Navman 12, 11 User Manual

Jupiter GPS receiver module
Designer’s guide
(11/12/T/Pico/Pico T series)
Related products
Jupiter 11 (low power)
• Development kit TU10-D007-051
Jupiter 11 (standard 5 V)
• Development kit TU10-D007-061
Jupiter 11 (dead-reckoning)
Jupiter 12 (standard)
• Development kit TU10-D007-351
Jupiter 12 (dead-reckoning)
• DR Development kit TU10-D007-352
Jupiter Pico (standard)
• Development kit TU10-D007-361
Jupiter Pico (timing)
• Development kit TU10-D007-363
Related documents
Jupiter T
• Product brief LA010039
• Data sheet LA010050
Jupiter 12
• Product brief LA010040
• Data sheet LA010065
Jupiter Pico (and Pico T)
• Product brief LA010041
• Data sheet LA010066
• Data sheet LA010093
Jupiter series (T/12/Pico /Pico T)
• Development kit: Quick start guide LA010088
• Development kit: Guide LA010089
• DR receiver: Gyro application note LA010090
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
1
Contents
Features .................................................................................................................................5
1.0 Introduction .................................................................................................. 6
1.1 Product overview ............................................................................................................6
1.1.1 Description ..................................................................................................................................6
1.1.2 Receiver architecture .................................................................................................................6
2.0 Hardware interface ......................................................................................8
3.0 Serial data I/O interface .............................................................................. 8
3.1 Binary message format and word structure ................................................................8
3.1.1 Binary message format ..............................................................................................................8
3.1.2 Word structure ............................................................................................................................8
3.2 Binary message header .................................................................................................9
3.2.1 Message header word 1 ............................................................................................................9
3.2.2 Message header word 2 ............................................................................................................9
3.2.3 Message header word 3 ............................................................................................................9
3.2.4 Message header word 4 ............................................................................................................
3.2.5 Message header word 5 ..........................................................................................................
3.2.6 Log request messages ............................................................................................................10
3.3 Binary message data ....................................................................................................10
10
9
3.4 NMEA messages, format, and sentence structure ...................................................
3.4.1 NMEA output messages ..........................................................................................................10
3.4.2 NMEA input messages ............................................................................................................11
3.4.3 NMEA message format. .........................................................................................................11
3.4.5 NMEA-0183 approved sentences ...........................................................................................
3.4.6 Proprietary sentences ..............................................................................................................11
3.4.7 Checksum ................................................................................................................................
10
11
11
3.5 Jupiter binary data messages .....................................................................................14
3.5.1 Binary output message descriptions ........................................................................................14
3.5.1.1 Message 1000 (geodetic position status output) ............................................................ 14
3.5.1.2 Message 1002 (channel summary) .................................................................................
3.5.1.3 Message 1003 (visible satellites) ....................................................................................17
3.5.1.4 Message 1005 (DGPS Status) ........................................................................................ 18
3.5.1.5
Message 1007 (channel measurement) .......................................................................... 19
3.5.1.6 Message 1009 (reduced ECEF position status output) ..................................................20
Message 1011 (receiver ID) ............................................................................................21
3.5.1.7
3.5.1.8 Message 1012 (user settings output) .............................................................................. 22
3.5.1.9 Message 1100 (built-in test results ) ...............................................................................23
3.5.1.10
3.5.1.11 Message 1110 (frequency standard parameters in use) ...............................................25
3.5.1.12 Message 1117 (
3.5.1.13 Message 1130 (serial port communication parameters in use). ..................................27
3.5.1.14 Message 1135 (EEPROM Update). ..............................................................................29
3.5.1.15 Message 1136 (EEPROM status) ..................................................................................
3.5.1.16 Message 1160 (frequency standard table output data). ...............................................31
3.5.1.17 Message 1180 (
3.5.1.18 Message 1190 (error/status) .........................................................................................32
3.5.2 Binary input message descriptions. ...................................................................................... 33
3.5.2.1
3.5.2.2 Message 1210 (user-defined datum) ..............................................................................34
3.5.2.3
3.5.2.4 Message 1212 (satellite elevation mask control). ..........................................................35
3.5.2.5 Message 1213 (satellite candidate select). ....................................................................35
3.5.2.6 Message 1214 (
3.5.2.7 Message 1216 (cold start control) ..................................................................................36
3.5.2.8 Message 1217 (
3.5.2.9 Message 1219 (user-entered altitude input). ................................................................. 38
3.5.2.10 Message 1220 (application platform control). ..............................................................39
3.5.2.11
3.5.2.12 Message 1300 (perform built-in test command). .........................................................40
Message 1108 (UTC time mark pulse output) ............................................................... 24
power management duty cycle in use). ...............................................26
flash boot status). ................................................................................32
Message 1200 (geodetic position and velocity initialisation) .........................................33
Message 1211 (map datum select). ............................................................................... 34
DGPS control) ....................................................................................... 36
solution validity input) ............................................................................37
Message 1221 (nav configuration). ..............................................................................40
16
30
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
2
3.5.2.13 Message 1303 (restart command). ..............................................................................41
3.5.2.14 Message 1310 (frequency standard input parameters). ..............................................42
3.5.2.15 Message 1317 (power management control). ..............................................................43
3.5.2.16 Message 1330 (
3.5.2.17 Message 1331 (message protocol control) ..................................................................45
3.5.2.18 Message 1350 (
3.5.2.19 Message 1351 (raw DGPS RTCM SC-104 data) ..........................................................46
3.5.2.20 Message 1360 (frequency standard table input data). ................................................ 47
3.5.2.21 Message 1380 (
serial port communication parameters). ............................................44
factory calibration input). .....................................................................45
flash reprogram). ...............................................................................47
3.6 Jupiter NMEA data messages .................................................................................... 48
3.6.1 NMEA output message descriptions ...................................................................................... 48
3.6.1.1 Navman proprietary Built-In Test (BIT) results ..............................................................48
3.6.1.2 Navman proprietary error/status (ERR) ..........................................................................
3.6.1.3 GPS fix data (GGA) .........................................................................................................49
5.6.1.4 GPS satellites active and DOP (GSA)
3.6.1.5 GPS satellites in view (GSV) ...........................................................................................50
3.6.1.6 Navman proprietary receiver ID (RID) ............................................................................51
3.6.1.7 Recommended minimum specific GPS data (RMC) .......................................................
3.6.1.8 Course over ground and ground speed (VTG). .............................................................53
3.6.1.9 Navman proprietary Jupiter channel status (ZCH). .......................................................
3.6.2 NMEA input message descriptions. ...................................................................................... 55
3.6.2.1 Navman proprietary built-in test command message (IBIT). .........................................55
3.6.2.2 Navman proprietary log control essage (ILOG). ...........................................................
3.6.2.3 Navman proprietary receiver initialisation message (INIT). .......................................... 56
3.6.2.4 Navman proprietary protocol message (IPRO). ............................................................
3.6.2.5 Standard query message (Q). ....................................................................................... 57
. .........................................................................50
49
52
54
55
57
4.0 Jupiter GPS receiver operation ................................................................ 58
4.1 Internal (on board) data sources ................................................................................ 58
4.1.1 Static Random Access Memory (SRAM) ................................................................................ 58
4.1.2 Real-time clock (RTC) .............................................................................................................
4.1.3 Electrically Erasable Programmable Read- Only Memory (EEPROM) .................................. 58
4.1.4 Read-Only Memory (ROM) ..................................................................................................... 58
4.2 Initialisation .................................................................................................................. 58
4.2.1 Definition ................................................................................................................................. 58
4.2.2 Position, Velocity, Time (PVT) data ........................................................................................ 58
4.2.3 Satellite ephemeris ................................................................................................................. 58
4.2.4 Satellite almanac ....................................................................................................................
4.2.5 Universal Time Coordinated (UTC) and ionospheric parameters ..........................................
4.3 Configuration ............................................................................................................... 59
4.3.1 Definition ................................................................................................................................. 59
4.3.2 Geodetic datums .....................................................................................................................
4.3.3 Satellite selection ...................................................................................................................
4.3.4 Differential GPS (DGPS) control ............................................................................................
4.3.5 Cold start control .................................................................................................................... 60
4.3.6 Solution validity criteria ........................................................................................................... 60
4.3.7 User-entered altitude ..............................................................................................................
4.3.8 Vehicle platform select ...........................................................................................................
4.3.9 Navigation control ...................................................................................................................
4.3.10 Configuration straps .............................................................................................................. 60
4.3.10.1 National Marine Electronics Association (NMEA) Select .............................................60
4.3.10.2 ROM defaults. ..............................................................................................................
4.4 Start-up modes ............................................................................................................. 60
4.4.1 Warm start ............................................................................................................................... 60
4.4.2 Initialised start ......................................................................................................................... 60
4.4.3 Cold start ................................................................................................................................
4.4.4 Frozen start ..............................................................................................................................61
4.5 Satellite management ....................................................................................................61
4.5.1 Visible list generation. ..............................................................................................................61
4.5.1.1 Dilution Of Precision (DOP) ............................................................................................
4.5.2 Acquisition modes ...................................................................................................................62
4.5.2.1 Sequential acquisition .....................................................................................................
58
58 58
59 59 60
60 60 60
60
60
61
62
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
3
4.5.2.2 Parallel acquisition ..........................................................................................................62
4.5.2.3 Adaptive threshold-based signal detection ..................................................................... 62
4.5.2.4 Overall search process ................................................................................................... 62
4.5.3 Data collection .........................................................................................................................
4.5.3.1 Ephemeris .......................................................................................................................62
4.5.3.2 Almanac ..........................................................................................................................
4.5.3.3 UTC and ionospheric corrections. ........................................................................................62
62
62
4.6 Navigation ...................................................................................................................... 64
4.6.1 Geodetic datums ..................................................................................................................... 64
4.6.1.1 User selection of geodetic datums ..................................................................................
4.6.1.2 User defined datums .......................................................................................................64
4.6.2 Platform class ......................................................................................................................... 65
4.6.2.1 Pedestrian .......................................................................................................................
4.6.2.2 Automotive ......................................................................................................................65
4.6.2.3 Aircraft. ...........................................................................................................................
4.6.3 Navigation cycle ...................................................................................................................... 65
4.6.3.1 State propagation ............................................................................................................ 65
4.6.3.2 Measurement processing ...............................................................................................
4.6.3.3 Altitude processing .........................................................................................................65
4.6.3.4 Position pinning ..............................................................................................................
4.6.3.5 Ground track smoothing. ................................................................................................66
4.6.4 Solution validity ....................................................................................................................... 66
4.6.4.1 Altitude measurement validity criterion ...........................................................................
4.6.4.2 DGPS used validity criterion ...........................................................................................66
4.6.4.3 Number of satellites used validity criterion .....................................................................
4.6.4.4. Maximum EHPE validity criterion ..................................................................................67
4.6.4.5 Maximum EVPE validity criterion ...................................................................................67
4.6.5 Mean Sea Level (MSL) ............................................................................................................
4.6.6 Magnetic variation ....................................................................................................................67
64
65
65
65
65
66
66
67
4.7 Support functions .........................................................................................................67
4.7.1 Serial communication interfaces ..............................................................................................67
4.7.1.1 The host port ....................................................................................................................
4.7.1.2 The auxiliary port ............................................................................................................. 68
4.7.2 EEPROM services ..................................................................................................................
4.7.3 RTC services ........................................................................................................................... 68
4.7.4 Differential GPS (DGPS) ......................................................................................................... 68
4.7.4.1 The RTCM protocol .........................................................................................................
4.7.4.2 The RTCM message types ..............................................................................................69
4.7.4.3 Compliance with RTCM SC-I04 requirements ................................................................
4.7.4.4 DGPS initialisation and configuration. ............................................................................ 69
4.7.4.5 Disabling DGPS operation ..............................................................................................70
4.7.4.6 DGPS reset .....................................................................................................................
4.7.4.7 DGPS status request ....................................................................................................... 70
4.7.5 Built-In Test (BIT) .....................................................................................................................
4.7.5.1 Interpreting BIT results .................................................................................................... 70
67
68
69
69
70
70
Appendix A: Acronyms, abbreviations, and glossary ................................. 72
Appendix B: References ................................................................................. 76
APPENDIX C: NAVSTAR GPS operation ........................................................ 76
APPENDIX D: Frequently Asked Questions (FAQ) ....................................... 81
APPENDIX E: Reference ellipsoids and datum tables for Jupiter and
NavCore receivers ........................................................................................... 82
APPENDIX F: 2 x 10 pin field connector information ................................... 89
APPENDIX G: RG-142 and RG-316 Specifications ........................................ 89
Typical Specification for RG-316: ...................................................................................... 89
I. Electrical Characteristics: ............................................................................................................. 89
II. Physical Characteristics: .............................................................................................................
measurement processor .............................................................................................................80
differential data processor .............................................................................................................................80
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
89
4
Features
The Jupiter series of GPS receivers offers the following physical, operational, and support features:
• OEM product development that is fully supported through application’s engineering.
• compact GPS receiver footprint.
• 12 parallel satellite tracking channels.
• supports NMEA-0183 data protocol.
• direct, differential RTCM SC-104 data capability for improved positioning accuracy (available in both Navman binary and NMEA host modes.)
• static navigation enhancements to minimise wander due to SA (Selective Availability).
• designed for passive or active antennas for lowest system cost.
• adaptive threshold-based signal detection for improved reception of weak signals.
• maximum navigation accuracy achievable with the Standard Positioning Service (SPS).
• enhanced TTFF upon power-up when in a ‘keep-alive’ power condition before start-up.
• meets strict shock and vibration requirements including low-frequency vibration.
• automatic altitude hold mode from three-dimensional to two-dimensional navigation.
• automatic cold start acquisition process (when no initialisation data is entered by user).
• maximum operational flexibility and configurability via user commands.
• ability to accept externally supplied initialisation data.
• three-satellite navigation start-up from acquisition.
• user selectable satellites.
· user selectable visible satellite mask angle.
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
5
1.0 Introduction
This document provides technical information common to the entire Navman Jupiter series.
Navman’s Jupiter series of Global Positioning System (GPS) receivers are single-board, 12 parallel-channel receiver engines. Each board is intended as a component for an Original Equipment Manufacturer (OEM) product.
GPS satellites, in various orbits around the Earth, broadcast Radio Frequency (RF) ranging codes and navigational data messages. The Navman Jupiter series GPS receivers continuously track all ‘visible’ satellites and decode all available signals from them, producing a highly accurate and robust navigation solution.
The Jupiter series receivers are designed for high performance and maximum flexibility in a wide range of OEM applications including handhelds, panel mounts, sensors, and in-vehicle automotive products. These highly integrated digital receivers incorporate two custom SiRF devices that have the SiRF Jupiter chip set: the RF1A and the Scorpio Digital Signal Processor (DSP). The combination of custom devices minimises the receivers’ size and satisfies harsh industrial requirements.
1.1 Product overview
1.1.1 Description
The receivers require DC power and a GPS signal from a passive or active antenna. To provide the lowest total system cost with minimal power consumption, each of the receivers provides only those components that are required for the majority of applications (e.g. if a passive antenna can be used with a short cable, no pre-amplifier is required).
The all-in-view tracking of Jupiter series receivers provides robust performance in applications that require high vehicle dynamics or that operate in areas of high signal blockage, such as dense urban centres. By continuously tracking all visible GPS satellites and using all of the measurements to produce an ‘over-determined’ and ‘smoothed’ navigation solution, the Jupiter receiver provides a solution that is relatively immune to blockage induced position jumps that can occur in other receivers with fewer channels.
The 12-channel architecture provides rapid Time­To First Fix (TTFF) under all start-up conditions. The best TTFF performance is normally achieved when time of day and current position estimates are provided to the receiver. However, the flexible
Jupiter signal acquisition system takes advantage of all available information to provide a rapid TTFF. Acquisition is guaranteed under all initialisation conditions as long as available satellites are not obscured.
To minimise TTFF following a power interruption, each of the Jupiter receivers can accept external voltage to maintain power to the Static Random Access Memory (SRAM) and Real-Time Clock (RTC) for periods following the loss of primary power. The use of external voltage assures the shortest possible TTFF following a short power interruption. The OEM may extend the operation of the RTC by providing stand-by power on a connector pin, in which case a short TTFF is achieved by using the RTC time data and prior position data from the receiver’s Electrical Eraseable Programmable Read-Only Memory (EEPROM).
The Jupiter series supports two dimensional (2D) operation when less than four satellites are available or when required by operating conditions. Altitude information required for 2D operation is determined by the receiver or may be provided by the OEM.
The Jupiter receivers contain two independent serial ports, one of which is configured for primary input and output data flow using the National Marine Electronics Association (NMEA) 0183 format or Navman binary message format. The second port is used to receive Differential GPS (DGPS) corrections in the Radio Technical Commission For Maritime Services (RTCM) SC-104 format. The receivers support DGPS operations for improved accuracies over standard GPS.
A complete description of the serial data interface for the entire Jupiter series of GPS receivers is contained in this document.
For applications that require timing synchronisation to GPS accuracies, the Jupiter receivers provide an output timing pulse that is synchronised to one second Universal Time Coordinated (UTC) boundaries.
1.1.2 Receiver architecture
Figure 1-2 illustrates the internal architecture of the Jupiter receivers. Each receiver is designed around two custom SiRF devices that contain most of the required GPS functionality.
1. The RF1A, which contains all the RF down­conversion and amplification circuitry, and which presents sampled data to the Scorpio device.
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
6
2. The Scorpio device, which contains an integral microprocessor and all GPS specific signal processing hardware.
In addition, memory and other supporting components configure the receiver into a complete navigation system. Figure 1-3 illustrates an
architecture that might be used to integrate a particular Jupiter receiver with an application processor that drives peripheral devices such as a display and keyboard. The interface between the application’s processor and the Jupiter receiver is through the serial data interface.
RF
connec tor
pre-select
filter
CX74051
receiver front- end
LNA
post-select
filter
down
conver ter
0
10.949 M Hz Xtal
regulated DC power
bat. backup to SRAM & RTC
signal samples
clock signals
A/ D control
SRA M
ROM*
*contains
soft ware
baseban d processor
ADD BUS
EMI filtering
& power supply
CX11577
12 channel
GPS
correlator
12C
BUS
serial p ort 2
serial p ort 1
1PPS, 10 kHz
serial
EEPROM
RTC
0
32 kHz Xtal
GDGPS d ata
(RTCMSC-104)
OEM host interface
timing reference
+3.3 or 5.0 VDC input
+3.3 or 5.0 VDC
bat. backup
GPS antenna
pre-amplifier
Figure 1-2 Internal Jupiter architecture
(optional)
power
supply
Jupiter
GPS receiver
power/communications interface
OEM
application
processor
Figure 1-3 Possible Jupiter/OEM architecture
DGPS
(optional)
display
keypad
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
7
2.0 Hardware interface
Details of the specific Jupiter GPS receiver’s electrical interface are contained in the applicable data sheet for the receiver (the latest Jupiter series data sheets and product briefs can be downloaded from the Navman OEM website at www.navman. com/oem/). For information about the 2 x l0 pin field connector, see Appendix F.
3.0 Serial data I/O interface
This section describes the formats of the two types of messages that can be communicated across the serial data interface for the Jupiter GPS receivers. The structure and contents of each binary message are described in section 3.2. The structure and contents of each National Marine Electronics Association (NMEA) message is described in section 3.3.
3.1 Binary message format and word structure
3.1.1 Binary message format
The input/output binary data stream format is a low byte/high byte pattern. Each byte is output with its Least Significant Bit (LSB) first, followed by its higher order bits, ending with the Most Significant Bit (MSB) of the data byte.
The binary message format is almost identical to that used by the previous NavCore/MicroTracker series of receivers, except that all floating point values are now represented as fixed-point integer numbers with explicit or implied scale factors.
Each binary message consists of a header portion and a data portion, each with its own checksum. Each message will have a header, but some messages may not have data. Message acknowledgements are in the form of a header, and message requests are also made using headers. Table 3-1 shows the data types used to define the elements of the binary interface messages.
3.1.2 Word structure
An integer is defined as 16 bits. While offsets are incorporated in the message description tables, the most convenient specification of memory layout in application implementation is likely to be a structure definition. If the item is a fixed point quantity, the value of the LSB of the integer is given.
To convert a fixed point item to a floating point variable, the integer representation is floated and multiplied by the resolution. When converting to float, consideration must be given to the range and resolution of the item to ensure that the type of float selected for the conversion has an adequate mantissa length to preserve the accuracy of the data item. Triple word items may require scaling portions of the variable separately and then adding them in floating point form.
Composite words may have independent definitions for each bit field in the word. Flag bits are either zero (false) or one (true). All bits that are designated as reserved within the bit descriptions of binary data have undefined values for outputs and must be set to zero for inputs.
Type Abbreviation Words (Note 1) Bits Maximum range
Bit (Note 2) Bit n/a 0 to 15 0 to 1
Character (Note 3)
Integer
Double integer DI
Triple integer TI
Unsigned integer UI
Unsigned double integer UDI
Unsigned triple integer UTI
Note 1: The term ‘word’ is used throughout this document to specify a quantity which occupies 16 bits of storage. Note 2: Data items using bit storage are specified with a format of w.b, where ‘w’ is the word number and ‘b’ is the bit number (0-15,0 LSB) within the word. Multiple-bit items (bit fields) are indicated by a range of ‘word.bit’ values (e.g. 8.4– 8.7). Note 3: Although the A AMP2 processor and C compiler use 16-bit character representations, this data interface will use the more common 8-bit representation. The Jupiter receiver software will pack/unpack the character data internally as needed.
C n/a 8 ASCII 0 to 255
I 1 16 –32 768 to +32767
2 32 –2 147 483 648 to +2 147 483 647
3 48
1 16 0 to 65 535
2 32 0 to 4 294 967 295
3 48 0 to 281 474 976 710 656
–140 737 488 355 328 to
+ 140 737 488 355 327
Table 3-1 Binary message data type
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
8
Figure 3-1 Binary message header format
3.2 Binary message header
The binary message header format has been modified slightly from the NavCore V format to accommodate message logging requests. The format of the new message header is shown in Figure 3-1.
3.2.1 Message header word 1
Each input/output message starts with a synchronisation word of the form 0x81FF DEL (255 decimal) occupying the first eight bits followed by the Start Of Header (SOH) (129 decimal) occupying the second eight bits of the synchronisation word.
HEX
with
independently for each message request. The user sets the request (R) bit and either the acknowledge (A) bit or negative acknowledge (N) bit, or both, to select the proper acknowledge behaviour. With this approach, the user can configure requests only to be NAKed, alerting the user when a problem arises without incurring the overhead necessary to continuously process ACKs.
The lower six bits of the flags word can be used as an additional input identifier. This identifier is not explicitly processed by the receiver; it is echoed back, in the same location, as part of the header in ACK/NAK responses. This feature allows the user to uniquely distinguish which input message an acknowledgement corresponds to when multiple input messages with the same message ID were processed during a particular period of time. The flags word now supports message logging requests. The connect (C) and disconnect (D) bits are used to enable and disable, respectively, message outputs, and can be used either independently or in conjunction with the log request bits.
A ‘header-only’ message, with a message ID and the connect bit set, enables the specified message with existing timing characteristics. Likewise, a header-only message, with message ID and the disconnect bit set, disables the specified message.
3.2.2 Message header word 2
Word 2 contains the numeric message ID. For example, word 2 for Message ID 1000 would be:
High Byte Low Byte
0000 MSB
or 0x03E8
HEX
0011
LSB
.
1110
MSB
1000
LSB
3.2.3 Message header word 3
Word 3 contains the word count for the data portion of the message. The word count does not include the data checksum word. A zero data word count indicates a ‘header-only’ message.
3.2.4 Message header word 4
The fourth word of the message header is a 16-bit field allocated to protocol and message related flags. These flag bits extend control over ACK/ NAK requests and implement message logging requests. The zero’s represented in the word 4 field shown in Figure 3-1 are reserved bits and should be set to zero within this word.
Figure 3-2 Standard log request message
format (data portion)
A message with both connect and disconnect bits is ignored. Note that enabling and disabling a message does not modify its timing characteristics (trigger, interval, or offset). A log request with the connect bit set will set up the message’s timing characteristics and then enable the message. Similarly, for a combined log and disable request, the message will be disabled after the timing characteristics are set. To disable all messages, set the message ID to FFFF
(all bits set) and set
HEX
the disconnect (D) bit.
The ACK/NAK control mechanism gives the user the ability to request either ACK or NAK, or both,
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
Setting the query (Q) request bit will output the message specified by the message ID one time
9
during the next output interval. Standard log requests will be accepted if the log (L) bit is set and if the required data parameters are present in the data portion of the request message.
3.2.5 Message header word 5
Word 5 of the message header is the data checksum, used to validate the header portion of the message. It is computed by summing (modulo
216) all words (including the word containing DEL and SOH) contained in the header and then performing a two’s complement on the sum.
SUM = Mod 2
16
word(i)
Σ
i=1
4
The computation of the header checksum may be expressed mathematically as: if sum = –32768, header checksum = SUM; else header checksum = –SUM where:
a. Unary negation is computed as the two’s complement of a 16-bit data word.
b. Mod 216 indicates the least 16 bits of an arithmetic process. That is, carry bits from bit position 16 are ignored.
c. The summation is the algebraic binary sum of the words indicated by the subscript i.
d. The –32768 sum value must be treated as a special case since it cannot be negated.
(NOTE: A CURRENT BUG CAUSES CHECKSUM ERRORS FOR A VALUE OF ZERO or –32 768)
3.2.6 Log request messages
Figure 3-2 shows the format of the data portion of standard log request messages. The ranges for words 6, 7, and 8 of these messages are as follows: Trigger: 0 = on time, 1 = on update Interval: 0 to 65535 seconds (an interval of zero produces a query as if the query bit [Q] in word 4 of the message header has been set). Offset relative to the next even minute, zero to 60 seconds. An offset of zero specifies an initial output relative to the current time, an offset of 60 specifies an initial output seconds into the next minute.
When the Trigger field is set to ‘on time’ (integer value 0), the first output will occur at the next ‘offset’ seconds into the minute, and will repeat every ‘interval’ seconds thereafter. When the trigger field is set to ‘on update’, the specified message will be output only when the data is updated (e.g. when satellite almanac is collected).
3.3 Binary message data
The data portion of a binary message, if it exists, can be variable in length, as specified by the
data word count found in the header. The data checksum follows the data and is not included in the data word count.
The data checksum is a 16-bit word used to validate the data portion of the message. It is transmitted as the last word of any message containing data (see Figure 3-2).
When the word count field is zero, the data checksum does not exist. It is computed by summing (modulo 216) all words in the data portion of the message and then complementing that sum. The mathematical expression for the data checksum is:
SUM = Mod 2
16
word(i)
Σ
i=1
5+n
If sum = –32 768, data checksum = SUM; else data checksum = –SUM where:
a. Unary negation is computed as the two’s complement of a 16-bit data word.
b Mod 216 indicates the least 16 bits of an arithmetic process. That is, carry bits from bit position 16 are ignored.
c. The summation is the algebraic binary sum of the words indicated by the subscript (i).
d. The –32 768 sum value must be treated as a special case since it cannot be negated.
(NOTE: A CURRENT BUG CAUSES CHECKSUM ERRORS FOR A VALUE OF ZERO or –32 768)
Data elements identified as ‘reserved’ must be set to 5+N zero for input messages and are undefined for output messages. All data storage that is not explicitly 1-6 defined should be handled as if marked ‘reserved’. Unless otherwise stated, the resolution of each numeric data item is one integer unit, as specified by that item in the ‘units’ field.
3.4 NMEA messages, format, and sentence structure
NMEA messages are output in response to standard Query (Q) or proprietary Log Control (ILOG) messages as described in Section 3.6. The timing of output messages is synchronised with the time mark output event.
3.4.1 NMEA output messages
The following supported NMEA output messages comply with the NMEA-0183 version 2.01 standard:
GGA: GPS fix data
GSA: GPS DOP and active satellites
GSV: GPS satellites in view
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
10
RMC: recommended minimum specific GPS data
The Jupiter receiver also supports the following Navman proprietary output messages:
BIT: built-In test results
ERR: error/status
RID: receiver ID
ZCH: Jupiter channel status
These Navman proprietary messages conform to the message format described below.
3.4.2 NMEA input messages
The Jupiter receiver supports the following proprietary input messages:
IBIT: built-in test command, Navman proprietary
ILOG: log control, Navman proprietary
INIT: receiver initialisation, Navman proprietary
The maximum number of characters in a sentence is 82, consisting of a maximum of 79 characters between the starting delimiter ‘$’ and the terminating <CR> and <LF>. Since the number of data fields can vary from sentence to sentence, it is important that the ‘listener’ (or application software) locate fields by counting delimiters rather than counting the total number of characters received from the start of the sentence.
3.4.5 NMEA-0183 approved sentences
An approved NMEA-0183 sentence contains the following elements, in the order shown: ‘$’ Start of the sentence (24
HEX
) <address field> Talker identifier and sentence formatter. [‘,’<data field>] Zero or more data fields. ‘*’ <checksum field>] Optional checksum field <CR><LF> End of sentence delimiter (0D 0A
HEX
)
Note: Since the Jupiter receiver is a GPS device, the ‘talker’ identifier is always ‘GP’.
IPRO: protocol, Navman proprietary
The INIT message is used to command initialisation of the receiver and the IPRO message is used to change the message protocol. The first character of the message sentence is ‘P,’ followed by a three-character mnemonic code for Navman Systems Inc. (RWI) according to Appendix III of the NMEA -0183 standard.
3.4.3 NMEA message format.
All NMEA-0183 data messages are in ASCII form. Each message begins with ASCII $ (24 ends with ASCII <CR> <LF>(0D
HEX
HEX
and 0A
) and
).
HEX
The valid character set consists of all printable ASCII characters, 20
HEX
to 7E
, except for the
HEX
reserved characters listed in Table 3-2.
Each NMEA message, or sentence, consists of a set of fields separated by a comma delimiter character. Each field can contain either a string of valid characters or no characters (null field). Valid characters must conform with the formats described in Table 3-3.
3.4.6 Proprietary sentences
Proprietary sentences allow OEMs to transfer data that does not fall within the scope of approved NMEA sentences. A proprietary sentence contains the following elements, in the order shown: ‘$’ start of the sentence (24 ‘P’ proprietary sentence ID (50
HEX
)
HEX
) <aaa> OEMs mnemonic code [<valid characters, OEMs data>] [‘*’<checksum field>] optional checksum field. <CR><LF> end of sentence delimiter (0D 0A
HEX
).
3.4.7 Checksum
The checksum is the 8-bit exclusive OR (no start or stop bits) of all characters in the sentence, including delimiters (except for the $ and the optional * delimiters). The hexadecimal value of the most significant and least significant four bits of the result are converted to two ASCII characters (0 to 9, A to F) for transmission. The most significant character is transmitted first.
Character Hex value Decimal value Description
<CR> 0D 13 Carriage return (end of sentence delimiter)
<LF> 0A 10 Line feed (end of sentence delimiter)
$ 24 36 Start of sentence delimiter
* 2A 42 Checksum field delimiter
, 2C 44 Field delimiter
! 21 33 Reserved
\ 5C 92 Reserved
^ 5E 94 Reserved
. 7E 126 Reserved
Table 3-2 NMEA reserved characters
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
11
Field Type Symbol Definition
Special format fields
Single character field:
Status
A
A = yes, data valid, warning flag clear V = no, data invalid, warning flag set
Fixed/variable length field (degrees/minutes.decimal) two fixed digits of degrees, two fixed
Latitude 1111.11
digits of minutes, and a variable number of digits for decimal-fraction of minutes Note: Leading zeros always included for degrees and minutes to maintain fixed length (the decimal point and associated decimal-fraction are optional if full resolution is not required).
Fixed/variable length field (degrees/minutes.decimal) three fixed digits of degrees, two fixed
Longitude yyyyy. yy
digits of minutes and a variable number of digits for decimal-fraction of minutes. Note: Leading zeros always included for degrees and minutes to maintain fixed length (the decimal point and associated decimal-fraction are optional if full resolution is not required).
Fixed/variable length field (hours/minutes/seconds.decimal) two fixed digits of hours, two fixed digits of minutes, two fixed digits of seconds and a variable number of digits for
Time hhmmss.ss
decimal-fraction of seconds. Note: Leading zeros always included for hours, minutes, and seconds to maintain fixed length (the decimal point and associated decimal-fraction are optional if full resolution is not required).
Some fields are specified to contain pre-defined constants, most often alpha characters.
Defined
field
Such a field is indicated in the NMEA-0183 standard by the presence of one or more valid characters. The following characters and character strings used to indicate field types are excluded from the list of allowable characters: ‘A’, ‘a’, ‘c’, ‘hh’, ‘hhmmss.ss’, ‘1111.11’, ‘x’, and ‘yyyyy.yy’.
Numeric value fields
Variable
numbers
Fixed HEX
field
X.x
Hh_ _ Fixed length HEX numbers only, most significant bit on the left.
Variable length integer or floating point numeric field (optional leading and trailing zeros) Note: The decimal point and associated decimal-fraction are optional if full resolution is not required (eg 73.10 = 73.1 = 073.1 = 73).
Information fields
Variable
text
Fixed
alpha field
Cn C Variable length valid character field
Aa_ _ Fixed length field of uppercase or lowercase alpha characters
Fixed
number
Xx__ Fixed length field of numeric characters
field
Fixed text
field
Note 1: Spaces may only be used in variable text fields. Note 2: A negative sign (‘–’ or 2DHEX) is the first character in a field if the value is negative. The sign is omitted if the value is positive. Note 3: All data fields are delimited by a comma (,). Note 4: Null fields are indicated by no data between two delimiters.
Cc_ _ Fixed length field of valid characters
Table 3-3 NMEA field type summary
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
12
Output message name Message ID Input message name Message ID
Geodetic position status output (*) 1000
Geodetic position and velocity
initialisation
Channel summary (*) 1002 User-defined datum definition 1210
Visible satellites (*) 1003 Map datum select 1211
Differential GPS status 1005 Satellite elevation mask control 1212
Channel measurement 1007 Satellite candidate select 1213
ECEF position output 1009 Differential GPS control 1214
Receiver I D (**) 1011 Cold start control 1216
User-settings output 1012 Solution validity criteria 1217
Built-in test results 1100 User-entered altitude Input 1219
UTC time mark pulse output (*) 1108 Application platform control 1220
Frequency standard parameters in use 1110 Nav configuration 1221
Power management duty cycle in use 1117 Perform built-in test command 1300
Serial port communication parameters in
use
1130 Restart command 1303
EEPROM update 1135 Frequency standard input parameters 1310
EEPROM status 1136 Power management control 1317
Frequency standard table output data 1160 Serial port communications parameters 1330
Flash boot status 1180 Factory calibration input 1350
Error/status 1190 Frequency standard table input data 1360
Message protocol control 1331
Raw DGPS RTCM SC-104 data 1351
Flash re-program request 1380
(*) Enable by default at power-up
(**) Once at power-up/reset
1200
Table 3- 4 Jupiter binary data messages
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
13
3.5 Jupiter binary data messages
This section describes the binary data messages of the Jupiter GPS receiver. All output and input binary messages are listed in Table 3-4 together with their corresponding message IDs. Power-up default messages are also identified.
3.5.1.1 Message 1000 (geodetic position status output)
This message outputs the receiver’s estimate of position, ground speed, course over ground, climb rate, and map datum. A solution status indicates if the solution is valid (based on the solution validity criteria), the type of solution, and the number of measurements used to compute the solution.
Binary messages are transmitted and received across the host port serial I/O interface (RS-232), default communication parameters are: 9600 bps, no parity, 8 data bits, 1 stop bit
The polar navigation flag is used to indicate that the solution estimate is too close to the North or South Pole to estimate longitude. When this flag is true, the longitude and true course outputs are
3.5.1 Binary output message descriptions
This section provides details for each of the output binary messages.
Message ID: 1000
Rate: variable; defaults to 1 Hz
Message length: 55 words
Word No. Name Type Units Range
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
9 Satellite measurement sequence number (Note 3) I 0 to 32 767
Navigation solution validity (10.0-10.15)
10.0 Solution invalid—altitude used (Note 4) Bit 1 = true
10.1 Solution invalid—no differential GPS (Note 4) Bit 1 = true
10.2 Solution invalid—not enough satellites in track (Note 4) Bit 1 = true
10.3 Solution invalid—exceeded max EHPE (Note 4) Bit 1 =true
10.4 Solution invalid—exceeded max EVPE (Note 4) Bit 1 =true
10.5 Solution invalid—no DR measurements (Note 5) Bit 1 = true
10.6 Solution invalid—no DR calibration (Note 6) Bit 1 = true
10.7 Solution invalid—no concurrent DR calibration by GPS (Note 7) Bit 1 = true
10.8-10.15 Reserved
Navigation solution type (11.0-11.15)
11.0 Solution type - propagated solution (Note 8) Bit 1 = propagated
11.1 Solution type - altitude used Bit 1 = altitude used
11.2 Solution type -differential Bit 1 = differential
11.3 Solution type - PM Bit 1 = RF off
11.4 Solution type – GPS (Note 9) Bit 1 = true
11.5 Solution type – concurrent GPS calibrated DR (Note 10) Bit 1 = true
11.6 Solution type – stored calibration DR (Note 11) Bit 1 = true
11.7-11.15 Reserved
12 Number of measurements used in solution UI 0 to 12
invalid and are not updated. Users operating near the poles should use the ‘ECEF position status output’ message. (See Table 3-5.)
Table 3-5 (1 of 2) Message 1000 (geodetic position status output)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
14
Word No Name Type Units Range Resolution
Non-DR link: polar navigation
1 = true
1 = true
0 to 300
0.01
13
DR navigation link:
Bit 0 = polar navigation
Bit 15 to 1 = heading uncertainty standard
deviation (Note 12)
Bit
Bit UI
degrees
14 GPS week number UI weeks 0 to 32 767
15-16 GPS seconds from epoch UDI
s 0 to 604 799
17-18 GPS nanoseconds from epoch UDI ns 0 to 999 999 999
19 UTC day UI day 1 to 31
20 UTC month UI month 1 to 12
21 UTC year UI year 1980 to 2079
22 UTC hours UI
h 0 to 23
23 UTC minutes UI min 0 to 59
24 UTC seconds UI
s 0 to 59
25-26 UTC nanoseconds from epoch UDI ns 0 to 999 999 999
27-28 Latitude DI rad ±0 to
�/2 10
29-30 Longitude DI rad ±0 to � 10
31-32 Height DI m ± 0 to 50 000 10
33 Geoidal separation 1 m ±0 to 200 10
34-35 Ground speed UDI m/s 0 to 1000 10
36 True course UI rad 0 to 2� 10
37 Magnetic variation 1 rad ±0 to �/4 10
38 Climb rate 1 m/s ±300 10
-8
-8
-2
-2
-2
-3
-4
-2
39 Map datum (Note 13) UI 0 to 188 and 300 to 304
40- 41 Expected horizontal position error (Note 14) UDI
m 0 to 320 000 000 10
42-43 Expected vertical position error (Note 14) UDI m 0 to 250 000 10
44- 45 Expected time error (Note 14) UDI m 0 to 300 000 000 10
46 Expected horizontal velocity error (Note 14) UI m/s 0 to 10 000 10
47-48 Clock bias (Note 14) DI m ±0 to 9 000 000 10
49-50 Clock bias standard deviation (Note 14) DI m ±0 to 9 000 000 10
51-52 Clock drift (Note 14) DI m/s ±0 to 1000 10
53-54 Clock drift standard deviation (Note 14) DI m/s ±0 to 1000 10
-2
-2
-2
-2
-2
-2
-2
-2
55 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary Messages 1002 and 1007 (channel summary message and channel measurement message, respectively). Note 4: The value of this data item was initially set using the solution validity criteria message (Message 1217). Note 5: Either no DR messages are being received or data has been detected as inconsistent with GPS. Note 6: No calibration is available for DR measurements from concurrent GPS or from stored values. Note 7: No calibration is available for DR measurements from concurrent GPS. Note 8: It should be noted that bit zero of word 11 does not refer to a solution propagated by the navigation software. This bit is used to indicate if the solution was propagated by the serial I/O manager to generate a 1 Hz output message when no new navigation state data was available. This is an error condition potentially caused by a shortage of throughput in one cycle. It is unlikely to occur and is self correcting. Normal state propagation which occurs within the navigation software with or without measurements available for processing does not cause this bit to be set. Note 9: Navigation is based on GPS alone. Current system or GPS/DR with no DR measurements available. Note 10: DR is running with concurrent calibration by GPS. Note 11: DR is running with calibration from stored values from prior operating session. Note 12: An uncertainty value of 0x7FFF indicates unknown heading. A message value 0x000D indicates Polar navigation equals true and heading uncertainty SD equals 0.06 (hex value 0x000C). Note 13: Appendix B contains map datum codes from 0 to 188. Codes 300 to 304 are user-defined. Note 14: The data displayed by this field is not valid until the receiver is in navigation mode.
Table 3-5 (2 of 2) Message 1000 (geodetic position status output)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
15
3.5.1.2 Message 1002 (channel summary)
This message provides a summary form of the satellite range measurements and signal tracking
information on a per- channel basis. The contents of the ‘channel summary’ message are described in Table 3-6
Message ID: 1002
Rate: Variable; defaults to 1 Hz
Message Length: 51 words
Word No. Name Type Units Range
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
9
Satellite measurement sequence number
(Note 3)
I 0 to 32 767
10 GPS week number UI weeks 0 to 32 767
11-12 GPS seconds into week UDI s 0 to 604 799
13-14 GPS nanoseconds from epoch UDI ns 0 to 999 999 999
Channel summary data
15.0+(3*n) Measurement used (Note 4) Bit 1 = used
15.1+(3*n) Ephemeris available Bit 1 = available
15.2+(3*n) Measurement valid Bit 1 = valid
15.3+(3*n) DGPS corrections available Bit 1 = available
16+(3*n) Satellite PRN UI 0 to 32
17+(3*n) C/No UI dBHz 0 to 60
51 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary Messages 1002 and 1007 (channel summary message and channel measurement message, respectively). Note 4: n = 0 to 11.
Table 3- 6 Message 1002 (channel summary)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
16
3.5.1.3 Message 1003 (visible satellites)
This message outputs the list of satellites visible to the receiver and their corresponding elevations
from this visible list, are also provided. The contents of the ‘visible satellites’ message are described in Table 3-7.
and azimuths. The best possible DOPs, calculated
Message ID: 1003
Rate: Variable; default on update
Message Length: 51 words
Word No. Name Type Units Range Resolution
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks
8 Sequence number (Note 2) I 0 to 32 767
9 Best possible GDOP I 0 to 99 10
10 Best possible PDOP I 0 to 99 10
11 Best possible HDOP I 0 to 99 10
12 Best possible VDOP I 0 to 99 10
13 Best possible TDOP I 0 to 99 10
14 Number of visible satellites UI 1 to 12
Visible satellite set (Note 3)
15 + (3*j) Satellite PRN (Note 4) UI 0 to 32
16 + (3*j) Satellite azimuth I rad ±� 10
17 + (3*j) Satellite elevation I rad ±�/2 10
51 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: Only the satellite sets for the number of satellites reported in word 14 of this message are valid. Note 4: j = the number of visible satellites minus one when the number of visible satellites is greater than zero.
0 to
4 294 967 295
-2
-2
-2
-2
-2
-4
-4
Table 3-7 Message 1003 (visible satellites)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
17
3.5.1.4 Message 1005 (DGPS Status)
This message contains DGPS status information derived from the last set of differential corrections
processed by the receiver. The contents of the ‘DGPS status’ message are described in Table 3-8.
Message ID: 1005
Rate: Variable
Message Length: 25 words
Word No. Name Type Units Range
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
Status (9.0-9.15)
9.0 Station health Bit 1 = station bad
9.1 User disabled Bit 1 = user disabled
9.2-9.15 Reserved
10 Station ID UI 0 to 1023
11 Age of last correction UI
s 0 to 999
12 Number of available corrections UI 0 to 12
Correction status per satellite (Note 3)
j.0-j.5 Satellite PRN (Note 4) UI 1 to 32
j.6 Local ephemeris Bit 1 = ephemeris not available
j.7 RTCM corrections Bit 1 = corrections not available
j.8 RTCM UDRE Bit 1 = UDRE too high
j.9 Satellite health Bit 1 = satellite data indicates bad health
j.10 RTCM satellite health Bit 1 = RTCM source declares satellite bad
j.11 Corrections stale Bit 1 = received stale corrections
j.12 lODE mismatch Bit 1 = lODE mismatch
j.13-j.15 Reserved
25 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: Only the correction status words for the number of available corrections reported in word 12 of this message are valid. Note 4: The word number, j, ranges from 13 to 24.
Table 5-8 Message 1005 (DGPS status)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
18
3.5.1.5 Message 1007 (channel measurement)
This message provides measurement and associated data for each of the receiver’s
12 channels. The contents of the ‘channel measurement’ message are described in Table 3-9.
Message ID: 1007
Rate: Variable
Message Length: 154 words
Word No. Name Type Units Range Resolution
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
9 Satellite measurement sequence number (Note 3) I 0 to 32 767
Channel measurement data
10 + 12*j Pseudo-range (Note 4) TI
m ±1.4
14
13 + 12*j Pseudo-range rate DI m/s ±21 474 836 10
15 + 12*j Carrier phase TI m ±1.4
18 + 12*j Carrier phase bias TI m ±1.4
14
14
10
10
10
-3
-3
-3
-3
21 + 12*j Phase bias count UI 0 to 65 535
154 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary Messages 1002 and 1007 (channel summary message and channel measurement message, respectively). Note 4: j = 0 to 11
Table 3-9 Message 1007 (channel measurement)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
19
3.5.1.6 Message 1009 (reduced ECEF position status output)
This message provides measurement and
12 channels. The contents of the ‘channel measurement’ message are described in Table 3-10.
associated data for each of the receiver’s
Message ID: 1009
Rate: variable
Message length: 22 words
Word No. Name Type Units Range Resolution
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
9
10-11 ECEF Position - X (Note 4) DI m ± 0 to 9 000 000 10
12-13 ECEF Position - Y (Note 4) DI m ± 0 to 9 000 000 10
14-15 ECEF Position - Z (Note 4) DI m ±0 to 9 000 000 10
16-17 ECEF Velocity - X (Note 4) DI m/s ±0 to 1000 10
18-19 ECEF Velocity - Y (Note 4) DI m/s ±0 to 1000 10
20-21 ECEF Velocity - Z (Note 4) DI m/s ±0 to 1000 10
22 Data checksum UI
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. The set time indicated is at the time the message is submitted to the output queue. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary Messages 1002 and 1007 (channel summary message and channel measurement message, respectively). Note 4: The data displayed by this field is not valid until the receiver is in navigation mode.
Satellite measurement sequence number
(Note 3)
ECEF navigation solution
I 0 to 32 767
-2
-2
-2
-2
-2
-2
Table 3-10 Message 1009 (ECEF position output)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
20
3.5.1.7 Message 1011 (receiver ID)
This message is output automatically at start-up after the receiver has completed its initialisation. It can be used to determine when the receiver is
this message are also honoured. This message consists of five 20-byte (two characters per word), null-padded ASCII data fields. The contents of the ‘receiver ID’ message are described in Table 3-11.
ready to accept serial input. Manual requests for
Message ID: 1011
Rate: variable (see above)
Message length: 59 words
Word No. Name Type Units Range
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
9-18 Number of channels
19-28 Software version
29-38 Software date
39- 48 Options list (Note 3)
49-58 Reserved UI
59 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: The options list is a bit-encoded configuration word represented as an ASCII four-digit hexadecimal number: bit 0 minimises ROM usage bit 1 minimises RAM usage bits 2-15 reserved
C
C
C
C
Table 3-11 Message 1011 (receiver ID)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
21
3.5.1.8 Message 1012 (user settings output)
This message provides a summary of the settings
The contents of the ‘user settings output’ message are described in Table 3-12.
for many of the user-definable parameters.
Message ID: 1012
Rate: variable
Message length: 22 words
Word No. Name Type Units Range Resolution
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 2 147 483 647
8 Sequence number (Note 2) I 0 to 32 767
Operational status (9.0-9.15)
9.0 Power management enabled Bit 1 = enabled
9.1 Cold start disabled Bit 1 = disabled
9.2 DGPS disabled Bit 1 = disabled
9.3 Held altitude disabled Bit 1 = disabled
9.4 Ground track smoothing disabled Bit 1 = disabled
9.5 Position pinning disabled Bit 1 = disabled
9.6 Quality measurement disabled (Note 3) Bit 1 = disabled
9.7 Jamming detection enabled Bit 1 = enabled
9.8 Active antenna Bit 1 = active, 0 = passive
9.9-9.15 C/No threshold dBHz 0 to 50
10 Cold start time-out UI
11 DGPS correction time-out UI
12 Elevation mask
I rad 0 to ±�/2 10
Selected candidates
13.0-14.15 Selected candidate (Note 4) Bit 1 = included candidate
Solution validity criteria (15-20)
15.0 Attitude not used Bit 1 = required
15.1 Differential GPS Bit 1 = required
15.2 DR measurement Bit 1 = required
15.3 GPS calibration Bit 1 = required
15.4 GPS only Bit 1 = required
155-15.15 Reserved
16 Number of satellites in track required UI 0 to 12
17-18 Minimum expected horizontal error UDI
19-20 Minimum expected vertical error UDI m 0 to 1000 10
21 Application platform UI
22 Data checksum
Note 1: Set time is an internal 10 ms (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but provides sequence of events knowledge. The T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: If this bit is set, the receiver only uses ‘perfect’ measurements (i.e. without errors in tracking status or data). If the bit is not set, measurements that are not perfect, but still good enough to use under SPS conditions, are used. Note 4: The selected candidate list is a 32-bit flag, each bit representing candidate selection status for one satellite (ie bit 0 = SV1 status, bit 1 = SV2 status, bit 31 = SV32 status).
s 0 to 32 767
s 0 to 32 767
m 0 to 1000 10
0 = default, 1 = static
2 = pedestrian
3 = marine (lakes)
4 = marine (sea level)
5 = land (auto), 6 = air
-3
-2
-2
Table 3-12 Message 1012 (user-settings output)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
22
3.5.1.9 Message 1100 (built-in test results )
This message provides detailed test results of the last BIT commanded since power-up. It is output automatically after the completion of a commanded
BIT, but may also be queried manually as needed. Non-zero device failure status indicates failure. The contents of the ‘BIT results’ message are described in Table 3-13.
Message ID: 1100
Rate: Variable
Message Length: 20 words
Word No. Name Type Units Range Resolution
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks
0 to
4 294 967 295 8 Sequence number (Note 2) I 0 to 32 767
9 ROM failure (Note 3) UI
10 RAM failure (Note 3) UI
11 EEPROM failure (Note 3) UI
12 Dual port RAM failure (Note 3) UI
13 Digital signal processor (DSP) failure (Note 3) UI
14 Real-time clock (RTC) failure (Note 3) UI
15 Serial port 1 receive error count UI 0 to 65 535
16 Serial port 2 receive error count UI 0 to 65 535
17 Serial port 1 receive byte count UI 0 to 65 535
18 Serial port 2 receive byte count UI 0 to 65 535
19 Software version UI 0.00 to 655.35 0.01
20 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: A value of zero indicates a test has passed. A non-zero value indicates a device failure. Missing devices will be reported as failures. Therefore, the OEM’s BIT pass/fail should ignore words for components that are not in the system under test. Notice that the Dual Port RAM Failure test is currently not implemented. Therefore, word 12 will report a value of zero.
Table 3-13 Message 1100 (BIT Results)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
23
3.5.1.10 Message 1108 (UTC time mark pulse output)
This message provides the UTC seconds into week associated with the UTC synchronised time
400 milliseconds before the time mark pulse strobe signal. The contents of the ‘UTC time mark pulse output’ message are described in Table 3-14.
mark pulse. This message is output approximately
Message ID: 1108
Rate: 1 Hz
Message length: 20 words
Word No. Name Type Units Range Resolution
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
UTC time
9-13 Reserved
14-15 UTC Seconds Of Week UDI
16
17-18
GPS to UTC time offset (integer
part)
GPS to UTC time offset (fractional
part)
I s –32 768 to +32 767 1 s
UDI ns 0 to 999 999 999 1 ns
UTC time validity (19.0-19.15)
19.0 Time mark validity Bit 1 = true
19.1 GPS/UTC sync Bit
19.2-19.15 Reserved
20 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.
s 0 to 604 799 1 s
0 = GPS 1 = UTC
Table 3-14 Message 1108 (UTC time mark pulse output)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
24
3.5.1.11 Message 1110 (frequency standard parameters in use)
This message outputs the parameters used to support the receiver’s uncompensated crystal oscillator. The contents of the ‘frequency standard parameters in use’ message are described in
Note: Message 1110 is primarily used to output key parameters to GPS systems without non- volatile storage. This is why the format of input Message 1310 is exactly the same—the output message is used to capture data, while the input message is used to restore data.
Table 3-15.
Message ID: 1110
Rate: variable
Message length: 22 words
Word No. Name Type Units Range Resolution
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
9 Frequency standard issue number (Note 3) UI 0 to 65 535
Temperature characteristic
0 to ±2
0 to ±2
-14
-20
-26
-32
10 C0 (aging and calibration offset) (Note 4)
I s/s 0 to ±2
11 C1 (linear term) (Note 4) I s/s/ ºC 0 to ±2
12 C2 (second order term) (Note 4) I s/s/(ºC)
13 C3 (third order term) (Note 4) I s/s/ºC)
2
3
14 TINF (inflection point) (Note 4) I ºC 0 to ±100 0.01
Temperature dynamics
15 D0 (Note 5)
16 D1 (Note 5)
I
I
Temperature sensor calibration
17 TREF (calibration reference temperature) (Note 6)
I ºC 0 to ±100 0.01
18 T0 (temperature sensor reading at TREF) (Note 6) UI counts 0 to 65 535
19 S0 (temperature sensor scale factor) (Note 6)
I ºC/count 0 to ±2
-3
Uncertainty coefficients
20 U0 (Note 7)
I s/s 0 to ±2
21 U1 (Note 7) I s/s/ºC 0 to ±t2
–14
–20
22 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: Unique identification of each update. This allows a different set of data to be in use while newer data are only stored to EEPROM. The issue number is preserved from run to run if non-volatile storage is available. Note 4: Defines a cubic in (T - TINF). Over a range of TINF+65 degrees C, each term can produce from 0.002 to 60 ppm, approximately. Note 5: Unused. Note 6: These parameters define the temperature sensor scaling according to the equation: T = TREF + (TFILT- T0)S0 Note 7: Defines a linear equation in (T - TINF). Over a range of TINF +65ºC, each term can produce from 0.002 to 60 ppm, approximately.
-29
2
-35
2
-41
2
-47
2
1
-18
2
-29
2
-35
2
Table 3-15 Message 1110 (frequency standard parameters in use)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
25
3.5.1.12 Message 1117 (power management duty cycle in use).
‘power management duty cycle in use’ message are described in Table 3-16.
This message controls the use of power management in the receiver. The contents of the
Message ID: 1117
Rate: Variable
Message Length: 10 words
Word No. Name Type Units Range Resolution
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
9 Power management on duty cycle (Note 3) I s
10 Data checksum
Note 1: Set time is an internal 10 millisecond (T10) count since power-on initialisation enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver’s internal time at which the message was created for output. The T10 range is approximately 71 weeks. Note 2: The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output. Note 3: In power management mode, the RF power may be switched off to reduce power consumption. The digital circuitry may be gated off and the processor idled when not needed. This field gives the measurement engine permission to turn off the RF for the minimum off time in seconds.
0 = off
1 to 4 = on
Table 3-16 Message 1117 (power management duty cycle in use)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
26
3.5.1.13 Message 1130 (serial port communication parameters in use).
This message contains the communication
The contents of the ‘serial port communication parameters in use’ message are described in Table 3-17.
parameters for the receiver’s two serial ports.
Message ID: 1130
Rate: Variable
Message Length: 21 words
Word No. Name Type Units Range
1-4 Message header
5 Header checksum
6-7 Set time (Note 1) UDI 10 ms ticks 0 to 4 294 967 295
8 Sequence number (Note 2) I 0 to 32 767
Port 1 communication parameters (9.0-11)
9 Port 1 character width Bit
10 Port 1 stop bits Bit
11 Port 1 parity Bit
12 Port 1 bps rate (Note 3) Bit
13 Port 1 pre-scale (Note 3) UI 0 to 255
14 Port 1 post-scale (Note 3) UI 0 to 7
0 = 7 bits 1 = 8 bits
0 = 1 1 = 2
0 = no parity
1 = odd parity
2 = even parity
0 = custom
1 = 300 2 = 600
3 = 1200 4 = 2400 5 = 4800 6 = 9600
7 = 19 200 8 = 38 400 9 = 57 600
10 = 76 800
11 = 115 200
Table 3-17 (1 of 2) Message 1130 (serial port communication parameters in use)
MN00200 0A © 200 4 Navman NZ Ltd. All rights reser ved. Proprietar y information and specifications subject to change without notice.
27
Loading...
+ 63 hidden pages