PRELIMINARY DATA SHEET
SILICON TRANSISTOR
NPN EPITAXIAL SILICON TRANSISTOR
4-PIN MINI MOLD
2SC5455
FEATURE
• Ideal for medium-output applications
• High gain, low noise
• Small reverse transfer capacitance
PACKAGE DIMENSIONS (in mm)
+0.2
2.8
–0.3
+0.1
–0.05
0.4
+0.2
1.5
–0.1
2
+0.1
–0.05
0.4
3
• Can operate at low voltage
0.950.85
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)
PARAMETER SYMBOL RATING UNIT
Collector to Base Voltage VCBO 9V
(1.8)
2.9 ± 0.2
+0.1
–0.05
0.6
1
5° 5°
Collector to Emitter Voltage VCEO 6V
+0.2
Emitter to Base Voltage VEBO 2V
–0.1
1.1
0.8
Collector Current IC 100 mA
Total Power Dissipation PT 200 mW
Junction Temperature Tj 150 °C
Storage Temperature Tstg –65 to +150 °C
PIN CONNECTIONS
5° 5°
to 0.1
1: Collector
2: Emitter
3: Base
ELECTRICAL CHARACTERISTICS (TA = 25 °C)
4: Emitter
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Collector Cut-off Current ICBO VCB = 5 V, IE = 0 0.1
Emitter Cut-off Current IEBO VEB = 1 V, IC = 0 0.1
DC Current Gain hFE VCE = 3 V, IC = 30 mA
Note 1
75 150
Gain Bandwidth Product fT VCE = 3 V, IC = 30 mA, f = 2 GHz 12.0 GHz
Reverse Transfer Capacitance Cre VCB = 3 V, IE = 0, f = 1 MHz
Insertion Power Gain |S21e|
2
VCE = 3 V, IC = 30 mA, f = 2 GHz 8.0 10.0 dB
Note 2
0.5 0.7 pF
Noise Figure NF VCE = 3 V, IC = 7 mA, f = 2 GHz 1.5 2.5 dB
(1.9)
4
+0.1
–0.05
0.4
+0.1
–0.06
0.16
µ
A
µ
A
Notes 1. Pulse measurement PW ≤ 350 µs, duty cycle ≤ 2 %
2. Collector to base capacitance measured by capacitance meter (automatic balance bridge method) when
emitter pin is connected to the guard pin.
Because this product uses high-frequency process, avoid excessive input of static electricity, etc.
Document No. P13081EJ1V0DS00 (1st edition)
Date Published February 1998 N CP(K)
Printed in Japan
The information in this document is subject to change without notice.
©
1998
hFE CLASSIFICATION
RANK FB
Marking R55
hFE 75 to 150
TYPICAL CHARACTERISTICS (TA = 25 °C)
2SC5455
TOTAL POWER DISSIPATION
vs. AMBIENT TEMPERATURE
Free Air
200
100
- Total Power Dissipation - mW
T
P
0
A
- Ambient Temperature - °C
T
COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE
40
35
µ
30
25
20
15
- Collector Current - mA
10
C
I
5
200 A
µ
180 A
µ
160 A
µ
140 A
µ
120 A
µ
100 A
µ
80 A
µ
60 A
µ
40 A
µ
IB = 20 A
01234567
V
CE
- Collector to Emitter Voltage - V
COLLECTOR CURRENT vs. DC BASE VOLTAGE
60
VCE = 3 V
50
25
- Collector Current - mA
C
I
15010050
0
1.00.5
VBE - DC Base Voltage - V
DC CURRENT GAIN vs. COLLECTOR CURRENT
200
VCE = 3 V
FE
100
DC Current Gain - h
0
20100.1 0.2 0.5 1 2 5
10050
IC - Collector Current - mA
2
Preliminary Data Sheet
2SC5455
GAIN BANDWIDTH PRODUCT
vs. COLLECTOR CURRENT
16
VCE = 3 V
f = 2 GHz
14
12
10
8
6
4
fT - Gain Bandwidth Product - GHz
2
0
IC - Collector Current - mA IC - Collector Current - mA
GAIN WITH MINIMUM NF/NOISE FIGURE
vs. COLLECTOR CURRENT
16
VCE = 3 V
14
f = 2 GHz
12
INSERTION POWER GAIN
vs. COLLECTOR CURRENT
16
VCE = 3 V
f = 2 GHz
14
12
10
8
6
- Insertion Power Gain - dB
2
4
|S21e|
2
10020 50512 10
0
10020 50512 10
REVERSE TRANSFER CAPACITANCE
vs. COLLECTOR TO BASE VOLTAGE
1
f = 1 MH
Z
0.8
10
8
6
4
- Gain with Minimum NF - dB
a
G
NF - Noise Figure - dB
2
0
110
IC - Collector Current - mA
Ga
NF
100
0.6
0.4
0.2
- Reverse Transfer Capacitance - pF
re
C
0
1
10 100
VCB - Collector to Base Voltage - V
Preliminary Data Sheet
3
2SC5455
MAXIMUM AVAILABLE GAIN/
MAXIMUM STABLE GAIN/INSERTION
POWER GAIN vs. FREQUENCY
30
MSG
20
- Insertion Power Gain - dB
2
|
10
21e
MAG - Maximum Available Gain - dB
MSG - Maximum Stable Gain - dB
|S
0
0.1
f - Frequency - GHz
24
OUTPUT POWER vs. INPUT POWER
20
16
12
MAG
|S21e|
1
OUTPUT POWER vs. INPUT POWER
VCE = 3 V
I
C = 30 mA
24
20
16
12
8
4
- Output Power - dB
0
OUT
2
10
P
–4
–8
–20 –16 –10
–4
VCE = 3 V
Q = 5 mA
I
f = 1 GHz
10 1604
PIN - Input Power - dB
8
4
- Output Power - dB
0
OUT
P
–4
–8
–20 –16 –10
–4
PIN - Input Power - dB
VCE = 3 V
I
Q = 5 mA
f = 2 GHz
10 1604
4
Preliminary Data Sheet