Navman 30, 20 User Manual

Jupiter 30 / 20
Integrator’s Manual
Related documents
•Jupiter Series Development kit guide
LA000645
• Navman NMEA reference manual
MN000315
• SiRF Binary Protocol reference manual
LA000577C © 2006 N avman New Zealand. All rights reserved. Proprietar y information and speci cations subj ect to change wit hout not ice.
Contents
1.0 Introduction .......................................................................................................4
2.0 Hardware application information................................................................... 4
2.1 Electrical connections (SMT pad interface) .................................................................. 4
2.2 Physical dimensions
2.3 Manufacturing process recommendations ................................................................... 6
2.3.1 Reow recommendations ..................................................................................... 6
2.3.2 Connection pad material ...................................................................................... 6
2.3.3 Solder paste mask size ........................................................................................ 7
2.3.4 Solder paste type ................................................................................................. 7
2.3.5 Coating ................................................................................................................. 7
2.3.6 Post reow washing ............................................................................................. 7
2.3.7 Pre-baking ............................................................................................................ 7
2.3.8 Rework ................................................................................................................. 7
2.4 Typical application circuit ............................................................................................. 7
2.4.1 Power for receiver and active antenna
2.4.2 Grounding ............................................................................................................ 7
2.4.3 Decoupling ........................................................................................................... 8
2.4.4 Serial RS232 data level shifter ............................................................................. 9
2.4.5 External RF lter .................................................................................................. 9
2.5 PCB design recommendations ..................................................................................... 9
2.5.1 Recommended PCB pad layout ........................................................................... 9
2.5.2 General recommendations ................................................................................... 9
2.6 Antenna system design choices
2.6.1 Antenna types
2.6.2 Active antenna ....................................................................................................12
2.6.3 Passive antenna ..................................................................................................13
2.6.4 Jupiter module used as a GPS sensor................................................................13
2.6.5 DC supply protection for an active antenna ........................................................14
2.7 Jupiter adapter printed circuit board ............................................................................16
..................................................................................................... 6
................................................................. 7
..................................................................................12
.....................................................................................................12
3.0 Software application information .................................................................. 17
3.1 Normal mode operation ...............................................................................................17
3.2 Power management
3.2.1 Adaptive TricklePower mode ...............................................................................18
3.2.2 Push-to-Fix mode ...............................................................................................18
3.3 Serial I/O .....................................................................................................................18
3.3.1 Default settings ....................................................................................................18
3.3.2 NMEA input commands ......................................................................................18
3.3.3 Altitude output .....................................................................................................19
3.4 Navman proprietary NMEA low power mode messages
3.4.1 Low power conguration ..................................................................................... 20
3.4.2 Low power acquisition conguration .................................................................. 20
3.5 Control of GPIO connections via serial commands (Jupiter 20) ................................ 20
3.5.1 Congure port directions .....................................................................................21
3.5.2 Set outputs ..........................................................................................................21
3.5.3 Clear outputs .......................................................................................................21
3.5.4 Read inputs .........................................................................................................21
3.6 GPS x output .............................................................................................................21
3.7 Antenna power monitor messages
3.8 Custom application software ...................................................................................... 22
....................................................................................................17
........................................... 20
............................................................................. 22
4.0 Glossary and acronyms .................................................................................23
LA000577C © 2006 N avman New Zealand. All rights reserved. Proprietar y information and speci cations subj ect to change wit hout not ice.
Figures
Figure 2-1: Lead-free and tin/lead reow prole recommendation ..................................... 6
Figure 2-2: Sample application circuit ................................................................................ 8
Figure 2-3: Recommended application layout dimensions................................................. 9
Figure 2-4: Typical module layout .....................................................................................10
Figure 2-5: Example PCB layout for external active antenna ............................................10
Figure 2-6: PCB microstrip dimensions .............................................................................11
Figure 2-7: Arrangement of active antenna and application board....................................12
Figure 2-8: Cross section of application board with passive patch antenna .....................13
Figure 2-9: Simple current limiter circuit ............................................................................14
Figure 2-10: Active current limit using an IC ......................................................................14
Figure 2-11: Antenna short/open circuit sensor circuit (3.3 V supply only)
........................15
Tables
Table 2-1: Jupiter 30 and Jupiter 20 Module pin functions ................................................. 5
Table 2-2: Summary of pin multi-functionality .................................................................... 6
Table 2-3: Decoupling recommendations ........................................................................... 8
Table 2-4: PCB substrate thicknesses v track width .........................................................11
Table 2-5: Passive and active antenna features ................................................................12
Table 2-6: Recommended antenna characteristics ...........................................................13
Table 2-7: Antenna sense and control functions ...............................................................15
Table 2-8: Connector conguration ...................................................................................17
Table 3-1: Low power modes message values ................................................................ 20
Table 3-2: Low power acquisition input values ................................................................. 20
Table 3-3: Pin conguration of the GPIO lines ..................................................................21
Table 3-4: Antenna status output message values .......................................................... 22
LA000577C © 2006 N avman New Zealand. All rights reserved. Proprietar y information and speci cations subj ect to change wit hout not ice.

1.0 Introduction

The Navman Jupiter 30 and Jupiter 20 series of GPS receiver modules are complete GPS receivers designed for surface mount assembly (SMT) integration. The modules provide a simple, cost effective GPS solution for application designers. Application integration will vary primarily with respect to antenna system design and EMI protective circuitry.
The Jupiter 30 is the successor to the established Jupiter 20, sharing the same form factor (25.4 x 25.4 mm) and electrical compatibility. This provides a low risk migration path for existing users, offering greater sensitivity, lower power consumption and a faster x.
Fundamental operation requires a 3.3 VDC power supply, approximate current of 80 mA (Jupiter 30) or 100 mA (Jupiter 20), GPS antenna system interface, relevant EMI protection, and the design and layout of a custom PCB.
This document outlines the following design considerations and provides recommended solutions:
Hardware application information
This section introduces the system interface and provides the following physical specications:
a. electrical connections (SMT pad interface)
b. mounting (PCB pad layout dimensions)
c. manufacturing recommendations
d. application circuit interface
It also discusses the fundamental considerations when designing for RF, and presents the antenna system design overview. This covers the following topics:
a. PCB layout
b. antenna system design choices
Software application information
This section provides answers to some common questions that may not have been covered in the above topics.
A sample solution is presented and discussed for example purposes only. Due to the nature and complexity of GPS signals, it is recommended that application integrators adhere to the design considerations and criteria described in this document.

2.0 Hardware application information

The modules provide 30 Surface Mount pads for electrical connections. The sections that follow introduce the physical and relative functional specications for application integration.
Note: The electrical connections can carry very low level GPS signals at 1.57542 GHz. The
layout must be designed appropriately with consideration of the frequencies involved.

2.1 Electrical connections (SMT pad interface)

Details of the module connector conguration are shown in Table 2-1.
LA000577C © 2006 N avman New Zealand. All rights reserved. Proprietar y information and speci cations subj ect to change wit hout not ice.
4
Pin No.
Name Type Description
1 PWRIN P main power input (3.3 V)
2 GND P ground
3 BOOT I
serial boot (high for serial boot, low or open circuit for normal operation)
4 RXA I CMOS level asynchronous input for UART A
5 TXA O CMOS level asynchronous output for UART A
6 TXB O CMOS level asynchronous output for UART B
7 RXB I CMOS level asynchronous input for UART B
8 pin 8 multi-functional (see table 2-2)
9 RF_ON O
output to indicate whether the RF section is enabled (active high)
10 GND P ground
11 GND P ground
12 GND P ground
13 GND P ground
14 GND P ground
15 GND P ground
16 GND P ground
17
RF_IN I RF input
18 GND P ground
19 ACTIVE_PWR P
active power input, 70 mA current limit supply to
this pin
20 VCC_RF O RF Power (+2.85 V) supply output
21 V_BATT P backup battery input
22 NRESET I
external reset (active low), voltage on PIN 22 NRESET must not exceed PWRIN at all times
23 GPS_FIX O GPS x indication (active low)
24
25
pins 24-28 multi-functional (see table 2-2)
26
27
28
29 1PPS O 1 pulse per second output
30 GND P ground

Table 2-1: Jupiter 30 and Jupiter 20 Module pin functions

LA000577C © 2006 N avman New Zealand. All rights reserved. Proprietar y information and speci cations subj ect to change wit hout not ice.
5
Jupiter 30 Jupiter 20
Pin
GPIO Name and Description GPIO
24 13 reserved 6 GPIO (SDO) not connected
25 4 reserved 5 GPIO (SDI) ADC DOut
26
27 15
28 1
8 14
push-to-x wakeup (active on +ve edge)
antenna open circuit sensor input (active
active antenna control output
antenna short circuit sensor input (active
WAKEUP
ANT_OC
high)
ANT_CTRL
NANT_SC
low)
7 GPIO (SCK) ADC Clk
15 ANT_OC
1 ANT_CTRL
3 NANT_SC
Standard &
XTrac name
DR function
FWD/REV
fwd/rev input
(low=forward,
high=reverse)
WHEEL_TICKS
wheel tick input
GYRO_IN gyro input
(analogue 0–5 V)

Table 2-2: Summary of pin multi-functionality

GPIO
Note that the Jupiter 20 D (Dead Reckoning) does not support the active antenna supervisory functionality and associated proprietary NMEA status messaging (see section 3.7).
SPI (Jupiter 20 only)
The Jupiter 20 (GSW2) and Jupiter 20 S (XTrac) do not support the SPI. These pins function only as user GPIOs.
The SPI on the Jupiter 20 D is used to control an internal ADC, which interfaces to an
external gyro.
Implementation of the SPI for any other alternative function requires an SDK (Software Development Kit) from SiRF.

2.2 Physical dimensions

The physical dimensions of the Jupiter 30 and Jupiter 20 modules are identical:
length: 25.4 mm ± 0.1 mm width: 25.4 mm ± 0.1 mm thickness: 3.0 mm max
weight: 4.0 g max

2.3 Manufacturing process recommendations

2.3.1 Reow recommendations
For lead based solder pastes, the maximum reow temperature is 225 °C for 10 seconds. For lead-free solder pastes, the maximum reow temperature is 265 °C for 10 seconds. Refer to Figure 2-1.
Figure 2-1: Lead-free and tin/lead reow prole recommendation

2.3.2 Connection pad material

The 30 surface mount connection pads have a base metal of copper with a gold ash nish. This is suitable for a lead free manufacturing process.
LA000577C © 2006 N avman New Zealand. All rights reserved. Proprietar y information and speci cations subj ect to change wit hout not ice.
6

2.3.3 Solder paste mask size

This should be adjusted by experimentation according to the customer’s production process requirements. A 1:1 (paste mask:pad size) ratio has been found to be successful.

2.3.4 Solder paste type

The module accepts all commonly used solder pastes. The solder paste can be lead based or lead-free. If a lead-free process is introduced, factors such as circuit board thickness, fabrication complexity, assembly process compatibility, and surface nish should be taken
into consideration.

2.3.5 Coating

The nal PCB may be selectively coated with an acrylic resin, air/oven cured conformal coating, clear lacquer or corresponding method, which gives electrical insulation and sufcient resistance to corrosion.
2.3.6 Post reow washing
It is recommended that a low residue solder paste is used to prevent the need for post reow washing. If a washing process is used, an aqueous wash is not recommended due to the long drying time required and danger of contaminating the ne pitch internal components.

2.3.7 Pre-baking

The modules are delivered on a tape and reel package sealed in an airtight bag. The MSR (Moisture Sensitivity Rating) is 3, therefore they should be loaded and reowed within 168 hours. If the modules are in ambient humidity for longer than this, a pre-baking/drying process will be required.

2.3.8 Rework

Navman recommends that rework and repair is carried out in accordance with the following guidelines:
• IPC-7711 Rework of Electronic Assemblies
• IPC-7721 Repair and Modication of Printed Boards and Electronic Assemblies
Note: Jupiter 30 and Jupiter 20 modules are covered by a 12-month warranty.

2.4 Typical application circuit

The schematic in Figure 2-2 represents a very basic application circuit, with simple interfaces to the module. It is subject to variations depending on application requirements.
Note: Refer to the Jupiter 20 Dead Reckoning Application Note (LA000433) for the Jupiter 20 D
reference design.

2.4.1 Power for receiver and active antenna

The receiver power connection requires a clean 3.3 VDC. Noise on this line may affect the performance of the GPS receiver.
When an active antenna is used, the DC power is fed to it through the antenna coax. This requires the user to apply the antenna DC voltage to pad 19 of the module. A 2.7 V 25 mA supply is made available on pad 20 if the chosen antenna can accept that voltage. This supply is under the command of the TricklePower energy control.

2.4.2 Grounding

Separate AGND (Analogue Ground) and DGND (Digital Ground) grounds are shown in Figure 2-2. If this grounding method is used, the ground planes can be connected underneath the module. In some applications with very small ground planes, separate ground planes may not be required. This should be determined by the application integrator. See Section 2.5.2 for ground plane recommendations and design considerations involving the antenna input and the 50 Ω microstrip connection.
LA000577C © 2006 N avman New Zealand. All rights reserved. Proprietar y information and speci cations subj ect to change wit hout not ice.
7
Loading...
+ 16 hidden pages