PRELIMINARY DATA SHEET
SILICON TRANSISTOR
NPN EPITAXIAL SILICON TRANSISTOR
4-PIN MINI MOLD
2SC5454
FEATURE
• High gain, low noise
• Small reverse transfer capacitance
• Can operate at low voltage
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)
PARAMETER SYMBOL RATING UNIT
Collector to Base Voltage VCBO 9V
Collector to Emitter Voltage VCEO 6V
Emitter to Base Voltage VEBO 2V
Collector Current IC 50 mA
Total Power Dissipation PT 200 mW
Junction Temperature Tj 150 °C
Storage Temperature Tstg –65 to +150 °C
PACKAGE DIMENSIONS (in mm)
+0.2
2.8
–0.3
+0.1
–0.05
1.5
0.4
2
0.950.85
(1.8)
2.9 ± 0.2
1
+0.1
–0.05
0.6
5° 5°
+0.2
–0.1
0.8
1.1
5° 5°
PIN CONNECTIONS
1: Collector
+0.2
–0.1
to 0.1
+0.1
–0.05
0.4
3
(1.9)
4
+0.1
–0.05
0.4
+0.1
–0.06
0.16
2: Emitter
ELECTRICAL CHARACTERISTICS (TA = 25 °C)
3: Base
4: Emitter
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Collector Cut-off Current ICBO VCB = 5 V, IE = 0 0.1
Emitter Cut-off Current IEBO VEB = 1 V, IC = 0 0.1
DC Current Gain hFE VCE = 3 V, IC = 20 mA
Note 1
75 150
Gain Bandwidth Product fT VCE = 3 V, IC = 20 mA, f = 2 GHz 14.5 GHz
Reverse Transfer Capacitance Cre VCB = 3 V, IE = 0, f = 1 MHz
Insertion Power Gain |S21e|
2
VCE = 3 V, IC = 20 mA, f = 2 GHz 10 12.0 dB
Note 2
0.3 0.5 pF
Noise Figure NF VCE = 3 V, IC = 5 mA, f = 2 GHz 1.5 2.5 dB
µ
A
µ
A
Notes 1. Pulse measurement PW ≤ 350 µs, duty cycle ≤ 2 %
2. Collector to base capacitance measured by capacitance meter (automatic balance bridge method) when
emitter pin is connected to the guard pin.
Because this product uses high-frequency process, avoid excessive input of static electricity, etc.
Document No. P13080EJ1V0DS00 (1st edition)
Date Published February 1998 N CP(K)
Printed in Japan
The information in this document is subject to change without notice.
©
1998
hFE CLASSIFICATION
RANK FB
Marking R54
hFE 75 to 150
TYPICAL CHARACTERISTICS (TA = 25 °C)
2SC5454
TOTAL POWER DISSIPATION
vs. AMBIENT TEMPERATURE
Free Air
200
100
- Total Power Dissipation - mW
T
P
0 50 100 150
A
- Ambient Temperature - °C
T
COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE
30
25
20
15
10
- Collector Current - mA
C
I
5
IB = 20 A
01
23456
VCE - Collector to Emitter Voltage - V
200 A
µ
µ
180 A
µ
160 A
140 A
µ
120 A
µ
100 A
µ
80 A
µ
60 A
µ
40 A
µ
µ
COLLECTOR CURRENT vs. DC BASE VOLTAGE
50
V
CE
= 3 V
40
30
20
- Collector Current - mA
10
C
I
0
0.5 1.0
VBE - DC Base Voltage - V
DC CURRENT GAIN vs. COLLECTOR CURRENT
200
VCE = 3 V
FE
100
DC Current Gain - h
0
0.1
0.2 0.5 1 2 5 10 20 50 100
C
- Collector Current - mA
I
2
Preliminary Data Sheet
2SC5454
GAIN BANDWIDTH PRODUCT
vs. COLLECTOR CURRENT
16
VCE = 3 V
f = 2 GH
14
Z
12
10
8
6
4
- Gain Bandwidth Product - GHz
T
f
2
1
I
C
- Collector Current - mA
10 100
GAIN WITH MINIMUM NF/NOISE FIGURE
vs. COLLECTOR CURRENT
14
VCE = 3 V
f = 2 GH
12
Z
10
8
6
INSERTION POWER GAIN
vs. COLLECTOR CURRENT
14
VCE = 3 V
f = 2 GH
Z
12
10
8
- Insertion Power Gain - dB
2
|
6
21e
|S
4
1
C
- Collector Current - mA
I
10 20 100
REVERSE TRANSFER CAPACITANCE
0.8
G
a
vs. COLLECTOR TO BASE VOLTAGE
f = 1 MH
Z
0.6
0.4
4
- Gain with Minimum NF - dB
a
NF - Noise Figure - dB
G
2
0
1
IC - Collector Current - mA
10
NF
100
0.2
- Reverse Transfer Capacitance - pF
re
C
0
1
10 100
VCB - Collector to Base Voltage - V
Preliminary Data Sheet
3
2SC5454
MAXIMUM AVAILABLE GAIN/
MAXIMUM STABLE GAIN/INSERTION
POWER GAIN vs. FREQUENCY
30
MSG
20
- Insertion Power Gain - dB
2
|
10
21e
MAG - Maximum Available Gain - dB
MSG - Maximum Stable Gain - dB
|S
0
0.1
f - Frequency - GHz
OUTPUT POWER vs. INPUT POWER
20
16
12
MAG
|S
1
21e
OUTPUT POWER vs. INPUT POWER
VCE = 3 V
I
C
= 20 mA
20
16
12
8
4
- Output Power - dB
0
OUT
2
|
P
–4
VCE = 3 V
I
Q
= 5 mA
f = 1 GHz
–8
10
–20 –16 –10 –4
1004
PIN - Input Power - dB
8
4
- Output Power - dB
0
OUT
P
–4
–8
–20 –16 –10 –4
PIN - Input Power - dB
VCE = 3 V
I
Q
= 5 mA
f = 2 GHz
1004
4
Preliminary Data Sheet