–15 dBm INPUT, VARIABLE GAIN AMPLIFIER SILICON MMIC
FOR TRANSMITTER AGC OF DIGITAL CELLULAR TELEPHONE
DESCRIPTION
The µPC8130TA and µPC8131TA are silicon monolithic integrated circuits designed as variable gain amplifier.
Due to 800 MHz to 1.5 GHz operation, these ICs are suitable for RF transmitter AGC stage of digital cellular
telephone. These ICs are lower distortion than conventional µPC8119T and µPC8120T so that –15 dBm input level
can be applied. These ICs also available in two types of gain control so you can choose either IC in accordance with
your system design. 3 V supply voltage and minimold package contribute to make your system lower voltage,
decreased space and fewer components.
The µPC8130TA and µPC8131TA are manufactured using NEC’s 20 GHz fT NESAT™III silicon bipolar process.
This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from
external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.
FEATURES
• Recommended operating frequency: f = 800 MHz to 1.5 GHz
• Low distortion: P
• Supply voltage: VCC = 2.7 to 3.3 V
• Low current consumption: ICC = 11 mA TYP. @VCC = 3.0 V
• Gain control voltage: V
• Two types of gain control: µPC8130TA = V
• AGC control can be constructed by external control circuit.
PC8119T2.7 to 3.3110.6 to 2.4down0.1 to 1.92+3≤ –18PHS, PDC
µ
PC8120T2.7 to 3.3110.6 to 2.4up0.1 to 1.92+3≤ –18PHS, PDC
µ
PC8130TA2.7 to 3. 3110.6 to 2.4up0.8 to 1.5+5≤ –15PDC 800 M, PDC 1.5 G
µ
PC8131TA2.7 to 3. 3110 to 2.4down0.8 to 1.5+5≤ –15PDC 800 M, PDC 1.5 G
Remark
Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
AGC
(V)V
To know the associated product, please refer to each latest data sheet.
AGC
vs.
up
Gainf (GHz)P
O (1 dB)Pin
(dBm)Features
SYSTEM APPLICATION EXAMPLE
This block diagram is an example of IF modulation digital cellular system.
The µPC8130TA and µPC8131TA are applicable for not only IF modulation system but also RF modulation
system. This diagram is intended to show the µPC8130TA and µPC8131TA location in the systems.
I
Q
I
Q
TX
RX
SW
PA
µ
PC8130TA
or
µ
PC8131TA
÷N
PLL
0 °
φ
90 °
DEMO
PLL
This document is to be specified for µPC8130TA and µPC8131TA only. For the other part number mentioned in
this document, please refer to the latest data sheet of each part number.
2
PIN EXPLANATION
µµµµ
PC8130TA,
µµµµ
PC8131TA
Pin
No.
Pin
Name
1IN–1.4RF input pin. This pin should be
2
GND0−Ground pin. This pin should be
3
4OUTvoltage
5VCC2.7 to 3.3–Supply voltage pin.
6V
AGC
Applied
Voltage
V
as same
CC
as V
through
external
inductor
0 to 3.3−Gain control pin. The relation
Pin
Voltage
Note
V
−RF output pin. This pin is designed
Function and ApplicationsInternal Equivalent Circ ui t
coupled with capacitor (eg 1000 pF)
for DC cut. Input return l o ss can be
improved with external impedance
matching circuit.
connected to system ground with
minimum inductance. Ground pattern on the board should be formed
as wide as possible. Ground pins
must be connected together wi th
wide ground pattern to decrease
impedance difference.
as open collector of high im pedance.
This pin must be externall y equipped
with matching circuits.
This pin must be equipped with
bypass capacitor (eg 1000 pF)
to minimize its RF i m pedance.
between product number and control
performance is shown below;
Part No.V
µ
PC8130TAup
µ
PC8131TAdown
AGC
up vs. Gain
Control
circuit
6
5
4
1
Bias
circuit
2
3
GND
5
Control circuit
2
Pin voltage is measured at V
Note
CC
= 3.0 V.
3
ABSOLUTE MAXIMUM RATINGS
ParameterSymbolConditionsRatingsUnit
µµµµ
PC8130TA,
µµµµ
PC8131TA
Supply VoltageV
Total Circuit CurrentI
Input PowerP
Gain Control VoltageV
Operating Ambient TemperatureT
Storage TemperatureT
CC
CC
AGC
stg
TA = +25 °C, Pin 4 and 53.6V
TA = +25 °C, Pin 4 and 530mA
in
TA = +25 °C+10dBm
TA = +25 °C3.6V
A
–25 to +85°C
–55 to +150°C
RECOMMENDED OPERATING CONDITIONS
ParameterSymbolMIN.TYP.MAX.UnitRemarks
Supply VoltageV
CC
2.73.03.3VSame voltage should be applied to 4
and 5 pins.
Gain Control VoltageV
Input LevelP
Operating Ambient TemperatureT
Caution Test circuit or print pattern in this sheet is for testing IC characteristics.
In the case of actual system application, external circuits including print pattern and matching
circuit constant of output port should be designed in accordance with IC’s S parameters and
environmental components.
6
TEST CIRCUIT2 (f = 1440 MHz, both products in common)
µµµµ
PC8130TA,
µµµµ
PC8131TA
1000 pF
C3
L2
L1
4
Output matching circuit
C5C6
C2
V
AGC
IN
C1
C4
6
5
1
2, 3
ILLUSTRATION OF TEST CIRCUIT2 ASSEMBLED ON EVALUATION BOARD
Caution Test circuit or print pattern in this sheet is for testing IC characteristics.
In the case of actual system application, external circuits including print pattern and matching
circuit constant of output port should be designed in accordance with IC’s S parameters and
environmental components.
7
µµµµ
PC8130TA,
µµµµ
PC8131TA
APPLICATION EXPLANATION
The
PC8130TA and µPC8131TA has difference in internal circuit in order to reduce the number of external
µ
component with µPC8119T and µPC8120T. For this reason, they have difference in mechanism for determing
minimum gain and external suitable constant.
µ
PC8119T
µ
PC8120T
µ
PC8130TA
PC8131TA
µ
Determing Minimum Gain
High frequency negative feed bac k
between OUT, VCC and V
optimized by external choke
inductance.
Isolation of V
optimized by external choke
inductance.
CC
to OUT pin
AGC
pin
External Feedback Capacit or of
CC
AGC
to V
V
NecessaryThe impedance of inductance
UnnecessaryThe impedanc e of inductance
Pin
Optimize Choke Inductance of
Type Circuit on VCC Line
should be very low at high
frequency region.
should be very high at high
frequency region.
π
8
TYPICAL CHARACTERISTICS
PC8130TA
µµµµ
µµµµ
PC8130TA,
µµµµ
PC8131TA
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
20
no signalsno signals
18
16
14
(mA)
CC
12
(mA)
AGC
10
8
6
Circuit Current I
4
2
0
00.511.52
Supply Voltage V
2.533.54
CC
(V)
Gain Control Current I
CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE
14
12
(mA)
10
(mA)
CC
8
6
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
OUT
4
Circuit Current I
2
0
-40-2002040
Operating Ambient Temperature T
no signals
6080100
A
(°C)
Current into Output pin I
GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE
0.2
0.18
0.16
0.14
0.12
0.1
VCC = 2.7 V
VCC = 3.0 V
0.08
0.06
VCC = 3.3 V
0.04
0.02
0
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
CURRENT INTO OUTPUT PIN AND CURRENT
INTO V
CC
PIN vs. GAIN CONTROL VOLTAGE
16
VCC = 3.3 V
14
12
(mA)
VCC
10
pin I
8
CC
6
VCC = 2.7 V
4
2
Current into V
I
VCC
VCC = 3.0 V
I
out
VCC = 2.7 V
VCC = .3.3 V
VCC = 3.0 V
no signals
0
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
S11 vs. FREQUENCY
V
CC
= V
AGC
S
11
: 950 MHz
1
69.594 Ω−8.9766 Ω
: 1.44 GHz
2
58.973 Ω−22.688 Ω
: 1.9 GHz
3
48.133 Ω−23.941 Ω
= 3.0 V (GPMAX), Pin = −20 dBm
1
2
3
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S22 vs. FREQUENCY
V
CC
= V
AGC
S
22
: 950 MHz
1
15.859 Ω −208.8 Ω
: 1.44 GHz
2
32.234 Ω −150.07 Ω
= 3.0 V (GPMAX), Pin = −20 dBm
: 1.9 GHz
24.711 Ω −131.8 Ω
1
2
3
START 800.000 000 MHzSTOP 2 700.000 000 MHz
9
PC8130TA
µµµµ
Output port matching at f = 950 MHz
VCC = V
AGC
= 3.0 V(GPMAX), Pin = −20 dBm
S
11
vs. FREQUENCY 1: 65.098 Ω−56.266 Ω 2.9775 pF
950.000 000 MHz
µµµµ
PC8130TA,
VCC = V
AGC
= 3.0 V(GPMAX), Pin = −20 dBm
S
22
vs. FREQUENCY 1: 69.219 Ω 13.313 Ω 2.2303 nH
µµµµ
950.000 000 MHz
PC8131TA
MARKER 1
950 MHz
1
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S
11
vs. FREQUENCY
V
AGC
= V
CC
(G
P
MAX), Pin = −20 dBm
S
11
log MAG 1: −6.8118 dB
10
VCC = 3.0 V
0
5 dB/REF 0 dB
950.000 000 MHz
VCC = 3.3 V
−10
MARKER 1
950 MHz
1
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S
11
vs. FREQUENCY
V
CC
= V
AGC
= 3.0 V (GPMAX), Pin = −20 dBm
S
11
log MAG 1: −5.9537 dB
10
TA = −25 °C
0
5 dB/REF 0 dB
950.000 000 MHz
1
−10
−20
VCC = 2.7 V
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
22
vs. FREQUENCY
S
V
AGC
= VCC (GPMAX), Pin = −20 dBm
S
22
log MAG 1: −13.235 dB
10
5 dB/REF 0 dB
950.000 000 MHz
0
−10
VCC = 3.3 V
VCC = 3.0 V
−20
VCC = 2.7 V
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
10
−20
−30
TA = +25 °C
TA = +85 °C
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S
22
vs. FREQUENCY
V
CC
= V
AGC
= 3.0 V(GPMAX), Pin = −20 dBm
S
22
log MAG 1: −12.477 dB
10
5 dB/REF 0 dB
950.000 000 MHz
0
−10
TA = −25 °C
−20
TA = +85 °C
TA = +25 °C
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
PC8130TA
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
S21 vs. FREQUENCY
V
AGC
= VCC (GPMAX), Pin = −20 dBm
S
21
log MAG 1: 12.811 dB
16
1 dB/REF 7 dB
950.000 000 MHz
VCC = 3.3 V
VCC = 3.0 V
14
1
VCC = 2.7 V
12
10
8
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S
12
vs. FREQUENCY
V
AGC
= VCC (GPMAX), Pin = −20 dBm
S
12
log MAG 1: −20.189 dB
10
5 dB/REF 0 dB
950.000 000 MHz
0
21
vs. FREQUENCY
S
V
CC
= V
AGC
= 3.0 V (GPMAX), Pin = −20 dBm
S
21
log MAG 1: 12.714 dB
16
14
1 dB/REF 7 dB
950.000 000 MHz
1
12
TA = +25 °C
10
TA = −25 °C
TA = +85 °C
8
START 100.000 000 MHzSTOP 3 100.000 000 MHz
12
vs. FREQUENCY
S
V
CC
= V
AGC
= 3.0 V (GPMAX), Pin = −20 dBm
S
12
log MAG 1: −20.255 dB
10
5 dB/REF 0 dB
950.000 000 MHz
0
−10
1
−20
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
−10
TA = +85 °C
−20
1
TA = +25 °C
TA = −25 °C
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
11
PC8130TA
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
VCC = 2.7 V
5
0
(dB)
P
−5
−10
−15
−20
Power Gain G
−25
VCC = 3.0 V
VCC = 3.3 V
−30
−35
−40
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S21 log MAG 1: −36.686 dB
40
20
V
AGC
V
AGC
V
AGC
= 1.0 V
V
10 dB/REF 0 dB
V
AGC
= 1.5 V
V
AGC
= 1.4 V
AGC
= 1.3 V
= 1.2 V
= 1.1 V
950.000 000 MHz
V
AGC
= 3.0 V
V
AGC
= 2.2 V
V
AGC
= 2.0 V
V
AGC
= 1.9 V
V
AGC
= 1.6 V
0
−20
1
−40
V
AGC
= 0.9 V
V
AGC
= 0.2 V
V
AGC
= 0 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
5
0
(dB)
P
−5
−10TA = +85 °C
−15
−20
Power Gain G
−25
TA = −25 °C
TA = +25 °C
−30
−35
−40
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S12 log MAG 1: −20.344 dB
40
10 dB/REF 0 dB
950.000 000 MHz
20
0
V
AGC
= 3.0 V
V
AGC
1
= 0 V
−20
−40
V
AGC
= 1.55 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
12
S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = -20 dBm
S11 log MAG 1: −6.9044 dB
40
20
0
−20
10 dB/REF 0 dB
V
AGC
= 3.0 V
V
AGC
1
V
AGC
= 1.6 V
V
AGC
= 0 to 1.0 V
950.000 000 MHz
= 2.0 V
−40
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = -20 dBm
S22 log MAG 1: −12.969 dB
40
10 dB/REF 0 dB
950.000 000 MHz
20
0
1
V
AGC
= 1.7 V
V
AGC
= 0 V
−20
V
AGC
= 2.05 V
V
AGC
= 3.0 V
−40
START 100.000 000 MHzSTOP 3 100.000 000 MHz
PC8130TA
µµµµ
Output port matching at f = 950 MHz
OUTPUT POWER vs. INPUT POWEROUTPUT POWER vs. INPUT POWER
10
f = 950 MHz
V
AGC = VCC
5
0
VCC = 3.3 V
−5
−10
Output Power Pout (dBm)
−15
−20
−20−15−10−50 5
Input Power P
VCC = 3.0 V
VCC = 2.7 V
in (dBm)
µµµµ
PC8130TA,
10
f = 950 MHz
0
V
CC = 3.0 V
−10
−20
−30
−40
−50
Output Power Pout (dBm)
−60
−70
−30−25−20−15−10−50 5
Input Power P
VAGC = 0.95 V
VAGC = 0 V
µµµµ
PC8131TA
VAGC = 3.0 V
VAGC = 1.5 V
VAGC = 1.3 V
VAGC = 1.1 V
in (dBm)
OUTPUT POWER vs. INPUT POWER
10
f = 950 MHz
0
V
CC = 3.3 V
−10
−20
−30
−40
−50
Output Power Pout (dBm)
−60
−70
−30−25−20−15−10−50 5
VAGC = 0 V
Input Power P
VAGC = 3.3 V
VAGC = 1.7 V
VAGC = 1.45 V
VAGC = 1.3 V
VAGC = 1.15 V
in (dBm)
OUTPUT POWER vs. INPUT POWER
10
f = 950 MHz
0
V
CC = 2.7 V
−10
−20
−30
−40
−50
Output Power Pout (dBm)
−60
−70
−30−25−20−15−10−50 5
Input Power P
VAGC = 0.75 V
VAGC = 0 V
VAGC = 2.7 V
VAGC = 1.3 V
VAGC = 1.1 V
VAGC = 0.95 V
in (dBm)
13
PC8130TA
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
OUTPUT POWER AND IM3 vs. INPUT POWER
20
10
(dBm)
3
−10
(dBm)
out
−20
−30
0
Pout
IM3
2f1-f2
(949 MHz)
−40
in (dBm)
VCC = 3.0 V
V
AGC = 3.0 V
f
1 = 950 MHz
f
2 = 951 MHz
−50
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
2f2-f1
(952 MHz)
Input Power P
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
(dBm)
V
0
−10
−20
−30
−40
−50
AGC = 1.3 V
f
1 = 950 MHz
f
2 = 951 MHz
2f1-f2
(949 MHz)
2f2-f1
(952 MHz)
Pout
IM3
3
(dBm)
out
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
Input Power P
in (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
(dBm)
V
0
−10
−20
−30
−40
−50
AGC = 1.55 V
f
1 = 950 MHz
f
2 = 951 MHz
2f1-f2
(949 MHz)
2f2-f1
(952 MHz)
Pout
IM3
3
(dBm)
out
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
Input Power P
in (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
(dBm)
V
3
(dBm)
out
Third Order Intermodulation Distortion IM
Output Power of each tone P
AGC = 1.15 V
f
1 = 950 MHz
0
f
2 = 951 MHz
−10
−20
−30
−40
−50
2f2-f1
(952 MHz)
−60
−70
−30−25−20−15−10−50
Input Power P
Pout
IM3
2f1-f2
(949 MHz)
in (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
(dBm)
V
0
−10
−20
AGC = 0 V
f
1 = 950 MHz
f
2 = 951 MHz
3
(dBm)
out
−30
−40
−50
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
2f1-f2 (949 MHz)
2f2-f1
(952 MHz)
Input Power P
14
in (dBm)
P
out
IM3
PC8130TA
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
TA = +25 °C
P
in = −13 dBm
±50 KHz
−55
−60
VCC = 2.7 V
−65
−70
Adjacent Channel Interference Padj (dBc)
−75
00.511.52
Gain Control Voltage V
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
TA = +85 °C
P
in = −13 dBm
±50 KHz
−55
−60
−65
−70
VCC = 2.7 V
Adjacent Channel Interference Padj (dBc)
−75
00.511.52
Gain Control Voltage V
VCC = 3.0 V
VCC = 3.3 V
2.533.54
AGC (V)
VCC = 3.3 V
VCC = 3.0 V
2.533.54
AGC (V)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
−55
−60
−65
−70
Adjacent Channel Interference Padj (dBc)
−75
−30
−35
−40
−45
−50
−55
−60
−65
Adjacent Channel Interference Padj (dBc)
−70
TA = −25 °C
P
in = −13 dBm
±50 KHz
VCC = 3.0 V
VCC = 2.7 V
00.511.52
Gain Control Voltage V
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
VAGC = VCC
VCC = 3.3 V
VCC = 2.7 V
−20−15−10−50 5
Input Power P
VCC = 3.3 V
2.533.54
AGC (V)
VCC = 3.0 V
in (dBm)
15
PC8130TA
µµµµ
Output port matching at f = 1440 MHz
VCC = V
AGC
= 3.0 V (GPMAX), Pin = −20 dBm
S
11
vs. FREQUENCY 1: 51.363 Ω−34.424 Ω 3.2107 pF
1 440.000 000 MHz
µµµµ
PC8130TA,
VCC = V
AGC
= 3.0 V (GPMAX), Pin = −20 dBm
S
22
vs. FREQUENCY 1: 37.857 Ω−11.791 Ω 9.3736 pF
µµµµ
1 440.000 000 MHz
PC8131TA
MARKER 1
1.44 GHz
1
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S11 vs. FREQUENCY
V
AGC
= VCC (GPMAX), Pin = −20 dBm
S
11
log MAG 1: −9.8796 dB
10
0
VCC = 3.0 V
5 dB/REF 0 dB
1 440.000 000 MHz
VCC = 3.3 V
−10
−20
VCC = 2.7 V
−30
MARKER 1
1.44 GHz
1
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S11 vs. FREQUENCY
V
CC
= V
AGC
= 3.0 V (GPMAX), Pin = −20 dBm
S
11
log MAG 1: −9.5571 dB
10
5 dB/REF 0 dB
1 440.000 000 MHz
0
TA = −25 °C
1
−10
−20
−30
TA = +25 °C
TA = +85 °C
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S22 vs. FREQUENCY
V
AGC
= VCC (GPMAX), Pin = −20 dBm
S
22
log MAG 1: −14.444 dB
5 dB/REF 0 dB
10
0
−10
VCC = 3.3 V
1
VCC = 2.7 V
−20
−30
VCC = 3.0 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
16
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S22 vs. FREQUENCY
V
CC
= V
AGC
= 3.0 V (GPMAX), Pin = −20 dBm
S
22
log MAG 1: −14.139 dB
10
5 dB/REF 0 dB
1 440.000 000 MHz1 440.000 000 MHz
0
−10
TA = +85 °C
1
TA = −25 °C
−20
TA = +25 °C
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
PC8130TA
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
S21 vs. FREQUENCY
V
AGC
= VCC (GPMAX), Pin = −20 dBm
S
21
log MAG 1: −11.31 dB
14
12
10
8
6
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S12 vs. FREQUENCY
V
AGC
= VCC (GPMAX), Pin = −20 dBm
S
12
log MAG 1: −25.647 dB
10
0
1 dB/REF 5 dB
1 440.000 000 MHz
1
5 dB/REF 0 dB
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
21
vs. FREQUENCY
S
V
CC
= V
AGC
= 3.0 V (GPMAX), Pin = −20 dBm
S
21
log MAG 1: −11.291 dB
14
12
10
8
6
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S12 vs. FREQUENCY
V
CC
= V
S
12
log MAG 1: −25.515 dB
10
0
1 dB/REF 5 dB
1 440.000 000 MHz
TA = −25 °C
1
TA = +25 °C
TA = +85 °C
AGC
= 3.0 V (GPMAX), Pin = −20 dBm
5 dB/REF 0 dB
1 440.000 000 MHz1 440.000 000 MHz
−10
−20
−30
VCC = 3.3 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
1
VCC = 3.0 V
VCC = 2.7 V
−10
TA = +85 °C
−20
TA = −25 °C
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
1
TA = +25 °C
17
PC8130TA
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
VCC = 2.7 V
5
0
(dB)
P
−5
−10
−15
VCC = 3.0 V
−20
Power Gain G
−25
VCC = 3.3 V
−30
−35
−40
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S21 log MAG 2: 10.863 dB
40
20
0
VAGC = 1.5 V
VAGC = 1.4 V
VAGC = 1.3 V
VAGC = 1.2 V
VAGC = 1.1 V
VAGC = 1.0 V
10 dB/REF 0 dB
VAGC = 3.0 V
VAGC = 2.0 V
VAGC = 1.9 V
VAGC = 1.8 V
VAGC = 1.7 V
VAGC = 1.6 V
1
1 440.000 000 MHz
1: −6.6158 dB
2
3: 5.9184 dB
3
950 MHz
1.9 GHz
−20
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
5
0
(dB)
P
−5
TA = +25 °C
−10
TA = +85 °C
−15
−20
Power Gain G
−25
−30
TA = −25 °C
−35
−40
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S12 log MAG 1: −25.759 dB
40
10 dB/REF 0 dB
1 440.000 000 MHz
20
0
V
AGC
= 3.0 V
V
AGC
−20
= 0 V
1
−40
VAGC = 0.8 V
VAGC = 0 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = -20 dBm
S11 log MAG 1: −9.9621 dB
10 dB/REF 0 dB
40
20
0
−20
−40
V
AGC
= 0 to 1.0 V
V
V
AGC
1
AGC
= 3.0 V
= 1.7 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
−40
V
AGC
= 1.7 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S22 log MAG 1: −13.275 dB
40
10 dB/REF 0 dB
1 440.000 000 MHz1 440.000 000 MHz
20
−20
0
V
AGC
= 3.0 V
1
V
AGC
= 1.65 V
V
AGC
= 0 V
−40
START 100.000 000 MHzSTOP 3 100.000 000 MHz
18
PC8130TA
µµµµ
Output port matching at f = 1440 MHz
OUTPUT POWER vs. INPUT POWEROUTPUT POWER vs. INPUT POWER
10
f = 1440 MHz
V
AGC = VCC
5
0
−5
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.3 V
10
0
−10
−20
−30
µµµµ
PC8130TA,
f = 1440 MHz
V
CC = 3.0 V
µµµµ
PC8131TA
VAGC = 3.0 V
VAGC = 1.5 V
−10
Output Power Pout (dBm)
−15
−20
−20−15−10−50 5
Input Power P
OUTPUT POWER vs. INPUT POWER
10
f = 1440 MHz
0
V
CC = 3.3 V
−10
−20
−30
−40
−50
Output Power Pout (dBm)
−60
−70
−30−25−20−15−10−50 5
Input Power P
in (dBm)
VAGC = 3.3 V
VAGC = 1.65 V
VAGC = 1.45 V
VAGC = 1.3 V
VAGC = 1.15 V
VAGC = 0 V
in (dBm)
−40
−50
Output Power Pout (dBm)
−60
−70
−30−25−20−15−10−50 5
Input Power P
OUTPUT POWER vs. INPUT POWER
10
f = 1440 MHz
0
V
CC = 2.7 V
−10
−20
−30
−40
−50
Output Power Pout (dBm)
−60
−70
−30−25−20−15−10−50 5
VAGC = 0.95 V
Input Power P
VAGC = 1.15 V
VAGC = 1.25 V
in (dBm)
VAGC = 1.3 V
VAGC = 1.1 V
in (dBm)
VAGC = 0.95 V
VAGC = 0 V
VAGC = 2.7 V
VAGC = 0.75 V
VAGC = 0 V
19
PC8130TA
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
OUTPUT POWER AND IM3 vs. INPUT POWER
20
10
(dBm)
3
−10
(dBm)
out
−20
−30
0
2f1-f2
(1439 MHz)
Pout
IM3
−40
−50
−60
Output Power of each tone P
Third Order Intermodulation Distortion IM
−70
−30−25−20−15−10−50
2f2-f1
(1442 MHz)
Input Power P
VCC = 3.0 V
V
f
f
in (dBm)
AGC = 3.0 V
1 = 1440 MHz
2 = 1441 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
V
−10
−20
f
0
f
AGC = 1.25 V
1 = 1440 MHz
2 = 1441 MHz
Pout
(dBm)
3
(dBm)
out
−30
−40
−50
−60
Output Power of each tone P
Third Order Intermodulation Distortion IM
−70
−30−25−20−15−10−50
2f1-f2
(1439 MHz)
IM3
Input Power P
2f2-f1
(1442 MHz)
in (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
10
(dBm)
3
0
−10
(dBm)
out
−20
out
P
−30
−40
2f1-f2
(1439 MHz)
−50
−60
Output Power of each tone P
Third Order Intermodulation Distortion IM
−70
−30−25−20−15−10−50
Input Power P
IM3
VCC = 3.0 V
V
f
f
in (dBm)
2f2-f1
(1442 MHz)
AGC = 1.5 V
1 = 1440 MHz
2 = 1441 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
V
(dBm)
3
(dBm)
out
Output Power of each tone P
Third Order Intermodulation Distortion IM
AGC = 1.1 V
f
1 = 1440 MHz
0
f
2 = 1441 MHz
−10
−20
−30
−40
−50
2f1-f2
(1439 MHz)
−60
−70
−30−25−20−15−10−50
Input Power P
in (dBm)
P
IM3
2f2-f1
(1442 MHz)
out
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
V
−10
−20
f
0
f
AGC = 0 V
1 = 1440 MHz
2 = 1441 MHz
(dBm)
3
(dBm)
out
−30
−40
−50
−60
−70
Output Power of each tone P
Third Order Intermodulation Distortion IM
−30−25−20−15−10−50
2f2-f1 (1442 MHz)
2f
1-f2 (1439 MHz)
Input Power P
20
Pout
IM3
in (dBm)
PC8130TA
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
TA = +25 °C
P
in = −15 dBm
±50 KHz
−55
−60
−65
−70
VCC = 2.7 V
Adjacent Channel Interference Padj (dBc)
−75
00.511.52
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
TA = +85 °C
P
in = −13 dBm
±50 KHz
−55
−60
−65
VCC = 3.0 V
VCC = 3.3 V
2.533.54
Gain Control Voltage V
VCC = 3.0 V
VCC = 3.3 V
AGC (V)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
−55
−60
−65
−70
Adjacent Channel Interference Padj (dBc)
−75
−30
−35
−40
−45
−50
−55
TA = −25 °C
P
in = −15 dBm
±50 KHz
VCC = 3.0 V
VCC = 2.7 V
00.511.52
Gain Control Voltage V
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
VAGC = VCC
VCC = 2.7 V
VCC = 3.3 V
2.533.54
AGC (V)
−70
Adjacent Channel Interference Padj (dBc)
−75
VCC = 2.7 V
00.511.52
Gain Control Voltage V
2.533.54
AGC (V)
−60
−65
Adjacent Channel Interference Padj (dBc)
−70
−20−15−10−50 5
Input Power P
VCC = 3.0 V
VCC = 3.3 V
in (dBm)
21
TYPICAL CHARACTERISTICS
PC8131TA
µµµµ
µµµµ
PC8130TA,
µµµµ
PC8131TA
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
20
no signalsno signals
18
16
14
(mA)
CC
12
(mA)
AGC
10
8
6
Circuit Current I
4
2
0
00.511.52
Supply Voltage V
2.533.54
CC
(V)
−0.1
−0.2
−0.3
Gain Control Current I
−0.4
−0.5
CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE
14
12
10
(mA)
CC
8
6
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
(mA)
OUT
(mA)
VCC
pin I
CC
4
Circuit Current I
2
0
−40−2002040
Operating Ambient Temperature T
no signals
6080100
A
(°C)
Current into Output pin I
Current into V
GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE
0.5
0.4
0.3
0.2
0.1
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.3 V
0
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
CURRENT INTO OUTPUT PIN AND CURRENT
INTO V
CC
PIN vs. GAIN CONTROL VOLTAGE
16
14
12
10
8
6
VCC = .3.3 V
I
out
VCC = 3.0 V
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
I
VCC
4
2
VCC = 2.7 V
0
00.511.52
Gain Control Voltage V
2.533.54
AGC
no signals
(V)
S11 vs. FREQUENCY
V
CC
= 3.0 V, V
S
11
: 949.4 MHz
1
72.504 Ω −14.266 Ω
: 1.44 GHz
2
58.012 Ω −25.781 Ω
: 1.9 GHz
3
48.307 Ω −26.266 Ω
AGC
= 0 V (GPMAX), Pin = -20 dBm
1
2
3
START 100.000 000 MHzSTOP 3 100.000 000 MHz
22
S22 vs. FREQUENCY
V
CC
= 3.0 V, V
S
22
: 950 MHz
1
30.711 Ω −210.3 Ω
: 1.44 GHz
2
35.516 Ω −158.06 Ω
: 1.9 GHz
3
19.758 Ω −131.8 Ω
AGC
= 0 V (GPMAX), Pin = -20 dBm
1
2
3
START 800.000 000 MHzSTOP 2 700.000 000 MHz
PC8131TA
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S
11 vs. FREQUENCY 1: 66.246
MARKER 1
950 MHz
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S11 vs. FREQUENCY
V
AGC = 0 V (GPMAX), Pin = −20 dBm
S
11 log MAG 1: −8.9634 dB
10
5 dB/REF 0 dB
Ω−41.039 Ω 4.0822 pF
950.000 000 MHz
1
950.000 000 MHz
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S
22 vs. FREQUENCY 1: 57.439
MARKER 1
950 MHz
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S11 vs. FREQUENCY
V
CC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S
11 log MAG 1: −2.0122 dB5 dB/REF 0 dB
10
Ω 3.3594 Ω 562.8 pH
950.000 000 MHz
1
950.000 000 MHz
0
−10
−20
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S22 vs. FREQUENCY
V
AGC = 0 V (GPMAX), Pin = −20 dBm
S
22 log MAG 1: −19.264 dB5 dB/REF 0 dB
10
0
−10
VCC = 3.3 V
−20
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
VCC = 3.3 V
1
VCC = 2.7 V
VCC = 3.0 V
950.000 000 MHz
VCC = 2.7 V
VCC = 3.0 V
0
1
−10
−20
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
22 vs. FREQUENCY
S
V
CC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S
22 log MAG 1: −18.936 dB
10
0
−10
−20
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
TA = −25 °C
TA = +25 °C
TA = +85 °C
5 dB/REF 0 dB
950.000 000 MHz
TA = −25 °C
TA = +85 °C
TA = +25 °C
23
PC8131TA
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
S21 vs. FREQUENCY
V
AGC = 0 V (GPMAX), Pin = −20 dBm
S
21 log MAG 1: 11.909 dB
16
14
12
10
8
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S
12 vs. FREQUENCY
V
AGC = 0 V (GPMAX), Pin = −20 dBm
S
12 log MAG 1: −24.468 dB
10
0
1 dB/REF 7 dB
VCC = 3.3 V
1
VCC = 3.0 V
VCC = 2.7 V
5 dB/REF 0 dB
950.000 000 MHz
950.000 000 MHz
21 vs. FREQUENCY
S
V
CC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S
21 log MAG 1: 11.894 dB
16
14
12
10
8
START 100.000 000 MHzSTOP 3 100.000 000 MHz
12 vs. FREQUENCY
S
V
CC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S
12 log MAG 1: −24.393 dB
10
0
1 dB/REF 7 dB
TA = −25 °C
1
TA = +25 °C
TA = +85 °C
5 dB/REF 0 dB
950.000 000 MHz
950.000 000 MHz
−10
VCC = 3.3 V
−20
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
1
VCC = 3.0 V
VCC = 2.7 V
−10
TA = −25 °C
−20
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
TA = +85 °C, +25 °C
1
24
PC8131TA
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
5
0
(dB)
P
−5
VCC = 3.3 V
−10
−15
−20
Power Gain G
−25
VCC = 2.7 V
−30
−35
−40
00.511.52
Gain Control Voltage V
VCC = 3.0 V
2.533.54
AGC
(V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S21 log MAG 1: −34.406 dB
40
V
AGC
V
V
AGC
= 1.9 V
20
V
V
AGC
V
AGC
AGC
= 1.7 V
= 1.8 V
V
AGC
= 1.6 V
10 dB/REF 0 dB
AGC
= 1.3 V
= 1.4 V
= 1.5 V
V
950.000 000 MHz
V
AGC
= 0 V
V
AGC
= 0.5 V
V
AGC
= 0.7 V
V
AGC
= 0.9 V
AGC
= 1.1 V
0
−20
1
V
AGC
−40
V
AGC
V
AGC
= 3.0 V
= 2.0 V
= 2.1 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
(dB)
P
−10
−15
5
0
−5
TA = −25 °C
TA = +25 °C
TA = +85 °C
−20
Power Gain G
−25
−30
−35
−40
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S12 log MAG 1: −24.537 dB
40
10 dB/REF 0 dB
950.000 000 MHz
20
0
V
AGC
= 0 V
V
AGC
−20
1
= 3.0 V
−40
V
AGC
= 1.1 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S11 log MAG 1: −8.9126 dB
40
10 dB/REF 0 dB
950.000 000 MHz
20
V
AGC
−20
−40
= 1.5 V
0
V
1
AGC
V
AGC
V
AGC
= 1.0 V
= 0 V
= 2.0 to 3.0 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S22 log MAG 1: −19.505 dB
40
10 dB/REF 0 dB
950.000 000 MHz
20
0
V
AGC
V
AGC
V
AGC
V
AGC
V
AGC
= 1.1 V
= 3.0 V
= 1.8 V
= 0 V
= 0.45 V
1
−20
−40
START 100.000 000 MHzSTOP 3 100.000 000 MHz
25
PC8131TA
µµµµ
Output port matching at f = 950 MHz
OUTPUT POWER vs. INPUT POWEROUTPUT POWER vs. INPUT POWER
10
f = 950 MHz
V
AGC = 0 V
5
0
-5
-10
Output Power Pout (dBm)
-15
-20
-20-15-10-505
Input Power P
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
in (dBm)
µµµµ
PC8130TA,
10
f = 950 MHz
0
V
CC = 3.0 V
-10
-20
-30
-40
-50
Output Power Pout (dBm)
-60
-70
-30-25-20-15-10-505
VAGC = 0 V
VAGC = 2.15 V
VAGC = 3.0 V
Input Power P
VAGC = 1.5 V
VAGC = 1.75 V
VAGC = 1.95 V
in (dBm)
µµµµ
PC8131TA
OUTPUT POWER vs. INPUT POWER
10
f = 950 MHz
0
V
CC = 3.3 V
-10
-20
-30
-40
-50
Output Power Pout (dBm)
-60
-70
-30-25-20-15-10-505
VAGC = 0 V
VAGC = 2.15 V
VAGC = 3.3 V
Input Power P
VAGC = 1.5 V
VAGC = 1.8 V
VAGC = 1.95 V
in (dBm)
OUTPUT POWER vs. INPUT POWER
10
f = 950 MHz
0
V
CC = 2.7 V
-10
-20
-30
-40
-50
Output Power Pout (dBm)
-60
-70
-30-25-20-15-10-505
VAGC = 0 V
VAGC = 2.1 V
VAGC = 2.7 V
Input Power P
VAGC = 1.5 V
VAGC = 1.75 V
VAGC = 1.9 V
in (dBm)
26
PC8131TA
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
OUTPUT POWER AND IM3 vs. INPUT POWER
20
10
(dBm)
3
−10
(dBm)
out
−20
−30
0
2f2-f1
(952 MHz)
Pout
IM3
−40
in (dBm)
VCC = 3.0 V
V
AGC = 0 V
f
1 = 950 MHz
f
2 = 951 MHz
−50
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
2f1-f2
(949 MHz)
Input Power P
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
(dBm)
V
0
−10
−20
−30
−40
AGC = 1.55 V
f
1 = 950 MHz
f
2 = 951 MHz
Pout
2f2-f1
(952 MHz)
3
(dBm)
out
−50
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
Input Power P
in (dBm)
2f1-f2
(949 MHz)
IM3
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
(dBm)
V
3
(dBm)
out
Third Order Intermodulation Distortion IM
Output Power of each tone P
AGC = 1.15 V
f
1 = 950 MHz
0
f
2 = 951 MHz
−10
−20
−30
−40
−50
−60
−70
−30−25−20−15−10−50
2f1-f2
(949 MHz)
2f2-f1
(952 MHz)
Input Power P
Pout
IM3
in (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
(dBm)
V
0
−10
−20
AGC = 1.75 V
f
1 = 950 MHz
f
2 = 951 MHz
3
(dBm)
out
−30
−40
−50
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
Input Power P
2f2-f1
(952 MHz)
2f1-f2
(949 MHz)
in (dBm)
Pout
IM3
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
(dBm)
V
0
−10
−20
−30
−40
−50
AGC = 3.0 V
f
1 = 950 MHz
f
2 = 951 MHz
2f1-f2 (949 MHz)
P
out
2f2-f1
(952 MHz)
3
(dBm)
out
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
Input Power P
in (dBm)
IM3
27
PC8131TA
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
TA = +25 °C
P
in = −15 dBm
±50 KHz
−55
−60
−65
−70
Adjacent Channel Interference Padj (dBc)
−75
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
−55
−60
−65
VCC = 3.3 V
VCC = 3.0 V
00.511.52
Gain Control Voltage V
TA = +85 °C
P
in = −13 dBm
±50 KHz
VCC = 2.7 V
VCC = 3.3 V
VCC = 2.7 V
2.533.54
AGC (V)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
Adjacent Channel Interference Padj (dBc)
−50
TA = −25 °C
P
in = −19 dBm
±50 KHz
−55
−60
−65
−70
−75
00.511.52
Gain Control Voltage V
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
−30
−35
−40
−45
−50
−55
VAGC = 0 V
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.3 V
2.533.54
AGC (V)
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.3 V
−70
VCC = 3.0 V
Adjacent Channel Interference Padj (dBc)
−75
00.511.52
Gain Control Voltage V
2.533.54
AGC (V)
−60
−65
Adjacent Channel Interference Padj (dBc)
−70
−20−15−10−50 5
Input Power P
in (dBm)
28
PC8131TA
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
VCC = 3.0 V, V
11
vs. FREQUENCY 1: 57.025 Ω−32.578 Ω 3.3926 pF
S
AGC
= 0 V (GPMAX), Pin = −20 dBm
1 440.000 000 MHz
MARKER 1
1.44 GHz
1
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S
11
vs. FREQUENCY
V
AGC
= 0 V (GPMAX), Pin = −20 dBm
S
11
log MAG 1: −10.576 dB
10
5 dB/REF 0 dB
1 440.000 000 MHz
VCC = 3.0 V, V
22
vs. FREQUENCY 1: 40.016 Ω−8.582 Ω 12.879 pF
S
AGC
= 0 V (GPMAX), Pin = −20 dBm
1 440.000 000 MHz
MARKER 1
1.44 GHz
1
START 100.000 000 MHzSTOP 3 100.000 000 MHz
22
vs. FREQUENCY
S
V
AGC
= 0 V (GPMAX), Pin = −20 dBm
S
22
log MAG 1: −15.766 dB
10
5 dB/REF 0 dB
1 440.000 000 MHz
0
VCC = 3.0 V
VCC = 3.3 V
1
−10
−20
VCC = 2.7 V
−30
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S
11
vs. FREQUENCY
V
CC
= 3.0 V, V
S
11
log MAG 1: −10.784 dB
AGC
= 0 V (GPMAX), Pin = −20 dBm
5 dB/REF 0 dB
10
0
TA = −25 °C
1
−10
−20
TA = +25 °C
TA = +85 °C
−30
0
−10
−20
−30
VCC = 3.3 V
1
VCC = 2.7 V
VCC = 3.0 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S
22
vs. FREQUENCY
V
CC
= 3.0 V, V
S
22
log MAG 1: −15.915 dB
10
AGC
= 0 V (GPMAX), Pin = −20 dBm
5 dB/REF 0 dB
1 440.000 000 MHz1 440.000 000 MHz
0
−10
−20
−30
TA = +85 °C
1
TA = −25 °C
TA = +25 °C
START 100.000 000 MHzSTOP 3 100.000 000 MHz
START 100.000 000 MHzSTOP 3 100.000 000 MHz
29
PC8131TA
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
S21 vs. FREQUENCY
V
AGC
= 0 V (GPMAX), Pin = −20 dBm
S
21
log MAG 1: 10.951 dB
14
VCC = 3.0 V
12
10
VCC = 2.7 V
8
6
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S12 vs. FREQUENCY
V
AGC
= 0 V (GPMAX), Pin = −20 dBm
S
12
log MAG 1: −29.767 dB
10
0
1 dB/REF 5 dB
1 440.000 000 MHz
VCC = 3.3 V
1
5 dB/REF 0 dB
21
vs. FREQUENCY
S
V
CC
= 3.0 V, V
S
21
log MAG 1: 10.957 dB
14
12
10
8
6
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S12 vs. FREQUENCY
V
CC
= 3.0 V, V
S
12
log MAG 1: −30.004 dB
10
0
AGC
= 0 V (GPMAX), Pin = −20 dBm
1 dB/REF 5 dB
1 440.000 000 MHz
TA = −25 °C
1
TA = +25 °C
TA = +85 °C
AGC
= 0 V (GPMAX), Pin = −20 dBm
5 dB/REF 0 dB
1 440.000 000 MHz1 440.000 000 MHz
−10
−20
−30
VCC = 3.3 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
1
VCC = 3.0 V
VCC = 2.7 V
−10
−20
−30
TA = +85 °C
TA = +25 °C
START 100.000 000 MHzSTOP 3 100.000 000 MHz
TA = −25 °C
1
30
PC8131TA
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
VCC = 2.7 V
VCC = 3.0 V
5
0
(dB)
P
−5
VCC = 3.3 V
−10
−15
−20
Power Gain G
−25
−30
−35
−40
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S21 log MAG 1: 10.967 dB
40
20
0
VAGC = 1.2 V
VAGC = 1.3 V
VAGC = 1.4 V
VAGC = 1.5 V
VAGC = 1.6 V
VAGC = 1.7 V
VAGC = 1.8 V
10 dB/REF 0 dB
VAGC = 0 V
VAGC = 0.5 V
VAGC = 0.7 V
VAGC = 0.8 V
VAGC = 0.9 V
VAGC = 1.0 V
1
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
(dB)
P
15
10
5
0
−5
TA = -25 °C
TA = +25 °C
TA = +85 °C
−10
−15
−20
Power Gain G
−25
−30
−35
−40
00.511.52
Gain Control Voltage V
2.533.54
AGC
(V)
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S12 log MAG 1: −29.705 dB
40
10 dB/REF 0 dB
1 440.000 000 MHz1 440.000 000 MHz
20
0
−20
−40
VAGC = 1.9 V
VAGC = 2.0 V
VAGC = 3.0 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S11 log MAG 1: −10.499 dB
10 dB/REF 0 dB
40
20
V
AGC
= 0 V
V
AGC
0
= 1 V
V
AGC
1
= 1.5 V
−20
V
AGC
−40
= 2.0 to 3.0 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
V
AGC
−20
−40
= 0 V
1
V
AGC
= 3.0 V
START 100.000 000 MHzSTOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S22 log MAG 1: −14.578 dB
40
10 dB/REF 0 dB
1 440.000 000 MHz1 440.000 000 MHz
20
0
1
V
AGC
−20
V
AGC
= 0 V
V
AGC
= 1.15 V
= 3.0 V
−40
START 100.000 000 MHzSTOP 3 100.000 000 MHz
31
PC8131TA
µµµµ
Output port matching at f = 1440 MHz
OUTPUT POWER vs. INPUT POWEROUTPUT POWER vs. INPUT POWER
10
f = 1440 MHz
V
AGC = 0 V
5
0
−5
−10
Output Power Pout (dBm)
−15
−20
−20−15−10−50 5
Input Power P
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.3 V
in (dBm)
µµµµ
PC8130TA,
10
f = 1440 MHz
V
CC = 3.0 V
0
−10
−20
−30
−40
Output Power Pout (dBm)
−50
−60
−30−25−20−15−10−50 5
VAGC = 3.0 V
Input Power P
VAGC = 0 V
VAGC = 1.6 V
VAGC = 1.8 V
in (dBm)
µµµµ
VAGC = 1.3 V
PC8131TA
OUTPUT POWER vs. INPUT POWER
10
f = 1440 MHz
V
CC = 3.3 V
0
−10
−20
−30
−40
Output Power Pout (dBm)
−50
VAGC = 3.3 V
−30−25−20−15−10−50 5
Input Power P
VAGC = 0 V
VAGC = 1.3 V
VAGC = 1.6 V
VAGC = 1.8 V
in (dBm)
OUTPUT POWER vs. INPUT POWER
10
f = 1440 MHz
V
CC = 2.7 V
0
−10
−20
−30
−40
Output Power Pout (dBm)
−50
−60−60
−30−25−20−15−10−50 5
VAGC = 2.7 V
Input Power P
VAGC = 1.6 V
VAGC = 1.8 V
VAGC = 0 V
VAGC = 1.3 V
in (dBm)
32
PC8131TA
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
OUTPUT POWER AND IM3 vs. INPUT POWER
20
10
(dBm)
3
0
−10
(dBm)
out
−20
2f2-f1
(1442 MHz)
−30
−40
−50
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
Input Power P
Pout
IM3
VCC = 3.0 V
V
f
f
in (dBm)
2f1-f2
(1439 MHz)
AGC = 0 V
1 = 1440 MHz
2 = 1441 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
(dBm)
10
3
V
AGC = 1.6 V
f
1 = 1440 MHz
0
f
2 = 1441 MHz
−10
(dBm)
out
−20
−30
−40
Pout
2f2-f1
(1442 MHz)
IM3
−50
−60
Third Order Intermodulation Distortion IM
Output Power of each tone P
−70
−30−25−20−15−10−50
Input Power P
2f1-f2
(1439 MHz)
in (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
10
(dBm)
3
0
out
−10
(dBm)
out
−20
−30
−40
−50
2f2-f1
(1442 MHz)
2f1-f2
(1439 MHz)
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
Input Power P
P
VCC = 3.0 V
V
f
f
in (dBm)
IM3
AGC = 1.3 V
1 = 1440 MHz
2 = 1441 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
(dBm)
10
3
V
AGC = 1.8 V
f
1 = 1440 MHz
0
f
2 = 1441 MHz
−10
(dBm)
out
−20
P
−30
out
IM3
−40
−50
−60
Third Order Intermodulation Distortion IM
Output Power of each tone P
−70
−30−25−20−15−10−50
2f2-f1
(1442 MHz)
Input Power P
2f1-f2
(1439 MHz)
in (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10
(dBm)
V
−10
−20
−30
f
0
f
AGC = 3.0 V
1 = 1440 MHz
2 = 1441 MHz
Pout
3
(dBm)
out
−40
−50
−60
−70
Third Order Intermodulation Distortion IM
Output Power of each tone P
−30−25−20−15−10−50
2f2-f1 (1442 MHz)
Input Power P
2f1-f2 (1439 MHz)
in (dBm)
IM3
33
PC8131TA
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8130TA,
µµµµ
PC8131TA
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
TA = +25 °C
P
in = −15 dBm
±50 KHz
−55
−60
−65
−70
Adjacent Channel Interference Padj (dBc)
−75
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
−55
−60
−65
−70
VCC = 3.3 V
VCC = 2.7 V
00.511.52
Gain Control Voltage V
TA = +85 °C
P
in = −13 dBm
±50 KHz
VCC = 3.3 V
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.0 V
2.533.54
AGC (V)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
Adjacent Channel Interference Padj (dBc)
−50
TA = −25 °C
P
in = −19 dBm
±50 KHz
−55
−60
−65
−70
−75
−30
−35
−40
−45
−50
−55
−60
−65
VCC = 3.3 V
00.511.52
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
VAGC = 0 V
VCC = 2.7 V
VCC = 2.7 V
VCC = 3.0 V
2.533.54
Gain Control Voltage V
VCC = 3.0 V
AGC (V)
VCC = 3.3 V
Adjacent Channel Interference Padj (dBc)
34
−75
00.511.52
Gain Control Voltage V
2.533.54
AGC (V)
Adjacent Channel Interference Padj (dBc)
−70
−20−15−10−50 5
Input Power P
in (dBm)
PACKAGE DIMENSIONS
6 PIN MINI-MOLD PACKAGE (UNIT: mm)
µµµµ
PC8130TA,
µµµµ
PC8131TA
+0.2
–0.3
2.8
+0.2
123
–0.1
1.5
654
+0.1
0.3
–0.0
0.95 0.95
1.9
2.9 ±0.2
0.13 ±0.1
0.8
+0.2
1.1
–0.1
0 to 0.1
35
µµµµ
PC8130TA,
µµµµ
PC8131TA
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All
the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor (eg. 1000 pF) should be attached to the VCC pin.
(4) Impedance matching circuit must be each externally attached to input and output ports.
(5) The bias must be applied to output pin through the matching inductor. (The bias must not be applied to input
pin.)
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered under the following recommended conditions. For soldering methods and
conditions other than those recommended below, contact your NEC sales representative.
Soldering MethodSoldering Conditions
Infrared ReflowPackage peak temperat ure: 235 °C or below
Time: 30 seconds or less (at 210 °C)
Count: 3, Exposure limi t
VPSPackage peak temperature: 215 ° C or below
Time: 40 seconds or less (at 200 °C)
Count: 3, Exposure limi t
Wave SolderingSoldering bath temperature: 260 ° C or bel ow
Time: 10 seconds or less
Count: 1, Exposure limi t
Partial HeatingPin temperature: 300 ° C
Time: 3 seconds or less (per side of device)
Exposure limit
After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period.
Note
Note
: None
Note
Note
Note
: None
: None
: None
Recommended Condition
Symbol
IR35-00-3
VP15-00-3
WS60-00-1
–
Caution Do not use different soldering methods together (except for partial heating).
For details of recommended soldering conditions for surface mounting, refer to information document
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96. 5
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.