY ← (mem) MSB, (mem) ← (mem) × 2
temp ← temp – 1
temp ← imm8, while temp ≠ 0 the following operations are
repeated:
CY ← reg MSB, reg← reg × 2
temp ← temp – 1
temp ← imm8, while temp ≠ 0 the following operations are
repeated:
CY ← (mem) MSB, (mem) ← (mem) × 2
temp ← temp – 1
AC CY V P S Z
U ЧЧЧЧЧ
UЧЧЧЧЧ
U×U×××
U×U×××
U×U×××
U×U×××
53
n: Number of shifts
µ
PD70208H, 70216H
54
Instruction
Group
Mnemonic
SHR
Operand(s)
reg, 1
Operation CodeFlags
76543210
1101000W
76543210
11101 reg
Bytes
2
Clock Cycles
V40HL V50HL
6
6
Operation
CY ← reg LSB, reg ← reg ÷ 2
If reg MSB ≠ bit after reg MSB : V ← 1
If reg MSB = bit after reg MSB : V ← 0
AC CY V P S Z
U ЧЧЧЧЧ
Data Sheet U13225EJ4V0DS00
Shift instructions
mem, 1
reg, CL
mem, CL
reg, imm8
mem, imm8
1101000W
1101001W
1101001W
1100000W
1100000W
mod
101 mem
11101 reg
mod
101 mem
11101 reg
mod
101 mem
2-4
13/21
2
7 + n
2-4
16/24
+ n
3
7 + n
3-5
16/24
+ n
n: Number of shifts
CY ← (mem) LSB, (mem) ← (mem) ÷ 2
13/21
If (mem) MSB ≠ bit after (mem) MSB : V ← 1
If (mem) MSB = bit after (mem) MSB : V ← 0
temp ← CL, while temp ≠ 0 the following operations are
if V = 1PC ← PC + ext-disp8
if V = 0PC ← PC + ext-disp8
if CY = 1PC ← PC + ext-disp8
if CY = 0PC ← PC + ext-disp8
if Z = 1PC ← PC + ext-disp8
if Z = 0PC ← PC + ext-disp8
if CY ∨ Z = 1PC ← PC + ext-disp8
if CY ∨ Z = 0PC ← PC + ext-disp8
if S = 1PC ← PC + ext-disp8
if S = 0PC ← PC + ext-disp8
if P = 1PC ← PC + ext-disp8
if P = 0PC ← PC + ext-disp8
if S ∨ V = 1PC ← PC + ext-disp8
if S ∨ V = 0PC ← PC + ext-disp8
if (S ∨ V) ∨ Z = 1PC ← PC + ext-disp8
if (S ∨ V) ∨ Z = 0PC ← PC + ext-disp8
CW = CW – 1PC ← PC + ext-disp8
if Z = 0 and CW ≠ 0
CW = CW – 1PC ← PC + ext-disp8
if Z = 1 and CW ≠ 0
CW = CW – 1PC ← PC + ext-disp8
AC CY V P S Z
CPU Halt
Poll and wait n: Number of times POLL pin is sampled
IE ← 0
IE ← 1
Bus Lock Prefix
No Operation
data bus ← (mem)
No Operation
data bus ← (mem)
No Operation
65
*
* DS0:, DS1:, PS:, and SS:.
Instruction
Group
MnemonicOperand(s)
RETEM
8080
CALLN
imm8
001
sreg
110
Operation CodeFlags
76543210
11101101
11101101
76543210
11111101
11101101
1
Bytes
2
3
2
Clock Cycles
V40HL V50HL
39
58
2
27/39
38/58
Segment override prefix
Operation
PC ← (SP + 1, SP), PS ← (SP + 3, SP + 2),
PSW ← (SP + 5, SP + 4), SP ← SP + 6, MD is set to write
disabled
Applied standard
The electrical characteristics shown below are applied to devices other than the old models conforming
to K mask.
Therefore, these characteristics are different from those conforming to the K mask. For the electrical
characteristics of the K mask, consult NEC.
“Others” in the table below means products conforming to the masks other than E, P, X, and M (but
conforming to the L, F mask).
16.1 AT 5 V OPERATION
OPERATING RANGE
E, P, X, M Mask ModelOthers
µ
PD70208H, 70216H-10/12/16VDD = 5 V ±10%
µ
PD70208H, 70216H-20—VDD = 5 V ±5%
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)
Parameter
Supply voltage
Input voltage
Clock input voltage
Output voltage
Operating ambient temperature
Storage temperature
SymbolTest ConditionsRatingUnit
VDD
VI
VK
VO
TA
Tstg
VDD = 5 V ±10%
(µPD70208H, 70216H-10/12/16)
VDD = 5 V ±5%
(µPD70208H, 70216H-20)
–0.5 to +7.0V
–0.5 to VDD + 0.3V
–0.5 to VDD + 1.0V
–0.5 to VDD + 0.3V
–40 to +85°C
–65 to +150°C
Cautions 1. Do not directly connect the output pins of two or more IC products and do not directly connect
the output pins to V
DD or VCC and GND. However, open-drain pins or open-collector pins may be
connected directly. Moreover, an external circuit whose timing is designed to avoid output
collision can be connected to pins that go into a high-impedance state.
2. If even one of the above parameters exceeds the absolute maximum rating even momentarily, the
quality of the program may be degraded. Absolute maximum ratings, therefore, are the values
exceeding which the product may be physically damaged. Use the program keeping all the
parameters within these rated values.
The standards and conditions shown in DC and AC Characteristics below specify the range within
which the normal operation of the product is guaranteed.
66
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
DC CHARACTERISTICS
(T
A = –40 to +85 °C, VDD = 5 V ±10% (
ParameterSymbolTest ConditionsMIN.TYP.MAX.Unit
Input voltage highVIHE, P, X, MExcept RESET2.2VDD+0.3V
Input voltage lowVILExcept RESET–0.5+0.8V
Clock input voltage highVKH3.9VDD+1.0V
Clock input voltage lowVKL–0.5+0.6V
Output voltage highVOHIOH = –2.5 mA0.7 VDDV
Output voltage lowVOLExcept END/TC : IOL = 2.5 mA0.4V
Input leak current highILIHVI = VDD10
Input leak current lowILILExcept INTP:VI = 0 V–10
INTP input current lowILIPLINTP input:VI = 0 V–300
Output leak current highILOHVO = VDD10
Output leak current lowILOLVO = 0 V–10
Latch leak current highILLHVI = 3.0 V–50–300
Latch leak current lowILLLVI = 0.8 V50300
Latch inversion current (L → H)IILH400
Latch inversion current (H → L)IILL–400
Supply current
Note
µ
PD70208H, 70216H-10/12/16), VDD = 5 V ±5% (µPD70208H, 70216H-20))
INTP1 to INTP7
RESET0.8 VDDVDD+0.3
INTP1 to INTP72.4VDD+0.3
RESET–0.50.2VDD
IOH = –100 µAVDD – 0.4
END/TC: IOL = 5.0 mA
IDDE, P, X, MOn operation5.5 fX9.0 fXmA
masks
OthersOn operation4.5 fX6.0 fXmA
On standby (HALT)1.5 fX2.5 fX
On standby (STOP)50
On standby (HALT)1.5 fX2.2 fX
On standby (STOP)50
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
Note The unit of constant values (1.5, 2.2, 2.5, 4.5, 5.5, 6.0 and 9.0) is mA/MHz.
CAPACITANCE (TA = 25 ˚C, VDD = 0 V)
ParameterSymbolTest ConditionsMIN.TYP.MAX.Unit
Input capacitanceCIfC = 1 MHz10pF
Input/output capacitanceCIO0 V other than test pin.15pF
Data Sheet U13225EJ4V0DS00
67
AC CHARACTERISTICS
(1)µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, V DD = 5 V ±10%) (1/3)
µ
PD70208H-10
µ
PD70216H-10
MIN.MAX.MIN.MAX.MIN.MAX.
External clock input cycle
External clock input high-level width (VKH=3.0 V)
External clock input low-level width (VKL=1.5 V)
External clock input rise time (1.5→3.0 V)
External clock input fall time (3.0→1.5 V)
Clock output cycle
Clock output high-level width (VOH=3.0 V)
Clock output low-level width (VOL=1.5 V)
Clock output rise time (1.5→3.0 V)
Clock output fall time (3.0→1.5 V)
CLKOUT delay time (vs. external clock)
Input rise time (except external clock) (0.8→2.2 V)
Input fall time (except external clock) (2.2→0.8 V)
Output rise timeE, P, X, M masks
(except CLKOUT) (0.8→2.2 V)
Output fall time (except CLKOUT) (2.2→0.8 V)
RESET setup time (vs. CLKOUT↓)
RESET hold time (vs. CLKOUT↓)
RESOUT output delay time (vs. CLKOUT↓)
READY inactive setup time (vs. CLKOUT↑)
READY inactive hold time (vs. CLKOUT↑)
READY active setup time (vs. CLKOUT↑)
READY active hold time (vs. CLKOUT↑)
NMI setup time (vs. CLKOUT↑)
POLL setup time (vs. CLKOUT↑)
Data setup time (vs. CLKOUT↓)
Data hold time (vs. CLKOUT↓)
CLKOUT → address delay time
CLKOUT → address hold time
CLKOUT↓ → PS delay time
CLKOUT↓ → PS float delay time
Address setup time (vs. ASTB↓)
CLKOUT↓ → address float delay time
CLKOUT↓ → ASTB↑ delay time
Others
Note 1
Note 1
Note 2
Note 3
tCYX50DC40DC31.25DCns
<1>
tXXH191412ns
<2>
tXXL191412ns
<3>
tXR555ns
<4>
tXF555ns
<5>
tCYK100DC80DC62.5DCns
<6>
tKKH0.5tCYK–50.5tCYK–50.5tCYK–5ns
<7>
tKKL0.5tCYK–50.5tCYK–50.5t CYK–5ns
<8>
tKR555ns
<9>
tKF555ns
<10>
tDXK403520ns
<11>
tIR151515ns
<12>
tIF101010ns
<13>
tOR151515ns
<14>
101010ns
tOF101010ns
<15>
tSRESK202020ns
<16>
tHKRES252515ns
<17>
tDKRES550540530ns
<18>
tSRYLK15107ns
<19>
tHKRYL201515ns
<20>
tSRYHK15107ns
<21>
tHKRYH202015ns
<22>
tSNMIK151515ns
<23>
tSPOLK202020ns
<24>
tSDK15107ns
<25>
tHKD555ns
<26>
tDKA550540528ns
<27>
tHKA555ns
<28>
tDKP550540530ns
<29>
tFKP550540530ns
<30>
tSASTtKKL–20tKKL–10t KKL–10ns
<31>
tFKAt HKA50tHKA40tHKA30ns
<32>
tDKSTH403025ns
<33>
µ
PD70208H, 70216H
Output Pin Load Capacitance: CL = 100 pF
µ
µ
PD70208H-12
µ
PD70216H-12
PD70208H-16
µ
PD70216H-16
UnitSymbol Parameter
Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.
2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE,
BUFEN, BUFR/W, MRD, IORD, MWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR,
IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
68
Data Sheet U13225EJ4V0DS00
(1)µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, V DD = 5 V ±10%) (2/3)
µ
PD70208H-10
µ
PD70216H-10
MIN.MAX.MIN.MAX.MIN.MAX.
tKKL–30tKKL–20t KKL–15ns
CLKOUT↑ → ASTB↓ delay time
ASTB high-level width
ASTB↓ → address hold time
CLKOUT → control 1
CLKOUT → control 2
Address float → RD↓ delay time
CLKOUT↓ → RD↓ delay time
CLKOUT↓ → RD↑ delay time
RD↑ → address delay time
RD low-level width
BUFEN↑ → BUFR/W delay time (read cycle)
CLKOUT↓ → data output delay time
CLKOUT↓ → data float delay time
WR low-level width
WR↑ → BUFEN↑ or BUFR/W↓ (write cycle)
CLKOUT↑ → BS↓ delay time
CLKOUT↓ → BS↑ delay time
HLDRQ setup time (vs. CLKOUT↓)
CLKOUT↓ → HLDAK delay time
CLKOUT↑ → DMAAK delay time
CLKOUT↓ → DMAAK delay time (cascade mode)
WR low-level widthDMA extended write
(DMA cycle)DMA normal write
RD↓, WR↓ delay time (vs. DMAAK↓)
DMAAK↑ delay time (vs. RD↑)
RD↑ delay time (vs. WR↑)
TC output delay time (vs. CLKOUT↑)
TC OFF delay time (vs. CLKOUT↑)
TC low-level width
TC pull-up delay time (vs. CLKOUT↑)
END setup time (vs. CLKOUT↑)
END low-level width
DMARQ setup time (vs. CLKOUT↑)
INTPn low-level width
RXD setup time (vs. SCU internal clock↓)
Note 1
Note 2
delay time
delay time
Symbol ParameterUnit
tDKSTL453530ns
<34>
tSTSTtKKL–10t KKL–10tKKL–10ns
<35>
tHSTAtKKH–20tKKH–10t KKH–10ns
<36>
tDKCT1560550540ns
<37>
tDKCT2555545535ns
<38>
tDAFRL000ns
<39>
tDKRL565550540ns
<40>
tDKRH560545535ns
<41>
tDRHAt CYK–40tCYK–20t CYK–10ns
<42>
tRR2tCYK–402t CYK–202tCYK–20ns
<43>
tDBECTtKKL–20t KKL–10tKKL–10ns
<44>
tDKD555540530ns
<45>
tFKD555540530ns
<46>
tWW2tCYK–402tCYK–202tCYK–20ns
<47>
tDWCTtKKL–20t KKL–10tKKL–10ns
<48>
tDKBL555540530ns
<49>
tDKBH555540530ns
<50>
tSHQK15107ns
<51>
tDKHA560550540ns
<52>
tDKHDA555545535ns
<53>
tDKLDA580570555ns
<54>
tWW12tCYK–402tCYK–202tCYK–20ns
<55>
tWW2t CYK–40tCYK–20tCYK–15ns
<56>
tDDARWtKKH–30tKKH–20t KKH–15ns
<57>
t
DRHDAH
<58>
tDWHRH333ns
<59>
tDKTCL554535ns
<60>
tDKTCF554535ns
<61>
tTCTCLtCYK–15tCYK–10tCYK–10ns
<62>
tDKTCHNote 3Note 4Note 4ns
<63>
tSEDK302520ns
<64>
tEDEDL806550ns
<65>
tSDQK302015ns
<66>
tIPIPL808080ns
<67>
tSRX500500500ns
<68>
µ
PD70208H, 70216H
Output Pin Load Capacitance: CL = 100 pF
µ
µ
PD70208H-12
µ
PD70216H-12
PD70208H-16
µ
PD70216H-16
Notes 1. MWR and IOWR signals in DMA cycle
2. MWR and IOWR signals in CPU cycles and BUFEN, BUFR/W, INTAK and REFRQ signals.
3. tKKH + 2tCYK – 10 (Reference value when a 1.1-kΩ pull-up resistor is connected.)
4. tKKH + 2tCYK – 5 (Reference value when a 1.1-kΩ pull-up resistor is connected.)
Data Sheet U13225EJ4V0DS00
69
(1)µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, V DD = 5 V ±10%) (3/3)
µ
PD70208H, 70216H
RXD hold time (vs. SCU internal clock↓)
CLKOUT↓ → SRDY delay time
TOUT1↓ → TXD delay time
TCTL2 setup time (vs. CLKOUT↓)
TCTL2 setup time (vs. TCLK↑)
TCTL2 hold time (vs. CLKOUT↓)
TCTL2 hold time (vs. TCLK↑)
TCTL2 high-level width
TCTL2 low-level width
TOUT output delay time (vs. CLKOUT↓)
TOUT output delay time (vs. TCLK↓)
TOUT output delay time (vs. TCTL2↓)
TCLK rise time
TCLK fall time
TCLK high-level width
TCLK low-level width
TCLK cycle
Access interval
REFRQ↑ delay time (vs. MRD↑)
RESET pulse width
Note 1
Note 2
Note 3
Output Pin Load Capacitance: C
µ
PD70208H-10
µ
PD70216H-10
MIN.MAX.MIN.MAX.MIN.MAX.
tHRX500500500ns
<69>
tDKSR100100100ns
<70>
tDTX200200200ns
<71>
tSGK404040ns
<72>
tSGTK404040ns
<73>
tHKG808080ns
<74>
tHTKG404040ns
<75>
tGGH404040ns
<76>
tGGL404040ns
<77>
tDKTO150150150ns
<78>
tDTKTO100100100ns
<79>
tDGTO909090ns
<80>
tTKR252525ns
<81>
tTKF252525ns
<82>
t
TKTKH
<83>
tTKTKL454030ns
<84>
tCYTK100DC80DC62.5DCns
<85>
tAI2tCYK–402tCYK–252tCYK–20ns
<86>
t
DRQHRH
<87>
tWRESL4tCYK4tCYK4tCYKns
<88>
454030ns
tKKL–30t KKL–15tKKL–10ns
µ
PD70208H-12
µ
PD70216H-12
µ
PD70208H-16
µ
PD70216H-16
L = 100 pF
UnitSymbol Parameter
Notes 1. Specification to guarantee read/write recovery time for I/O device.
2. Specification to guarantee that REFRQ↑ is always later than MRD↑.
Only guaranteed when the EREF bit of the SCTL register is 0.
3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation
stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending
on the characteristics of the resonator and oscillator used, evaluate the oscillation stabilization time with the
resonator and oscillator actually used.
70
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
(2)µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 5 V ±5%) (1/3)
Output Pin Load Capacitance: CL = 100 pF
µ
PD70208H-20
µ
PD70216H-20Unit ParameterSymbol
MIN.MAX.
External clock input cycle
External clock input high-level width (VKH=3.0 V)
External clock input low-level width (VKL=1.5 V)
External clock input rise time (1.5→3.0 V)
External clock input fall time (3.0→1.5 V)
Clock output cycle
Clock output high-level width (VOH=3.0 V)
Clock output low-level width (VOL=1.5 V)
Clock output rise time (1.5→3.0 V)
Clock output fall time (3.0→1.5 V)
CLKOUT delay time (vs. external clock)
Input rise time (except external clock) (0.8→2.2 V)
Input fall time (except external clock) (2.2→0.8 V)
Output rise time (except CLKOUT) (0.8→2.2 V)
Output fall time (except CLKOUT) (2.2→0.8 V)
RESET setup time (vs. CLKOUT↓)
RESET hold time (vs. CLKOUT↓)
RESOUT output delay time (vs. CLKOUT↓)
READY inactive setup time (vs. CLKOUT↑)
READY inactive hold time (vs. CLKOUT↑)
READY active setup time (vs. CLKOUT↑)
READY active hold time (vs. CLKOUT↑)
NMI setup time (vs. CLKOUT↑)
POLL setup time (vs. CLKOUT↑)
Data setup time (vs. CLKOUT↓)
Data hold time (vs. CLKOUT↓)
CLKOUT → address delay time
CLKOUT → address hold time
CLKOUT ↓ → PS delay time
CLKOUT ↓ → PS float delay time
Address setup time (vs. ASTB↓)
CLKOUT ↓ → address float delay time
CLKOUT ↓ → ASTB ↑ delay time
CLKOUT ↑ → ASTB ↓ delay time
ASTB high-level width
Note 1
Note 1
Note 2
Note 3
tCYX25DCns
<1>
tXXH10ns
<2>
tXXL10ns
<3>
tXR5ns
<4>
tXF5ns
<5>
tCYK50DCns
<6>
tKKH0.5tCYK–5ns
<7>
tKKL0.5t CYK–5ns
<8>
tKR5ns
<9>
tKF5ns
<10>
tDXK20ns
<11>
tIR15ns
<12>
tIF10ns
<13>
tOR10ns
<14>
tOF10ns
<15>
tSRESK20ns
<16>
tHKRES10ns
<17>
tDKRES525ns
<18>
tSRYLK7ns
<19>
tHKRYL10ns
<20>
tSRYHK7ns
<21>
tHKRYH10ns
<22>
tSNMIK10ns
<23>
tSPOLK20ns
<24>
tSDK7ns
<25>
tHKD5ns
<26>
tDKA525ns
<27>
tHKA5ns
<28>
tDKP530ns
<29>
tFKP530ns
<30>
tSASTt KKL–10ns
<31>
tFKAtHKA25ns
<32>
tDKSTH20ns
<33>
tDKSTL20ns
<34>
tSTSTtKKL–10ns
<35>
Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.
2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE,
BUFEN, BUFR/W, MRD, IORD, MWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR,
IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
Data Sheet U13225EJ4V0DS00
71
(2)µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 5 V ±5%) (2/3)
ASTB ↓ → address hold time
CLKOUT → control 1
CLKOUT → control 2
Address float → RD ↓ delay time
CLKOUT ↓ → RD ↓ delay time
CLKOUT ↓ → RD ↑ delay time
RD ↑ → address delay time
RD low-level width
BUFEN ↑ → BUFR/W delay time (read cycle)
CLKOUT ↓ → data output delay time
CLKOUT ↓ → data float delay time
WR low-level width
WR ↑→ BUFEN ↑ or BUFR/W ↓ (write cycle)
CLKOUT ↑ → BS ↓ delay time
CLKOUT ↓→ BS ↑ delay time
HLDRQ setup time (vs. CLKOUT ↓)
CLKOUT ↓ → HLDAK delay time
CLKOUT ↑ → DMAAK delay time
CLKOUT ↓ → DMAAK delay time (cascade mode)
WR low-level width (DMA cycle)DMA extended write
RD ↓, WR ↓ delay time (vs. DMAAK ↓)
DMAAK ↑ delay time (vs. RD ↑)
RD ↑ delay time (vs. WR ↑)
TC output delay time (vs. CLKOUT ↑)
TC OFF delay time (vs. CLKOUT ↑)
TC low-level width
TC pull-up delay time (vs. CLKOUT ↑)
END setup time (vs. CLKOUT ↑)
END low-level width
DMARQ setup time (vs. CLKOUT ↑)
INTPn low-level width
RxD setup time (vs. SCU internal clock ↓)
RxD hold time (vs. SCU internal clock ↓)
CLKOUT ↓ → SRDY delay time
Note 1
Note 2
delay time
delay time
DMA normal write
µ
PD70208H, 70216H
Output Pin Load Capacitance: CL = 100 pF
µ
PD70208H-20
µ
PD70216H-20
MIN.MAX.
<36>
tHSTAtKKH–10ns
<37>
tDKCT1525ns
<38>
tDKCT2530ns
<39>
tDAFRL0ns
<40>
tDKRL525ns
<41>
tDKRH528ns
<42>
tDRHAtCYK–5ns
<43>
tRR2tCYK–15ns
<44>
tDBECTtKKL–10ns
<45>
tDKD525ns
<46>
tFKD525ns
<47>
tWW2tCYK–15ns
<48>
tDWCTtKKL–10ns
<49>
tDKBL530ns
<50>
tDKBH525ns
<51>
tSHQK7ns
<52>
tDKHA525ns
<53>
tDKHDA525ns
<54>
tDKLDA545ns
<55>
tWW12tCYK–15ns
<56>
tWW2t CYK–15ns
<57>
tDDARWtKKH–10ns
<58>
t
DRHDAH
<59>
tDWHRH3ns
<60>
tDKTCL25ns
<61>
tDKTCF25ns
<62>
tTCTCLtCYK–10ns
<63>
tDKTCH
<64>
tSEDK20ns
<65>
tEDEDL40ns
<66>
tSDQK10ns
<67>
tIPIPL60ns
<68>
tSRX500ns
<69>
tHRX500ns
<70>
tDKSR100ns
tKKL–10ns
Note 3
Unit ParameterSymbol
ns
Notes 1. MWR and IOWR signals in DMA cycle
2. MWR and IOWR signals in BUFEN, BUFR/W, INTAK, REFRQ, and CPU cycles
3. tKKH + 2tCYK – 5 (reference value when a 1.1-kΩ pull-up resistor is connected)
72
Data Sheet U13225EJ4V0DS00
(2)µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 5 V ±5%) (3/3)
TOUT1 ↓ → TxD delay time
TCTL2 setup time (vs. CLKOUT ↓)
TCTL2 setup time (vs. TCLK ↑)
TCTL2 hold time (vs. CLKOUT ↓)
TCTL2 hold time (vs. TCLK ↑)
TCTL2 high-level width
TCTL2 low-level width
TOUT output delay time (vs. CLKOUT ↓)
TOUT output delay time (vs. TCLK ↓)
TOUT output delay time (vs. TCTL2 ↓)
TCLK rise time
TCLK fall time
TCLK high-level width
TCLK low-level width
TCLK cycle
Access interval
REFRQ ↑ delay time (vs. MRD ↑)
RESET pulse width
Note 1
Note 2
Note 3
µ
PD70208H, 70216H
Output Pin Load Capacitance: CL = 100 pF
µ
PD70208H-20
µ
PD70216H-20
MIN.MAX.
tDTX200ns
<71>
tSGK40ns
<72>
tSGTK40ns
<73>
tHKG80ns
<74>
tHTKG40ns
<75>
tGGH40ns
<76>
tGGL40ns
<77>
tDKTO150ns
<78>
tDTKTO100ns
<79>
tDGTO90ns
<80>
tTKR25ns
<81>
tTKF25ns
<82>
t
TKTKH
<83>
tTKTKL23ns
<84>
tCYTK50DCns
<85>
tAI2tCYK–15ns
<86>
t
DRQHRH
<87>
tWRESL4tCYKns
<88>
23ns
tKKL–10ns
Unit ParameterSymbol
Notes 1. This rating is to guarantee the read/write recovery time for the I/O device.
2. This rating is to guarantee that REFRQ ↑ is always behind MRD ↑, and guaranteed only when the EREF
bit of the STCL register is 0.
3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation
stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending
on the characteristics of the resonator and oscillator used, evaluate the oscillation stabilization time with the
resonator and oscillator actually used.
Data Sheet U13225EJ4V0DS00
73
RECOMMENDED OSCILLATOR
The clock input circuits (1) and (2) shown below are recommended.
µ
PD70208H, 70216H
(1) Ceramic resonator connection (T
µ
PD70208H, 70216H-20))
(
Cautions 1. The oscillator should be as close as possible to the X1 and X2 pins.
2. No other signal lines should pass through the area enclosed in dashed line.
3. For matching between V40HL, V50HL and resonator, the efficient evaluation should be carried
out.
4. The values of the oscillator constants C1 and C2 depend on the characteristics of the
resonator used. Evaluate them with the resonator actually used.
Caution The high-speed CMOS inverter should be as close as possible to the X1 and X2 pins.
74
Data Sheet U13225EJ4V0DS00
X2
Open
16.2 AT 3 V OPERATION
OPERATING RANGE
E, P, X, M MasksOthers
µ
PD70208H, 70216H-10/12/16VDD = 3 V ±10%
µ
PD70208H, 70216H-20—VDD = 3 V ±10%
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)
µ
PD70208H, 70216H
Parameter
Supply voltage
Input voltage
Clock input voltage
Output voltage
Operating ambient temperature
Storage temperature
SymbolTest ConditionsRatingUnit
VDD
VI
VK
VO
TA
Tstg
VDD = 3 V ±10%
–0.5 to +7.0V
–0.5 to VDD + 0.3V
–0.5 to VDD + 1.0V
–0.5 to VDD + 0.3V
–40 to +85°C
–65 to +150°C
Cautions 1. Do not directly connect the output pins of two or more IC products and do not directly connect
the output pins to V
DD or VCC and GND. However, open-drain pins or open-collector pins may be
connected directly. Moreover, an external circuit whose timing is designed to avoid output
collision can be connected to pins that go into a high-impedance state.
2. If even one of the above parameters exceeds the absolute maximum rating even momentarily, the
quality of the program may be degraded. Absolute maximum ratings, therefore, are the values
exceeding which the product may be physically damaged. Use the program keeping all the
parameters within these rated values.
The standards and conditions shown in DC and AC Characteristics below specify the range within
which the normal operation of the product is guaranteed.
Data Sheet U13225EJ4V0DS00
75
µ
PD70208H, 70216H
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 3 V ±10%)
ParameterSymbolTest ConditionsMIN.TYP.MAX.Unit
Input voltage highVIHExcept RESET0.7 VDDVDD+0.3V
RESET0.8 VDDVDD+0.3
Input voltage lowVILExcept RESET–0.50.2 VDDV
RESET
Clock input voltage highVKH0.8 VDDVDD+0.5V
Clock input voltage lowVKL–0.50.2 VDDV
Output voltage highVOHIOH = –2.5 mA0.7 VDDV
END/TC: IOL = 5.0 mA
Input leak current highILIHVI = VDD10
Input leak current lowILILVI = 0 V: Except INTP–10
INTP input current lowILIPLVI = 0 V: INTP input–300
Output leak current highILOHVO = VDD10
Output leak current lowILOLVO = 0 V–10
Latch leak current highILLHVI = 3.0 V–50–300
Latch leak current lowILLLVI = 0.8 V50300
Latch inversion current (L → H)IILH400
Latch inversion current (H → L)IILL–400
Supply current
Note
IDDE, P, X, MOn Operation3.0 fX5.5 fXmA
masksOn standby (HALT)0.9 fX1.5 fX
On standby (STOP)30
OthersOn Operation2.5 fX4.0 fXmA
On standby (HALT)0.9 fX1.5 fX
On standby (STOP)30
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
Note The unit of constant values (0.9, 1.5, 2.5, 3.0, 4.0 and 5.5) is mA/MHz.
CAPACITANCE (TA = 25˚C, VDD = 0 V)
ParameterSymbolTest ConditionsMIN.TYP.MAX.Unit
Input capacitanceCIfC = 1 MHz10pF
Input/output capacitanceCIO0 V other than test pin.15pF
76
Data Sheet U13225EJ4V0DS00
µ
PD70208H, 70216H
AC CHARACTERISTICS
(1)µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, VDD = 3 V ±10%) (1/3)
Output Pin Load Capacitance: CL = 100 pF
µ
External clock input cycle
External clock input high-level width (VKH=0.8 VDD)
External clock input low-level width (VKL=0.2 VDD)
External clock input rise time (0.2 VDD→0.8 VDD)
External clock input fall time (0.8 VDD→0.2 VDD)
Clock output cycle
Clock output high-level width (VOH=0.7 VDD)
Clock output low-level width (VOL=0.2 VDD)
Clock output rise time (0.2 VDD→0.7 VDD)
Clock output fall time (0.7 VDD→0.2 VDD)
CLKOUT delay time (vs. external clock)
Input rise time (except external clock) (0.2 VDD→0.7 VDD)
Input fall time (except external clock) (0.7 VDD→0.2 VDD)
Output rise time (except CLKOUT) (0.2 VDD→0.7 VDD)
Output fall time (except CLKOUT) (0.7 VDD→0.2 VDD)
RESET setup time (vs. CLKOUT↓)
RESET hold time (vs. CLKOUT↓)
RESOUT output delay time (vs. CLKOUT↓)
READY inactive setup time (vs. CLKOUT↑)
READY inactive hold time (vs. CLKOUT↑)
READY active setup time (vs. CLKOUT↑)
READY active hold time (vs. CLKOUT↑)
NMI setup time (vs. CLKOUT↑)
POLL setup time (vs. CLKOUT↑)
Data setup time (vs. CLKOUT↓)
Data hold time (vs. CLKOUT↓)
CLKOUT → address delay time
CLKOUT → address hold time
CLKOUT↓ → PS delay time
CLKOUT↓ → PS float delay time
Address setup time (vs. ASTB↓)
CLKOUT↓ → address float delay time
CLKOUT↓ → ASTB↑ delay time
CLKOUT↑ → ASTB↓ delay time
ASTB high-level width
Note 1
Note 1
Note 2
Note 3
PD70208H-10
µ
PD70216H-10
MIN.MAX.MIN.MAX.MIN.MAX.
tCYX100DC83DC62.5DCns
<1>
tXXH403020ns
<2>
tXXL403020ns
<3>
tXR101010ns
<4>
tXF101010ns
<5>
tCYK200DC166DC125DCns
<6>
tKKH0.5tCYK–70.5tCYK–70.5tCYK–7ns
<7>
tKKL0.5t CYK–70.5tCYK–70.5t CYK–7ns
<8>
tKR777ns
<9>
tKF777ns
<10>
tDXK756555ns
<11>
tIR202020ns
<12>
tIF121212ns
<13>
tOR202020ns
<14>
tOF121212ns
<15>
tSRESK252525ns
<16>
tHKRES353535ns
<17>
tDKRES580570560ns
<18>
tSRYLK202015ns
<19>
tHKRYL303025ns
<20>
tSRYHK202015ns
<21>
tHKRYH303025ns
<22>
tSNMIK151515ns
<23>
tSPOLK202020ns
<24>
tSDK202015ns
<25>
tHKD555ns
<26>
tDKA575565555ns
<27>
tHKA555ns
<28>
tDKP580570560ns
<29>
tFKP580570560ns
<30>
tSASTtKKL–30tKKL–30t KKL–30ns
<31>
tFKA580570560ns
<32>
tDKSTH565555545ns
<33>
tDKSTL570560550ns
<34>
tSTSTtKKL–10tKKL–10tKKL–10ns
<35>
µ
PD70208H-12
µ
PD70216H-12UnitSymbol Parameter
µ
PD70208H-16
µ
PD70216H-16
Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.
2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE,
BUFEN, BUFR/W, MRD, IORD, MWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR,
IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
Data Sheet U13225EJ4V0DS00
77
(1)µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, VDD = 3 V ±10%) (2/3)
µ
PD70208H-10
µ
PD70216H-10
MIN.MAX.MIN.MAX.MIN.MAX.
ASTB↓ → address hold time
CLKOUT → control 1
CLKOUT → control 2
Address float → RD↓ delay time
CLKOUT↓ → RD↓ delay time
CLKOUT↓ → RD↑ delay time
RD↑ → address delay time
RD low-level width
BUFEN↑ → BUFR/W delay time (read cycle)
CLKOUT↓ → data output delay time
CLKOUT↓ → data float delay time
WR low-level width
WR↑ → BUFEN↑ or BUFR/W↓ (write cycle)
CLKOUT↑ → BS↓ delay time
CLKOUT↓ → BS↑ delay time
HLDRQ setup time (vs. CLKOUT↓)
CLKOUT↓ → HLDAK delay time
CLKOUT↑ → DMAAK delay time
CLKOUT↓ → DMAAK delay time (cascade mode)
WR low-level widthDMA extended write
(DMA cycle)
RD↓ WR↓ delay time (vs. DMAAK↓)
DMAAK↑ delay time (vs. RD↑)
RD↑ delay time (vs. WR↑)
TC output delay time (vs. CLKOUT↑)
TC OFF delay time (vs. CLKOUT↑)
TC low-level width
TC pull-up delay time (vs. CLKOUT↑)
END setup time (vs. CLKOUT↑)
END low-level width
DMARQ setup time (vs. CLKOUT↑)
INTPn low-level width
RXD setup time (vs. SCU internal clock↓)
RXD hold time (vs. SCU internal clock↓)
CLKOUT↓ → SRDY delay time
Note 1
Note 2
delay time
delay time
DMA normal write
tHSTAtKKH–30t KKH–30tKKH–20ns
<36>
tDKCT1590580570ns
<37>
tDKCT2580570560ns
<38>
tDAFRL000ns
<39>
tDKRL595585575ns
<40>
tDKRH590580570ns
<41>
tDRHAtCYK–70tCYK–60tCYK–50ns
<42>
tRR2tCYK–702tCYK–602tCYK–50ns
<43>
tDBECTt KKL–30tKKL–30tKKL–20ns
<44>
tDKD580570560ns
<45>
tFKD580570560ns
<46>
tWW2tCYK–502tCYK–502tCYK–40ns
<47>
tDWCTt KKL–30tKKL–30tKKL–20ns
<48>
tDKBL580570560ns
<49>
tDKBH580570560ns
<50>
tSHQK252520ns
<51>
tDKHA590580570ns
<52>
tDKHDA580570560ns
<53>
tDKLDA51105100590ns
<54>
tWW12tCYK–502tCYK–502tCYK–40ns
<55>
tWW2t CYK–50tCYK–50tCYK–40ns
<56>
tDDARWtKKH–40t KKH–40tKKH–30ns
<57>
t
DRHDAH
<58>
tDWHRH555ns
<59>
tDKTCL580570560ns
<60>
tDKTCF580570560ns
<61>
tTCTCLtCYK–25tCYK–25tCYK–15ns
<62>
tDKTCHNote 3Note 4Note 4ns
<63>
tSEDK454035ns
<64>
tEDEDL140120100ns
<65>
tSDQK454035ns
<66>
tIPIPL100100100ns
<67>
tSRX100010001000ns
<68>
tHRX100010001000ns
<69>
tDKSR150150150ns
<70>
tKKL–40t KKL–40tKKL–30ns
µ
PD70208H, 70216H
Output Pin Load Capacitance: CL = 100 pF
µ
µ
PD70208H-12
µ
PD70216H-12
PD70208H-16
µ
PD70216H-16Unit ParameterSymbol
Notes 1. MWR and IOWR signals in DMA cycle
2. MWR and IOWR signals in CPU cycles and BUFEN, BUFR/W, INTAK and REFRQ signals.
3. t KKH + 2tCYK – 20 (Reference value when a 1.1-kΩ pull-up resistor is connected)
4. t KKH + 2tCYK – 10 (Reference value when a 1.1-kΩ pull-up resistor is connected)
78
Data Sheet U13225EJ4V0DS00
(1)µPD70208H, 70216H-10/12/16 (TA = –40 to +85 °C, VDD = 3 V ±10%) (3/3)
µ
PD70208H-10
µ
PD70216H-10Unit Parameter
MIN.MAX.MIN.MAX.MIN.MAX.
605550ns
tKKL–50t KKL–40tKKL–30ns
TOUT1↓→ TXD delay time
TCTL2 setup time (vs. CLKOUT↓)
TCTL2 setup time (vs. TCLK↑)
TCTL2 hold time (vs. CLKOUT↓)
TCTL2 hold time (vs. TCLK↑)
TCTL2 high-level width
TCTL2 low-level width
TOUT output delay time (vs. CLKOUT↓)
TOUT output delay time (vs. TCLK↓)
TOUT output delay time (vs. TCTL2↓)
TCLK rise time
TCLK fall time
TCLK high-level width
TCLK low-level width
TCLK cycle
Access interval
REFRQ↑ delay time (vs. MRD↑)
RESET pulse width
Note 1
Note 2
Note 3
Symbol
<71>
tDTX500500500ns
<72>
tSGK505050ns
<73>
tSGTK505050ns
<74>
tHKG100100100ns
<75>
tHTKG505050ns
<76>
tGGH505050ns
<77>
tGGL505050ns
<78>
tDKTO200200200ns
<79>
tDTKTO150150150ns
<80>
tDGTO120120120ns
<81>
tTKR252525ns
<82>
tTKF252525ns
<83>
t
TKTKH
<84>
tTKTKL605550ns
<85>
tCYTK200DC166DC125DCns
<86>
tAI2tCYK–702tCYK–602tCYK–50ns
<87>
t
DRQHRH
<88>
tWRESL4tCYK4tCYK4tCYKns
µ
PD70208H, 70216H
Output Pin Load Capacitance: CL = 100 pF
µ
PD70208H-12
µ
PD70216H-12
µ
PD70208H-16
µ
PD70216H-16
Notes 1. Specification to guarantee read/write recovery time for I/O device.
2. Specification to guarantee that REFRQ↑ is always later than MRD↑.
Only guaranteed when the EREF bit of the SCTL register is 0.
3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation
stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending
on the characteristics of the resonator and oscillator used, evaluate the oscillation stabilization time with the
resonator and oscillator actually used.
Data Sheet U13225EJ4V0DS00
79
(2)µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 3 V ±10%) (1/3)
External clock input cycle
External clock input high-level width (VKH=0.8 VDD)
External clock input low-level width (VKL=0.2 VDD)
External clock input rise time (0.2 VDD→0.8 VDD)
External clock input fall time (0.8 VDD→0.2 VDD)
Clock output cycle
Clock output high-level width (VOH=0.7 VDD)
Clock output low-level width (VOL=0.2 VDD)
Clock output rise time (0.2 VDD→0.7 VDD)
Clock output fall time (0.7 VDD→0.2 VDD)
CLKOUT delay time (vs. external clock)
Input rise time (except external clock) (0.2 VDD→0.7 VDD)
Input fall time (except external clock) (0.7 VDD→0.2 VDD)
Output rise time (except CLKOUT) (0.2 VDD→0.7 VDD)
Output fall time (except CLKOUT) (0.7 VDD→0.2 VDD)
RESET setup time (vs. CLKOUT↓)
RESET hold time (vs. CLKOUT↓)
RESOUT output delay time (vs. CLKOUT↓)
READY inactive setup time (vs. CLKOUT↑)
READY inactive hold time (vs. CLKOUT↑)
READY active setup time (vs. CLKOUT↑)
READY active hold time (vs. CLKOUT↑)
NMI setup time (vs. CLKOUT↑)
POLL setup time (vs. CLKOUT↑)
Data setup time (vs. CLKOUT↓)
Data hold time (vs. CLKOUT↓)
CLKOUT → address delay time
CLKOUT → address hold time
CLKOUT ↓ → PS delay time
CLKOUT ↓ → PS float delay time
Address setup time (vs. ASTB↓)
CLKOUT ↓ → address float delay time
CLKOUT ↓ → ASTB ↑ delay time
CLKOUT ↑ → ASTB ↓ delay time
ASTB high-level width
Note 1
Note 1
Note 2
Note 3
µ
PD70208H, 70216H
Output Pin Load Capacitance: CL = 100 pF
µ
PD70208H-20
µ
PD70216H-20Unit ParameterSymbol
MIN.MAX.
tCYX50DCns
<1>
tXXH19ns
<2>
tXXL19ns
<3>
tXR5ns
<4>
tXF5ns
<5>
tCYK100DCns
<6>
tKKH0.5tCYK–7ns
<7>
tKKL0.5tCYK –7ns
<8>
tKR7ns
<9>
tKF7ns
<10>
tDXK45ns
<11>
tIR15ns
<12>
tIF10ns
<13>
tOR15ns
<14>
tOF10ns
<15>
tSRESK25ns
<16>
tHKRES25ns
<17>
tDKRES550ns
<18>
tSRYLK15ns
<19>
tHKRYL20ns
<20>
tSRYHK15ns
<21>
tHKRYH20ns
<22>
tSNMIK15ns
<23>
tSPOLK20ns
<24>
tSDK15ns
<25>
tHKD5ns
<26>
tDKA550ns
<27>
tHKA5ns
<28>
tDKP550ns
<29>
tFKP550ns
<30>
tSASTtKKL–20ns
<31>
tFKAt HKA50ns
<32>
tDKSTH40ns
<33>
tDKSTL45ns
<34>
tSTSTtKKL–10ns
<35>
Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.
2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE,
BUFEN, BUFR/W, MRD, IORD, MWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR,
IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
80
Data Sheet U13225EJ4V0DS00
(2)µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 3 V ±10%) (2/3)
ASTB ↓ → address hold time
CLKOUT → control 1
CLKOUT → control 2
Address float → RD ↓ delay time
CLKOUT ↓→ RD ↓ delay time
CLKOUT ↓ → RD ↑ delay time
RD ↑ → address delay time
RD low-level width
BUFEN ↑ → BUFR/W delay time (read cycle)
CLKOUT ↓ → data output delay time
CLKOUT ↓ → data float delay time
WR low-level width
WR ↑→ BUFEN ↑ or BUFR/W ↓ (write cycle)
CLKOUT ↑ → BS ↓ delay time
CLKOUT ↓→ BS ↑ delay time
HLDRQ setup time (vs. CLKOUT ↓)
CLKOUT ↓ → HLDAK delay time
CLKOUT ↑ → DMAAK delay time
CLKOUT ↓ → DMAAK delay time (cascade mode)
WR low-level width (DMA cycle)DMA extended write
RD ↓, WR ↓ delay time (vs. DMAAK ↓)
DMAAK ↑ delay time (vs. RD ↑)
RD ↑ delay time (vs. WR ↑)
TC output delay time (vs. CLKOUT ↑)
TC OFF delay time (vs. CLKOUT ↑)
TC low-level width
TC pull-up delay time (vs. CLKOUT ↑)
END setup time (vs. CLKOUT ↑)
END low-level width
DMARQ setup time (vs. CLKOUT ↑)
INTPn low-level width
RxD setup time (vs. SCU internal clock ↓)
RxD hold time (vs. SCU internal clock ↓)
CLKOUT ↓ → SRDY delay time
Note 1
Note 2
delay time
delay time
DMA normal write
µ
PD70208H, 70216H
Output Pin Load Capacitance: CL = 100 pF
µ
PD70208H-20
µ
PD70216H-20Unit ParameterSymbol
MIN.MAX.
tHSTAtKKH–20ns
<36>
tDKCT1560ns
<37>
tDKCT2555ns
<38>
tDAFRL0ns
<39>
tDKRL565ns
<40>
tDKRH560ns
<41>
tDRHAtCYK–40ns
<42>
tRR2tCYK–40ns
<43>
tDBECTtKKL–20ns
<44>
tDKD555ns
<45>
tFKD555ns
<46>
tWW2tCYK–40ns
<47>
tDWCTtKKL–20ns
<48>
tDKBL555ns
<49>
tDKBH555ns
<50>
tSHQK15ns
<51>
tDKHA560ns
<52>
tDKHDA555ns
<53>
tDKLDA580ns
<54>
tWW12tCYK–40ns
<55>
tWW2tCYK–40ns
<56>
tDDARWtKKH–30ns
<57>
t
DRHDAH
<58>
tDWHRH3ns
<59>
tDKTCL55ns
<60>
tDKTCF55ns
<61>
tTCTCLtCYK–15ns
<62>
tDKTCHNote 3 ns
<63>
tSEDK30ns
<64>
tEDEDL80ns
<65>
tSDQK30ns
<66>
tIPIPL80ns
<67>
tSRX500ns
<68>
tHRX500ns
<69>
tDKSR100ns
<70>
tKKL–30ns
Notes 1. MWR and IOWR signals in DMA cycle
2. MWR and IOWR signals in CPU cycles and BUFEN, BUFR/W, INTAK and REFRQ signals.
3. tKKH + 2tCYK – 10 (reference value when a 1.1-kΩ pull-up resistor is connected)
Data Sheet U13225EJ4V0DS00
81
(2)µPD70208H, 70216H-20 (TA = –40 to +85 °C, VDD = 3 V ±10%) (3/3)
TOUT1 ↓ → TxD delay time
TCTL2 setup time (vs. CLKOUT ↓)
TCTL2 setup time (vs. TCLK ↑)
TCTL2 hold time (vs. CLKOUT ↓)
TCTL2 hold time (vs. TCLK ↑)
TCTL2 high-level width
TCTL2 low-level width
TOUT output delay time (vs. CLKOUT ↓)
TOUT output delay time (vs. TCLK ↓)
TOUT output delay time (vs. TCTL2 ↓)
TCLK rise time
TCLK fall time
TCLK high-level width
TCLK low-level width
TCLK cycle
Access interval
REFRQ ↑ delay time (vs. MRD ↑)
RESET pulse width
Note 1
Note 2
Note 3
µ
PD70208H, 70216H
Output Pin Load Capacitance: CL = 100 pF
µ
PD70208H-20
µ
PD70216H-20
MIN.MAX.
tDTX200ns
<71>
tSGK40ns
<72>
tSGTK40ns
<73>
tHKG80ns
<74>
tHTKG40ns
<75>
tGGH40ns
<76>
tGGL40ns
<77>
tDKTO150ns
<78>
tDTKTO100ns
<79>
tDGTO90ns
<80>
tTKR25ns
<81>
tTKF25ns
<82>
t
TKTKH
<83>
tTKTKL45ns
<84>
tCYTK100DCns
<85>
tAI2tCYK–40ns
<86>
t
DRQHRH
<87>
tWRESL4tCYKns
<88>
45ns
tKKL–30ns
Unit ParameterSymbol
Notes 1. This rating is to guarantee the read/write recovery time for the I/O device.
2. This rating is to guarantee that REFRQ ↑ is always behind MRD ↑, and is guaranteed only when the EREF
bit of the STCL register is 0.
3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation
stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending
on the characteristics of the resonator and oscillator used, evaluate the oscillation stabilization time with the
resonator and oscillator actually used.
82
Data Sheet U13225EJ4V0DS00
RECOMMENDED OSCILLATOR
The clock input circuits (1) and (2) shown below are recommended.
µ
PD70208H, 70216H
(1) Ceramic resonator connection (T
Cautions 1. The oscillator should be as close as possible to the X1 and X2 pins.
2. No other signal lines should pass through the area enclosed in dashed line.
3. V40HL, V50HL and resonator matching requires careful evaluation.
4. The values of the oscillator constants C1 and C2 depend on the characteristics of the
resonator used. Evaluate them with the resonator actually used.