Motortronics MVC Plus User Guide

MVC Plus User Manual: 2.3 – 7.2kV Class
Table of Contents
PAGE
Chapter 1: Introduction .................................................................................................................. 1
1.1 Overview ..................................................................................................................................... 1
1.2 Specifications ...........................................................................................................................1-2
1.3 Reference Chart ......................................................................................................................... 3
1.4 Design Features ......................................................................................................................... 4
1.5 Theory of Operation .................................................................................................................4-5
1.6 General Protection ...................................................................................................................5-6
1.7 Thermal Overload Protection ...................................................................................................... 6
1.8 Firing Circuit ................................................................................................................................ 7
1.9 Electronics .................................................................................................................................. 8
Fig. 1.9 Keypad Interface ............................................................................................................ 8
Chapter 2: Connections ............................................................................................................... 10
2.1 Warnings .................................................................................................................................. 10
2.2 Control Connections ................................................................................................................. 11
2.2.1 TCB Board ............................................................................................................................. 10
Fig. 2.2.1 TCB Terminal and Control Board .............................................................................. 10
2.2.2 Description of Terminal Connections ................................................................................. 12-14
2.2.3 Description of Jumper Selections and Functions .................................................................... 15
2.2.4 Description of Switch Settings and Functions ......................................................................... 15
2.2.5 Description of LED Indicator Functions .................................................................................. 16
2.3 Circuit Board Layout Reference Section .............................................................................. 17-19
Fig. 2.3.1 Optional RTD Board .................................................................................................. 17
Fig. 2.3.2 RS485 / RS422 Communications Board .................................................................... 17
Fig. 2.3.3 Main Board ................................................................................................................ 18
Fig. 2.3.4 CPU Board ................................................................................................................ 19
2.4 Typical Wiring Diagram ............................................................................................................. 20
Fig. 2.4 Typical Wiring Diagram ................................................................................................ 20
Chapter 3: Start-Up ....................................................................................................................... 21
3.1 Introduction ............................................................................................................................... 21
3.2 Acceleration Adjustments .......................................................................................................... 21
3.3 Deceleration Adjustments ......................................................................................................... 22
3.4 Sequence of Normal Operation ................................................................................................. 23
3.5 Emergency Bypass Operation .................................................................................................. 25
Chapter 4: User Interface and Menu Navigation ......................................................................... 26
4.1 Keypad/Operator Interface ........................................................................................................ 26
4.1.1 Keypad Operator designations and functions ......................................................................... 26
4.2 Menu Navigation ....................................................................................................................... 27
4.2.1 Password Access ................................................................................................................... 28
4.2.2 Changing Setpoints ................................................................................................................ 28
Chapter 5: Setpoint Programming ............................................................................................... 29
5 .1 Setpoints Page List ............................................................................................................. 29-35
5.1.1 Basic Configuration (Setpoint Page 1) .................................................................................. 29
5.1.2 Starter Configuration (Setpoint Page 2) ................................................................................ 29
5.1.3 Phase and Ground Settings (Setpoint Page 3) ...................................................................... 30
5.1.4 Relay Assignments (Setpoint Page 4) ................................................................................... 31
MVC Plus User Manual: 2.3 – 7.2kV Class
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
5.1.5 Relay Configuration (Setpoint Page 5) .................................................................................. 32
5.1.6 User I/O Configuration (Setpoint Page 6) .............................................................................. 32
5.1.7 Custom Acceleration Curve (Setpoint Page 7) ...................................................................... 33
5.1.8 Overload Curve Configuration (Setpoint Page 8) .................................................................. 33
5.1.9 RTD Option Configuration (Setpoint Page 9) ........................................................................ 34
5.1.10 RTD Password Level Configuration (Setpoint Page 10) ...................................................... 35
5.1.11 Communication (Setpoint Page 11) ..................................................................................... 35
5.1.12 System (Setpoint Page 12) ................................................................................................. 35
5.1.13 Calibration and Service (Setpoint Page 13) ......................................................................... 35
5.2 Setpoints Menu and Parameter Explanation ........................................................................ 36-65
SP.1 Basic Configuration ................................................................................................................ 36
SP.2 Starter Configuration ......................................................................................................... 37-42
Fig. SP2.3 Example of Switching from Jog to Start Ramp #1 Type: Voltage ............................. 39
Fig. SP2.4 Power Ramp ............................................................................................................ 41
SP.3 Phase & Ground Settings .................................................................................................. 43-46
Fig. SP3.5 Overcurrent Trip Delay Graph .................................................................................. 43
SP.4 Relay Assignment ............................................................................................................. 47-42
SP.5 Relay Configuration ................................................................................................................ 48
SP.6 User I/O Configuration....................................................................................................... 49-51
SP.7 Custom Acceleration Curve ............................................................................................... 52-54
SP.8 Overload Curve Configuration ........................................................................................... 55-57
SP.9 RTD Option Configuration ................................................................................................. 58-59
SP.10 Set Password ....................................................................................................................... 60
SP.11 Communications .................................................................................................................. 60
SP.12 System Setpoints ............................................................................................................ 61-62
SP.13 Calibration & Service ............................................................................................................ 63
Chapter 6: Metering Pages ........................................................................................................... 64
6.1 Metering Page List .................................................................................................................... 64
6.1.1 Metering Menu & Data (Metering Page 1) ............................................................................. 64
6.1.2 Metering (Metering Page 2) .................................................................................................. 64
6.1.3 RTD Option Values (Metering Page 3) .................................................................................. 64
6.1.4 Status (Metering Page 4) ...................................................................................................... 64
6.1.5 Event Recorder (Metering Page 5) ........................................................................................ 65
6.1.6 Last Trip (Metering Page 6) .................................................................................................. 65
6.1.7 Statistics (Metering Page 7) ................................................................................................. 65
6.2 Metering Menu and Explanation ................................................................................................ 66
MP.1 Metering Data ........................................................................................................................ 67
MP.2 Metering ................................................................................................................................ 68
MP.3 RTD Values ........................................................................................................................... 69
MP.4 Status .................................................................................................................................... 70
MP.5 Event Recorder – 60 Events .................................................................................................. 71
MP.6 Last Trip ................................................................................................................................ 72
MP.7 Statistics ................................................................................................................................ 73
Chapter 7: Maintenance and Troubleshooting ........................................................................... 74
7.1 Failure Analysis ................................................................................................................... 74-76
7.1.1 SCR Testing Procedure ......................................................................................................... 76
GENERAL
Unit Running Overload Capacity (Percent of motor FLA)
125% - Continuous 500% - 30 seconds 1 Cycle: Up to 14x FLA (Internally protected by the programmable short circuit)
Frequency
50 or 60Hz, +2Hz hardware selectable
Power Circuit
6 SCRs, 12 SCRs, 18 SCRs (Model dependent)
SCR Peak Inverse Voltage Ratings
6500V - 19500V (Model dependent see Table 1) Note: Contact Factory
Phase Insensitivity
User selectable phase sequence detection
Transient Voltage Protection
RC snubber dv/dt networks (One per inverse pair of SCRs)
Ambient Condition Design
Enclosed units: 0° to 40°C (32° to 104°F) (optional - 20° to 50° C with heaters) 5 - 95% relative humidity 0 - 3300 ft. (1000m) above sea level without de-rating (Ratings for ambient conditions external to unit)
Control
2 or 3 wire 120VAC (Customer supplied)
Auxiliary Contacts
Multiple: Form C (Contacts), rated 5 Amps, 240VAC max.
8 Relays (4 programmable): Form C contacts
Fault Indicator: Form C contacts
BIL Rating
2300V - 7200V 60KV
Approvals
UL recognized, Canadian UL (cUL) recognized
ADVANCED MOTOR PROTECTION
Two Stage Electronic Overload Curves
Starting: Programmable for Class 5 through 30 Run: Programmable for Class 5 through 30 when "At-Speed" is detected.
Overload Reset
Manual
Retentive Thermal Memory
Overload circuit retains thermal condition of the motor regardless of control power status. Unit uses real time clock to adjust for off time.
Dynamic Reset Capacity
Overload will not reset until thermal capacity available in the motor is sufficient for a successful restart. Starter learns and retains this information by monitoring previous successful starts.
Phase Current Imbalance Protection
Imbalance Trip Level: 5 - 30% current between any two phases Imbalance Trip Delay: 1 -20 seconds
Over Current Protection (Electronic Shear Pin)
Trip Level: 100 - 300% of motor FLA Trip Delay: 1 - 20 seconds
Load Loss Trip Protection
Under Current Trip Level: 10 -90 % of motor FLA Under Current Trip Delay: 1 - 60 seconds
Coast Down (Back Spin) Lockout Timer
Coast Down Time Range: 1 - 60 minutes
Starts-per-hour Lockout Timer
Range: 1 - 6 successful starts per hour Time between starts: 1 - 60 minutes between start attempts
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Chapter 1 - Introduction
This chapter is an introduction to the Reduced Voltage Solid State Soft Starter for medium voltage AC motors. It is highly recommended that users read this section thoroughly to become familiar with the basic configuration, operation and features before applying the Soft Starter.
1.1 Overview
The standard Soft Starter is an SCR-based controller designed for the starting, protection and control of AC medium voltage motors. It contains SCR stack assemblies, fiber optic connections, and low voltage control circuitry ready to be interfaced with an enclosure and the necessary equipment to create a complete a Class E2 medium voltage motor Soft Starter.
1.2 Specifications
Motortronics Inc. Page 1
PROGAMMABLE OUTPUTS
Type / Rating
Form C (SPDT), Rated 5 amps 240 VAC max, (1200 VA)
Run Indication
Programmable
At Speed Indication
Programmable
Acceleration Adjustments
Programmable Ramp Types: Voltage or Current Ramp (VR or CR) Starting Torque: 0 - 100% of line voltage (VR) or 0 - 600% of motor FLA (CR) Ramp Time: 1 to 120 seconds Current Limit: 200 - 500% (VR or CR) Power Ramp: 0 – 300%
Dual Ramp Settings
4 Options: VR1+VR2; VR1+CR2; CR1+CR2; CR1+VR2 Dual Ramp Control: Ramp 1 = Default Ramp 2 = selectable via dry contact input
Deceleration Adjustments
Begin Decel Level: 80 - 100% of line voltage Stop Level: 0 to 1% less than Begin Decel Level Decel Time: 1 - 60 seconds
Jog Settings
Voltage Jog: 5 - 75%
Kick Start Settings
Kick Voltage: 10 - 100% Kick Time: 0.1 - 2 seconds
Fault Display
Shorted SCR, Phase Loss, Shunt Trip, Phase Imbalance Trip, Overload, Overtemp, Overcurrent, Short Circuit, Load Loss, Undervoltage or Any Trip
Lockout Display
Coast Down Time, Starts Per Hour, Time Between Starts, and Any Lockout
EVENT HISTORY
Up to 60 Events
Data includes cause of event, time, date, voltage, power factor and current for each phase and ground fault current at time of event
METERING FUNCTIONS
Motor Load
Percent of FLA
Current Data
A, B, C Phase Current, Avg Current, Ground Fault (Option)
Thermal Data
Remaining thermal register; thermal capacity to start
Start Data
Avg Start Time, Avg Start Current, Measured Capacity to start, time since last start.
RTD Data (Option)
Temperature readings from up to 12 RTDs (6 stator RTDs)
Voltage Metering
kW, kVAR, PF, kWH
SERIAL COMMUNICATIONS
Protocol
Modbus RTU
Signal
RS-485, RS-422 or RS232
Network
Up to 247 devices per mode
Functionality
Full operation, status view, and programming via communications port
OPERATOR INTERFACE
LCD Readout
Alpha numeric LCD display
Keypad
8 function keys with tactile feedback
Status Indicators
12 LEDs include Power, Run, Alarm, Trip, Aux Relays
Remote Mount Capability
Up to 1000 circuit-feet from chassis (Use twisted, shielded wire & power source)
CLOCK and MEMORY
Operating Memory
SRAM loaded from F-RAM at initialization
Factory Default Storage
Flash Memory
Customer Settings and Status
Non-volatile F-RAM, no battery backup necessary
Real Time Clock
Lithium ion battery for clock memory only
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Motortronics Inc. Page 2
SEC.
Table or Drawing
Page
Number
SEC.
Table or Drawing
Page
Number
1.2
Specifications
1 - 2
5.2
Setpoint Page 7 Displays – Custom Acceleration Curve
52-54
1.4
Design Features (Unit PIV Ratings)
4
Setpoint Page 8 Displays – Overload Curve Configuration
55-57
1.9 &
4.1
Electronics (Keypad Operator Interface)
8 & 26
Setpoint Page 9 Displays – RTD Option Configuration
58-59
2.2
TCB Board Layout and Connections
10
Setpoint Page 10 Displays – Set Password
60
TB1, TB2 & TB3 Description
12
Setpoint Page 11 Displays - Communications
60
TB4, TB5 & TB6 Description
13
Setpoint Page 12 Displays – System Setpoints
61-62
TB7 & TB8 Description
14
Setpoint Page 13 Displays – Calibration & Service
63
Jumper Selections
15
6.1
Metering Page List
54-65
Switch Settings
15
6.2
Metering Menu
66
LED Indicators
16
Metering Page 1 Displays - Metering Data
67
2.3
Optional RTD Board
17
Metering Page 2 Displays - Metering
68
Communications Board Layout & Connections: RS485 and RS422
17
Metering Page 3 Displays - RTD Values
69
Power Board & Connections
18
Metering Page 4 Displays - Status
70
CPU Board Layout & Connections
19
Metering Page 5 Displays - Event Recorder
71
2.4
Typical Wiring Diagram
20
3.2
Acceleration Adjustments
21
Metering Page 6 Displays - Last Trip
72
3.3
Deceleration Adjustments
22
Metering Page 7 Displays - Statistics
73
3.4
Sequence of Operation
23
7.1
Failure Analysis & Troubleshooting
74-76
4.2
Menu Navigation
27
7.1
SCR Testing Procedure
76
Changing Setpoints Example
25
NOTES-
5.1
Setpoints Page List
29 – 35
5.2
Setpoint Menu & Parameter Explanation
36-65
Setpoint Page 1 Displays ­Basic Configuration
36
Overload Class Trip Curves
37
Setpoint Page 2 Displays ­Starter Configuration
37-42
Jog/Voltage Ramp
39
Setpoint Page 3 Displays ­Phase & Ground Settings
41
Overcurrent Trip Delay Graph
43
Setpoint Page 4 Displays ­Relay Assignment
47-42
Setpoint Page 5 Displays ­Relay Configuration
48
Setpoint Page 6 Displays ­User I/O Configuration
49-51
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
1.3 Reference chart
Motortronics Inc. Page 3
200 & 400 Amps Units
600 Amps Units
Voltage
Series
Devices
Total
Number
of
SCRs
PIV Rating
Voltage
Series
Devices
Total
Number of SCRs
PIV Rating
2300 V
0 6 6500 V
2300 V
2
12
9000 V
3300 / 4160 V
2
12
9000/13000 V
3300 / 4160 V
4
24
9000/18000 V
6000 - 7200 V
3
18
19500 V
6000 - 7200 V
4
36
18000 V
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
1.4 Design Features
The standard Soft Start panel has the following features:
SCR Power Modules: For each phase, the SCRs are arranged in inverse parallel pairs and series strings as
indicated in Table1 below to facilitate sufficient Peak Inverse Voltage ratings for the application
RC Snubber Networks: Provide Transient Voltage Protection for SCR Power Modules in each phase to avoid dv/dt
damage.
Firing Circuit: The SCRs are gated (turned on) using a Sustained Pulse Firing Circuit. This circuitry is isolated from
the control voltage by means of fiber optics.
Table 1 Unit PIV Ratings
1.5 Theory of Operation
The Soft Starter is CPU controlled, using a microprocessor based protection and control system for the motor and starter assembly. The CPU uses Phase Angle Firing control of the SCRs to apply a reduced voltage to the motor, and then slowly and gently increases torque using voltage and current control until the motor accelerates to full speed. This starting method lowers the starting current of the motor, reducing electrical stresses on the power system and motor. It also reduces peak starting torque stresses on both the motor and mechanical load, promoting longer service life and less downtime.
1.5.1 Acceleration:
The soft starter comes standard with several methods of accelerating the motor so that it can be programmed to match almost any industrial AC motor application. The factory default setting applies a Voltage Ramp with Current Limit as this has been proven to be the most reliable starting method for the vast majority of applications. Using this starting method, the Initial Voltage setting applies just enough voltage to cause the motor shaft to begin to turn. This voltage is then gradually increased over the "Ramp Time" setting, until one of two things happen: the motor accelerates to full speed, or the Ramp Time expires and the Current Limit setting is reached.
If the motor accelerates to full speed before the ramp time has expired, an automatic Anti- Oscillation feature will override the remaining ramp time and full voltage will be applied. This will prevent any surging or pulsation in the motor torque, which might otherwise occur If the motor has not reached full speed at the end of the ramp time setting, the current limit setting will proportionally regulate the maximum output torque. CPU algorithms provide protection against a stall condition, an overload condition or excessive acceleration time.
The Current Limit feature is provided to accommodate installations where there is limited power available (For example, on-site generator power or utility lines with limited capacity). The torque is increased until the motor current reaches the pre-set Current Limit value at which point it is then held. Current Limit overrides the ramp time setting so if the motor has not accelerated to full speed under the Current Limit setting, the current remains limited for as long as it takes the motor to accelerate to full speed.
When the motor reaches full speed and the current drops to running levels, the soft starter detects an At-Speed condition and automatically closes the Bypass Contactor. The Bypass Contactor serves to shunt power around the SCR stack assemblies to prevent heat build-up in the starter enclosure. At this point, the motor is operating at full voltage, speed and power.
Motortronics Inc. Page 4
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Other starting methods available in the soft starter are:
Current Ramp: Uses a closed loop current feedback algorithm to provide a linear current increase up to a Maximum
Current level.
Constant Current: current is immediately increased to the Current Limit point and held there until the motor reaches
full speed.
Power (KW) Ramp: Uses a True RMS KW feedback PID loop to provide a linear increase in True RMS motor power
to a maximum set KW value.
Custom Curve: Gives the user the ability to plot torque and time points on a graph. The soft starter will then
accelerate the motor following these points.
Tachometer Feedback Ramp: uses a closed loop speed follower method monitoring a tachometer input signal from the motor or load shaft to provide a linear RPM acceleration.
1.5.2 Deceleration: The soft starter provides the user with the option of having the load coast to a stop or controlling the
deceleration by slowly reducing the voltage to the motor upon initiating a stop command. The Decel feature is the opposite of DC injection braking in that the motor will actually take longer to come to a stop than if allowed to coast to a stop. The most common application for the Decel feature is pumping applications where a controlled stop prevents water hammer and mechanical damage to the system.
1.6 General Protection
The Soft Starter is provided with a built-in motor protection relay that can be programmed for primary protection of the motor / load system. Operation of the Soft Starter can be divided into 4 modes; Ready, Start, Run and Stop.
1.6.1. Ready Mode: In this mode, control and line power are applied and the Starter is ready for a start command.
Protection during this mode includes the monitoring of current for leakage through multiple shorted SCRs or welded contacts on the Bypass Contactor. Other protection features in effect are:
Starter Power Pole Temperature
Shorted SCR
Blown Fuse Indication
Phase Reversal (if enabled)
Line Frequency Trip Window
External Input Faults (Digital Input Faults are active in all modes)
Note: The “Programming Mode” can only be entered from the Ready Mode. Any attempt to enter data while the motor is starting or running will be blocked. During programming, all protection features and start command are disabled.
1.6.2 Start Mode: These additional protection functions are enabled when the Soft Starter receives a valid Start
command:
Phase Reversal (if enabled) Phase Reversal will still be on and is not a newly activated feature when starting.
Start Curve
Acceleration Timer
Phase Imbalance
Short Circuit / Load Pre-check (Toe-in-the-Water)
Ground Fault (Optional)
External Input Faults
Accumulated Starting FLA Units (I2t Protection)
Starting Overload Protection Curve Selection
Thermal Capacity
Note: Shorted SCR protection is no longer in effect once the soft starter goes into the Start Mode.
Motortronics Inc. Page 5
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
1.6.3 Run Mode: The soft starter enters the Run Mode when it reaches full output voltage and the motor current drops
below the FLA setting (motor nameplate FLA plus service factor) for a pre-determined period of time. During the Run Mode these additional protection features are enabled:
Running Overload Protection Curve Selection
Phase Loss
Under Current / Load Loss
Over Current / Electronic Shear Pin (Jam Protection)
External Input Faults
1.6.4 Stop Mode: Once a Stop command has been given, the protection features change depending on which Stop Mode
is selected.
Decel Mode: Retains all protection features of the Run Mode. At the end of Decel, the motor will be stopped and the protection features change as indicated below.
Coast-To-Stop Mode: Power is immediately removed from the motor and the Soft Starter returns to the Ready Mode.
Additional protection features activated when the stop command is given include:
o Coast-Down / Back Spin Timer o Starts-per-Hour o Time between Starts o External Input Faults
1.7 Thermal Overload Protection
The Soft Starter plays an important role in the protection of your motor in that it monitors the motor for excessive thermal
conditions due to starting, running and ambient conditions. The soft starter has a Dynamic Thermal Register system in the CPU that provides a mathematical representation of the thermal condition of the motor.
This thermal information is retained in memory and is monitored for excesses in both value and rate of change. Inputs are derived from current values, imbalances and (optional) RTD measurements making it dynamic to all processes involving the motor. The Soft Starter monitors these conditions separately during the Start and Run modes to provide proper thermal protection at all times.
1.7.1 Start Mode overload protection is selectable using one of three methods:
Basic Protection: I2t data is accumulated and plotted based on an Overload Curve selected in programming. This is programmed per NEMA Class 5-30 standard curves and is based on the Locked Rotor Current (from the motor nameplate) as programmed into the Soft Starter.
Measured Start Capacity: The user enters a measured amount of thermal capacity from a pre-selected successful start as a set point to the Thermal Register for the soft starter to follow.
Learned Curve Protection: The user sets the soft starter to the “LEARN” mode and starts the motor under normal starting conditions. The CPU then samples and records 100 data points during the start curve, analyzes them and creates a graphical representation in memory. The soft starter is then switched to Curve Follow protection mode and monitors motor performance against this curve. This feature is especially useful in initial commissioning tests to record a base line performance sample (In this case, it is not necessarily used for motor protection).
Motortronics Inc. Page 6
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
1.7.2 Run Mode overload protection is initiated when the soft starter determines that the motor is At-Speed. Overload
Protection is initiated when the motor RMS current rises above a “pick-up point” (as determined by the motor nameplate FLA and service factor). Run mode protection is provided by the CPU monitoring the Dynamic Thermal Register. Data for the Dynamic Thermal Register is accumulated from I2t calculations and cooling rates. A trip occurs when the register reaches 100% as determined by the selected Overload Protection Curve (NEMA Class 5-30 standard curves) and is based on the programmed Locked Rotor Current indicated on the motor nameplate. The Dynamic Thermal Register is altered, or “biased”, by the following conditions:
Current Imbalance will bias the register higher due to additional motor heating as a result of a line current imbalance condition.
Normal Cooling is provided when the motor current drops below the overload pick-up point or the motor is off line. The Cooling rate is lower for motors that are off-line (such as after a trip) since cooling fans are also inoperative.
RTD Input (Requires the optional RTD monitor card) provides a separate means of motor protection based on actual temperatures measurements inside the motor. It runs independently of the Thermal Register Model and does not provide input to, or bias that model.
Dynamic Reset is another feature that adds reliability and consistency to the performance of the soft starter. If a motor overload condition occurs and the Overload protection trips, it cannot be reset until sufficient cool down time has elapsed. This cool down time is determined by the "Learned Thermal Capacity" required to start the motor which must be regained before the overload can be reset. This ensures sufficient thermal capacity for a successful restart of the motor.
Retentive Memory provides continuous overload protection and true thermal modeling by means of a running back up of the thermal register even if power is lost. Upon restoration of power, the soft starter will read the Real Time Clock, then recalculate and restore the thermal register to what it should be, given the elapsed time and the cool down rate of the motor.
Learned Reset Capacity is a feature that is unique to the Soft Starter. By sampling the amount of thermal capacity used in the previous three successful starts, the starter will not allow a reset until a sufficient amount of thermal capacity has been regained in the motor. This prevents nuisance tripping and insures that unsuccessful start attempts (which would otherwise use up the starts-per-hour capacity of the motor) are not counted.
1.8 Firing Circuit
The SCR gate firing circuit is critical to the performance and stability of the system. The firing circuit includes several unique features which enhance the ruggedness, noise immunity and flexibility for maximized performance. These features include:
Auto Synchronizing of the gate timing pulses match each phase firing angle to their respective phases. The Soft Starter actively tracks minor shifts in the line frequency avoiding nuisance tripping that may happen with conventional gate firing systems. This is especially useful on portable or backup generator supplies, allowing the soft starter to be used confidently in applications that have unstable power.
Sustained Pulse firing keeps the firing signal active for 270 electrical degrees ensuring that the DC gate pulse forces the SCR to fire even if line noise is present. This provides the Soft Starter with superior noise immunity and protects against misfiring, enhancing the soft starter system stability.
Closed Loop Firing Control is a method of balancing the SCR firing pattern. The CPU uses feedback signals from the output current and voltage providing to provide smooth output preventing imbalances during ramping which prevents unnecessary motor heating.
Transformer Isolation of SCR firing information and signals prevents interference from line noise and EMI/RFI that may be present. Three phase isolation transformers provide potential measurement, firing board timing while providing isolation from the line voltage. High isolation Ring Transformers are used to step the 120v control voltage down to 28VAC for the Sustained Pulse firing circuit, providing further isolation for the SCR gates.
Fiber Optic Isolation is provided for all gate drive and current feedback signal interfaces between the Medium and Low Voltage systems.
Motortronics Inc. Page 7
ENTERRESETMENU
POWER RUN
ALARM
TRIP
1
2
3
4
5
6
7
8
AUX. RELAYS
HELP
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
1.9 Electronics
The Soft Starter electronic systems are divided into two categories; Low Voltage and Medium Voltage and are based on where they are located in the Starter structure.
1.9.1 Low Voltage electronics include the Keypad Operator Interface, the CPU and Main Power PC boards which are
located in an isolated Low Voltage compartment of the enclosure.
Keypad Operator Interface is a 2 line x 20 character LCD display with back-lighting for low ambient light conditions. The display reads out in truncated English and can show multiple data points in each screen. Twelve LED indicators are included which show the status of, Power, RUN, ALARM, TRIP and the 8 AUX RELAYS. The Operator communicates with the CPU board via a serial cable link and can be remotely located up to 1000ft. from the starter.
FIG. 1.9 shows the Keypad Operator Interface.
FIG. 1.9 Keypad Operator Interface.
CPU Board is where the microprocessor and communications co-processor are located. It is attached to the main
Power board. The CPU determines operating functions, stores user programming, acts upon feedback signals for faults, and calculates metering and historical data. The board communicates with the Keypad Operator Interface via a serial link cable. Analog and Digital I/O are also located on the CPU board. (See FIG. 2.3.4)
Main Board also referred to as the Firing Board, contains the Auxiliary I/O relays and interfaces to the TCB board
(see below) for user interface. This board generates all firing signals for the SCR stacks and receives feedback signals which are isolated via fiber optics. The board also provides signal conditioning in preparation for analog to digital conversion. (See FIG. 2.3.3)
Motortronics Inc. Page 8
HAZARDOUS VOLTAGE
Disconnect all power supplying this equipment prior to working on it.
Failure to follow this instruction will result in death or serious injury.
DANGER
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
1.9.2 Control Electronics are located in the Medium Voltage section of the soft starter. They include the TCB, Gate Drive
and Temp / CT boards.
TCB (Terminal and Control Board) is the user connection interface board. This board contains the user terminal blocks, output relays (duplicated), inputs and control power connections. It also contains additional timed relays for interfacing with Power Factor Correction contactors (if used) and other external devices. Please note Power Factor Capacitor warnings in Section 2.1.; also see FIG. 2.2.1.
Gate Drive Boards are located directly on the SCR stacks. These boards connect to the Main Power board via fiber optic cables. They amplify the gate pulse signals with power from the Ring Transformers to create the Sustained Pulse Firing of the SCRs. There is one Gate Drive board for each pair of SCRs in each stack.
Temp / CT Boards are attached to the Gate Drive boards on the SCR stacks and provide the heat sink Temperature and line current signals back to the Main Power Board via fiber optic cables.
MOV Boards are attached to standoffs mounted on the SCR heat sinks and are mounted directly below the Gate Drive boards. The MOV boards are used to protect the SCRs from over voltage.
DV/DT Boards are also attached to standoffs mounted on the SCR heat sinks and are mounted below the MOV
boards. The DV/DT boards are used to mitigate voltage transients across the stack assemblies.
Motortronics Inc. Page 9
HAZARDOUS VOLTAGE
Disconnect all power supplying this equipment prior to working on it.
Failure to follow this instruction will result in death or serious injury.
SCR DAMAGE
Do not connect (PFC) capacitors to the load side of the unit.
Doing so will cause DI/DT damage to the SCRs when energized.
!
CAUTION
DANGER
!
WARNING
SAFETY HAZARD
Do not bypass electrical or mechanical interlocks.
Failure to follow this instruction will cause severe equipment damage, serious injury or death.
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Chapter 2 – Connection
2.1 Warnings
Do not service this equipment with voltage applied! The unit can be the source of fatal electric shock! To avoid shock hazard, disconnect main power and control power before working on the unit. Warning labels must be attached to terminals, enclosure and control panel to meet local codes observing Lock Out, Tag Out procedures.
Do not connect (PFC) capacitors or surge capacitors to the load side (motor side) of the unit. This will cause di/dt damage to the
SCRs when they are turned on and will void the warranty on this product. Capacitors can only be connected to the load side of the starter through the use of an isolating contactor which is closed after the soft starting sequence has been completed or when di/dt limiting inductors are factory installed.
Avoid connecting capacitors to the input side of the unit. If you cannot avoid using capacitors across the power lines, they must be located as far upstream as possible of the input line contactor. In this situation, an optional power factor correction (PFC) capacitor contactor should be specified. For additional information and specifications or when di/dt limiting inductors are factory installed, please contact the factory.
Never interchange the input and output power connections on the unit. This will cause excessive voltage to the control circuit logic.
For bus protection, it is strongly recommended to use non-gap MOV Type lightning arrestors in areas where lightning is a significant problem. The arrestors should be
mounted on the nearest utility pole at the Station or optionally included with the unit at the time of order.
Medium Voltage cables can have significant capacitance values by design which can elevate Di/Dt thru the SCRs to unsafe levels. Compensating inductors can limit these values to safe levels. Contact the factory if you need more information on this subject.
Motortronics Inc. Page 10
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
8
9
10
11
12
TB4
Time Delay
NCC NO NCC NO
P.F.C. CAP
NCC NO NCC NO
2
3
4
5
6
7
1
8
9
10
11
12
TB3
Lock Out
NCC NO NCC NO
Fault
NCC NO NCC NO
2
3
4
5
6
7
8
9
10
TB2
2
3
4
5
6
7
1
8
9
10
11
TB1
CNO C ACNO NC
NOAC NC
1
Emergency Bypass Switch Input
Relay changes state when the Emergency Bypass Switch is closed.
Control Power Output (120 VAC @ 200VA)
Normally closed dry contact input, that when opened will initiate an Emergency stop to the system
Relays Operate to indicate a Blown Fuse or that the Disconnect is open
Relays Operates (with a time delay) when the Start Contact is initiated.
Relays Operate to pull in an Isolated Contactor to activate Power Factor Correction Capacitors
Relays Operate when any Fault condition occurs
NCNC C CC NC
NONO AC NC
AC
C
12
Optional Interlock (Factory installed Jumpers)
Relay Operates on
immediate Start / Stop
Stop
Maintain
Contact
Start
120 VAC
Control Input Power
N
N
N
N
120 VAC Input Power
Start Input
Fuse Blown Input
Dual Ramp Input
Main and CPU Circuit Board
Bypass Status Input
TB6
TB7
TB8
NC
Run Contacts
(AUX 3) Status.
Fault (AUX 1)
Status.
At Speed (AUX 4)
Status.
To TCB Board
Blown Fuse and / or Disconnect Interlock N.O. dry contact Input.
At Speed N.C. dry contact Input
(Factory wired)
External Overload Protection Device N.C dry contact Input.
Energizes / De-energizes
the Bypass Contactor Coil
Energizes / De-energizes
the Inline Isolation
Contactor Coil
Red LED
Red LED
FAULT
FUSE
Green LED
DELAYED
START
Green LED
PFC
TIMED OUT
Green LED
DELAYED
TIMED OUT
7 6 5
4 3
2 1
PFC
7 6 5
4 3
2 1
AUX
7 6 5
4 3
2 1
START
DLY-C
AUX-C
PFC-C
Jumpers
F1
F2
F3
JP1
Remove JP1 for electronic Motor overload protection During emergency bypass operation.
SW1
ON OFF
DUAL ADJ
F1 – Control fuse for TB1 1-9 Part No. ACG1A250AC or equiv. F2 – Contactor and relay output fuse. Part No. ACG4A250AC or equiv. F3 – TB2 terminal 6 (120VAC Input)
Part No. ACG4A250AC or equiv.
2 or 3 Wire Control
Momentary or
Maintained Start /
Stop Switching
supplied by customer
FIG. 2.2.1 TCB Terminal and Control Board
SW3
SW4
SW5
7 6 5
4 3
2 1
ON
64
32
16 8 4
2
1
Switch position value;
Ex. Position 1+2+3: 1+2+4 = 7
Postion
Value
X1
X3
X5
Power
Supply
POWER
Green LED
EMERGENCY
BYPASS
Green LED
Green LED
Green LED
AUX BYPASS
AT SPEED
2
1
NEUT.
LINE
PERM
PFC
3
TB5
N
120 VAC Power
L
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
2.2 Control Connections - TCB (Terminal and Control Board)
2.2.1 TCB Board
The TCB board, FIG. 2.2.1 shown below, provides interconnections between the main power and CPU boards and the customer’s control logic connections. It is a 120 VAC control board with several auxiliary dry contacts, built-in time delay circuits and an emergency bypass function. It also controls the inline isolation and bypass contactor and provides provisions for shutdown interlocks. (See Section 2.2.2 for terminal designations and descriptions)
Motortronics Inc. Page 11
TB1 Start / Stop Control
T
Description
1
AC
120 VAC Control Power (Line)
2 3 NC
C
Shutdown Input – Accepts customer N.C dry contact (Factory jumper installed)
4 5
NC C
Shutdown Input – Accepts customer N.C dry contact (Factory jumper installed)
6 7 8
NC C NO
Terminal 6, 7 & 8;"2-wire control is connected to pins 6 & 8". Also; "For 3 wire control, connect the N.C. STOP button to pins 6&7 and the N.O. START button to pins 7 & 8
9
AC
120 VAC Control Power (Neutral)
10 11 12
C NO NC
Common Normally Open Normally Closed, Form C Relay that changes state on Start and Stop commands
TB2 Emergency Bypass Control
T
Description
1 2 NO
C
When the N.O. contact closes the unit reverts to an electromechanical starter. When a start command is given the unit will start the motor across the line.
3 4 5
C NO NC
Terminals 3, 4 and 5 is a form C output relay that changes state when the contact at TB2 pins 1 & 2 is closed
6 7 NO
NC
120 VAC @ 200VA Aux Control Power output.
8
-
Not Used
9
10
NO NC
Normally Open Normally Closed, "Normally closed dry contact, opens when Emergency stop is initiated.
TB3 Fault Relay Outputs
T
Description
1 2 3
C NO NC
(2) Form C relay output that transfer on blown fuse or disconnect open indication.
3 4 5
C NO NC
(2) Form C relay output that transfer on blown fuse or disconnect open indication.
7 8 9
C NO NC
(2) Form C relay output that transfer on any fault indication.
10 11 12
C NO NC
(2) Form C relay output that transfer on any fault indication.
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
2.2.2 Description of Terminal Connections
Motortronics Inc. Page 12
TB4 Optional Relay Outputs
T
Description
1 2 3
C NO NC
2 Form C time delay Aux relay output contacts. Time delay starts when the Start commend is given.
3 4 5
C NO NC
7 8 9
C NO NC
2 Form C time delay Aux relay output contacts. Time delay starts when the "At Speed" condition is reached ideal for controlling a PFC contactor.
10 11 12
C NO NC
TB5 TCB Power
T
Description
1
L
By connecting TB5 of multiple units in parallel, PFC contactors will be inhibited from closing while a unit is soft starting. PFCs that are already on line will remain on line. The lead unit in the parallel string requires TB5 pins 1 & 3 to be connected to the 120Vac source and neutral respectively.
2
PFC
3
N
TB6 Main and CPU Circuit Board Control Inputs
T
Description
1 2 L
N
120 Vac Control Power Input (Main & CPU Circuit)
3 4 -
-
Start Input
5 6 -
-
Fuse Blown Input
7 8 -
-
Dual Ramp Input
9
10 - -
Bypass Status Input
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
2.2.2. Description of Terminal Connections - Continued
Motortronics Inc. Page 13
TB7 Main and CPU Circuit Board Control Outputs
T
Description
1 2
Run contacts (AUX3) to the TCB board. (Signal is used to hold the Main Contactor closed during deceleration)
3 4
To the TCB board indicating the status of AUX 1.
5 6
At Speed Contacts (AUX 4) used to signal the Bypass Contactor to close.
7
Not Connected / Not Used
TB8 Control Inputs and Outputs
T
Description
1 2
N.C. dry contact input from blown fuse and/or disconnect interlock.
3 4
N.C. dry contact input from an external Overload Protection device. (Required if emergency bypass is used)
5 6
N.C. dry contact input from the Bypass Contactor for at speed indication.
7 8
Output connected to the Bypass Contactor and energizes / de-energizes the Contactor. (Factory wired)
9
10
Output connected to the Inline Isolation Contactor and energizes / de-energizes the Contactor. (Factory wired)
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
2.2.2 Description of Terminal Connections - Continued
Motortronics Inc. Page 14
Jumper Selection
Jumper
Time Delay
Function
DLY-C
X1
Cycles
Start Delay
This is a selectable delay period between the initiations of a Start command and when the CPU actually receives the signal.
AUX-C
X3
Cycles
Auxiliary Start Delay This is a selectable delay period from the initiation of a Start command.
PFC-C
X5
Cycles
PFC Contactor Delay This is a selectable delay period between when the Bypass Contactor closes to when the Power Factor Capacitors Contactor is activated.
JP1
N/A
Motor Protection Jumper
When this jumper is in place, the CPU will be disabled during operation in the Emergency Bypass Mode. In this case, insure that there is an external means of overload protection. When the jumper is removed, the CPU will be enabled to provide electronic motor protection when operating in the Emergency Bypass Mode.
DIP Switches
Switch
Function
SW1
ON: Sets Dual Adjustment OFF: Disabled
SW2
Not Used
SW3
Sets the Start Delay Value
SW3, SW4 and SW5 are 7 position DIP Switches that use binary coding to set the value of the time delay in Cycles or Seconds as selected via jumpers X1 to X6. (See Jumper Table.) The setting range is 0 to 127 (1+2+4+8+16+32+64). The example shown results in a value of 7 (1+2+4)
7 6 5
4 3
2 1
ON
64
32
16 8 4
2
1
Switch position value;
Ex. Position 1+2+3: 1+2+4 = 7
Postion
Value
SW4
Sets the AUX Start Delay Value
SW5
Sets the PFC Contactor Delay Value
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
2.2.3 Description of Jumper Selections and Functions
Motortronics Inc. Page 15
LED Indicators
Function
Location
Color
Function
Fuse Blown/ Disconnect
D4
Red
ON: When a Fuse is blown and / or a Disconnect is open.
Fault
D16
Red
ON: When any Fault has occurred.
Start
D7
Yellow
ON: When a Start signal has been initiated.
PFC Timed Out
D17
Yellow
ON: When the Power Factor Correction Capacitors Contactor is energized.
Delay Timed Out
D15
Yellow
ON: When the Auxiliary Start Contacts have been energized.
+24V
D28
Green
ON: +24V supply is good.
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
2.2.5 Description of LED Indicators Functions
Motortronics Inc. Page 16
12 13
24
25
36 37
48
TB1 TB2 TB3
TB4
RTD1
RTD2 RTD3 RTD4
RTD5 RTD6 RTD7
RTD8 RTD9 RTD10
RTD11 RTD12
1
Signal
Power
Compensation
Shield
Typical RTD Installation
U5
U10
U11
R49
R35
U1
U12
U7
U8
U13
U4
U9
R9
C4 C6+
C9
C7
U2
R15
C17
P1
R6
R10
C10
C11
C31
R2
Q1
Q3
R16
C18
C33
C32
C1
R7
R11
R17
C12
C19
U3
R3
C2
C13
R2
Q3
Q4
X1
C8+
C3
U6
C39
L1
C45
C38
C44
L2
C43
C37
C36
C42
1
6
TB1
TB2
J1
(RS485)
X1
(RS422)
X2
X3
1
6
X4
1
7
RS485
Customer Connections
A+ A- NC NC Shield
RS422
Factory Only
A+ A- B+ B- Shield
RCV XMIT
Install jumper X1 to insert termination resistor for last unit in Modbus string. All other units in the string should have the X1 jumper off
J4
Connects to the
Keypad Interface
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
2.3 PCB Layout Section - THIS SECTION IS FOR REFERENCE ONLY. NO FIELD WIRING OR
CONNECTIONS ARE REQUIRED.
2.3.1 Optional RTD Board
FIG. 2.3.1 Optional RTD Board
2.3.2 RS485 / RS422 Communications Board
Note: This Board is mounted on the back of the Keypad Interface
2.3.3 Main Board
Motortronics Inc. Page 17
FIG. 2.3.2 RS485 / RS422 Communications Board
TB1
654
3
2
112
11
1098
7654
3
2
1
12
11
1098
7654
3
2
1
TB2
TB3
F1
J7
J2
1- C Phase
4- B Phase
7- A Phase
J1
J3
J4
1
1
7
7
J6
19
20
1
2
J5
19
20
1
2
X1
Test Points
Circuit Board
Ground
AI
AT
BI
BT
CI
CT
GF
C1
C2
A1
A2
B1B2
J8
1 3
1
3
1 6
C NCNO C NCNO
C
NCNO
C NCNO
C NCNO C NCNO
C NCNO C NCNO
AUX 1 (TRIP)
AUX 2
(ALARM)
AUX 3
(RUN)
AUX 4
(AT SPEED)
AUX 5 AUX 6
AUX 7
AUX 8
Factory Only
Do Not Program
Refer to Set Point Page 5 information
Relay Output Contact Rating : 240VAC @ 5A (1200VA)
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
FIG. 2.3.3 Power Board
Motortronics Inc. Page 18
TB1
98
7654
3
2
1 8
7654
3
2
1
TB2
TB3
J1
1 8
1
8
7654
3
2
1
CGND1
CGND3
J3
39
40
12
J2
CGND4
CGND2
TB4
7 6 5 4 3 2 1
X3
1
3
Bat
2
J5
1
7
J4
J7
19
20
1
2
BT1
+
J6
19
20
1
2
Tach. Input
+
_
Analog Output #1 4 – 20 mA
+
_
+
_
Analog Output #2 4 – 20 mA
+
_
+
_
+
_
+
_
+
_
Program
Enable
Input
NOTE: Install program jumper to enable set point programming. Jumper must be removed after programming or for prolonged storage to preserve settings.
External Input #2
Opto – isolated Inputs
TB3: Only use terminal 3 and 4, all other terminals are for factory use.
DO NOT
CONNECT
DO NOT
CONNECT
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
2.3.4 CPU Board
Motortronics Inc. Page 19
FIG. 2.3.4 CPU Board
ENTERRESETMEN U
POWER
RUN
ALARM
TRIP
1
2
3
4
5
6
7
8
AUX. RELAYS
HELP
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
8
9
10
11
12
TB4
Time Delay
NCC NO NCC NO
P.F.C. CAP
NCC NO NCC NO
2
3
4
5
6
7
1
8
9
10
11
12
TB3
Lock Out
NCC NO NCC NO
Fault
NCC NO NCC NO
2
3
4
5
6
7
8
9
10
TB2
2
3
4
5
6
7
1
8
9
10
11
TB1
CNO C SNO NC NON NC
1
NCNC C CC NC NONO AC NCAC C
12
Stop
Maintain Contact
Start
N
TB6
TB7
TB8
NC
Red LED
Red LED
FAULT
FUSE
Green LED
DELAYED
START
Green LED
PFC
TIMED OUT
Green LED
DELAYED
TIMED OUT
7 65 4 3 2 1
PFC
7 65 4 3 2 1
AUX
7 65 4 3 2 1
START
DLY-C
AUX-C
PFC-C
Jumpers
F1
F2
F3
JP1
Remove JP1 for electronic Motor overload protection During emergency bypass operation.
SW1
ON OFF
DUAL ADJ
SW3
SW4
SW5
X1X3X5
Power
Supply
POWER
Green LED
EMERGENCY
BYPASS
Green LED
Green LED
Green LED
AUX BYPASS
AT SPEED
2
1
NEUT.
LINE
PERM
PFC
TB5
3
TB1
6543
2
112
111098
7654
321
12
111098
7654
321
TB2
TB3
F1
J7
J2
J1
J3
J4
1
1
7
7
J6
19
20
1
2
J5
19
20
1
2
X1
C1C2
A1A2
B1B2
J8
1 3
1
31 6
C NCNO C NCNO C NCNO C NCNO C NCNO C NCNO C NCNO C NCNO
AUX 1
(TRIP)
AUX 2
(ALARM)
AUX 3
(RUN)
AUX 4
(AT SPEED)
AUX 5 AUX 6 AUX 7
AUX 8
TB1
987654321 87654321
TB2 TB3
J1
1 8
1
8
7654
321
CGND1
CGND2
J3
39
40
12
J2
CGND4
CGND2
TB4
7 6 5 4 3 2 1
X3
1 3
Bat
2
J5
1
7
J4
J7
19 20
1 2
BT1
+
J6
19 20
1 2
12 13
24
25 36 37 48
TB1 TB2 TB3 TB4
RTD1 RTD2 RTD3 RTD4
RTD5 RTD6 RT D7 RTD8 R TD9 RTD10 R TD11 RTD12
1
U5
U10
U11
R49
R35
U1
U12
U7
U8
U13
U4
U9
R9
C4 C6+
C9
C7
U2
R15
C17
P1
R6
R10
C10
C11
C31
R2
Q1
Q3
R16
C18
C33
C32
C1
R7
R11
R17
C12
C19
U3
R3
C2
C13
R2
Q3
Q4
X1
C8+
C3
U6
C39
L1
C45
C38
C44
L2
C43
C37
C36C42
1
6
TB1 TB2
J1
(RS485)
X1
(RS422)
X2
X3
1 6
X4
1
7
(RS485)
B+ A- NC NO Shield
(RS422) Factory Only
A+ A- B+ B- Shield
RCV XMIT
Remove Jumper for last unit in Modbus string
3Ø Medium
Voltage Supply
Medium Voltage
CPT
(Optional)
Ø BØ A
Ø C
Ø A
Ø B
H1
H2
X1 X2
H1
H1H2 H2
X1 X1X2 X2
H
N
Ø A
Ø B
Ø C
120VAC
120VAC 120VAC
Located in Medium Voltage Section
199 201 180 179
Program Jumper
199
201
180 179
191
192
195
197
189
190
194
193
202 204
189
190
191
192
197
195
202
194
193
204
NOTE 1 - See FIG. 2.2.1 for TCB Board detailed connections
NOTE 1
GROUND FAULT
BOARD
(Optional)
MVC3-GF / CT
ZERO SEQUENCE CT @ 0.05A
CPU BOARD
(See FIG. 2.3.4)
TCB BOARD
(See FIG. 2.2.1)
RTD BOARD
(See FIG. 2.3.1)
(Optional)
FIBER OPTIC
HARNESS
POWER BOARD
(See FIG. 2.2.3)
A+A-B+ B-
COMM BOARD (See FIG. 2.3.2)
(Rear View of Board)
J4
RS485
Customer
Connection
6543
2
1
Ø A Ø B
Ø C
Ø A
Ø B
Ø C
START
STOP
Maintain Contact
2-Wire or 3-Wire Start Control Wiring
3Ø to
Power
Poles
NOTE 1
N
H
To SCR Power Section
KEYPAD INTERFACE
(See FIG. 1.9)
A+
A-
NC
NC
S
Twisted Pair
S
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
2.4 Typical Wiring Diagram
FIG. 2.4 Typical Wiring Diagram
Motortronics Inc. Page 20
ACCELERATION
Starting Torque Level
Current Limit
TORQUE VOLTAGE
100 %
Acceleration Mode
Ramp Time
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Chapter 3 - Start-up
3.1 Introduction
It is best to operate the motor at its full load starting condition to achieve the proper settings. Initial settings are set to accommodate most motor conditions. TRY INITIAL SETTINGS FIRST. See Section 5.1.2 Starter Configuration (Set Point Page 2) to make any adjustments.
3.2 Acceleration Adjustments
The unit is set at the factory with typical starting characteristics that perform well in most applications. When the system is ready to start, try the initial settings. If the motor does not come up to speed, increase the current limit setting. If the motor does not start to turn as soon as desired, raise the Initial voltage adjustment. Adjustment description and procedures are described as follows. See Section 5.1.2 Starter Configuration (Set Point Page 2) for additional Accel settings.
3.2.1 Initial Voltage
Factory Setting = 20% of line voltage Range = 0% - 100% of line voltage
Initial voltage adjustment changes the initial starting voltage level to the motor.
3.2.2 Ramp Time
Factory Setting = 10 sec. Range = 0 - 120 sec.
Ramp time adjustment changes the amount of time it takes to reach the current limit point or full voltage if the Current limit point was not reached.
Note: Refer to your motor manual for the maximum number of starts per hour allowed by the manufacturer and do not exceed the recommended number.
3.2.3 Current Limit (see FIG. 3.2.3)
Factory Setting = 350% of motor FLA Range = 200% - 500% of motor FLA
The main function of current limit is to limit the maximum current. It may also be used to extend the ramp time if required. The interaction between the voltage ramp and the current limit will allow the soft start to ramp the motor until the maximum current is reached and the current limit will hold the current at that level. The current limit must be se high enough to allow the motor to reach full speed. The factory setting of 350% is a good starting point.
Do not set the current limit too low on variable starting loads. This could cause the motor to stall and eventually cause the overload protection to trip.
Note: If the motor does stall, refer to the motor manufacturer’s motor data for the proper cooling time.
Motortronics Inc. Page 21
FIG. 3.2.3 Current Limit
ACCELERATION
Starting Torque
Level
Current Limit
TORQUE VOLTAGE
100 %
Acceleration Mode
R
am
p
T
i
m
e
DECELERATION
Ramp Time
Step Down
Voltage Level
Start Deceleration
Mode
Stop
Deceleration
ModeStop Voltage
Level
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
3.3 Deceleration Adjustments (Pump Control)
Decel control extends the stopping time on loads that would otherwise stop too quickly when power is removed. Decel control provides smooth deceleration until the load comes to a stop. Three adjustments optimize the deceleration curve to meet the most demanding requirements. The unit is shipped from the factory with the Decel control feature
disabled.
3.3.1 Deceleration Applications
Apply power and adjust the soft start before enabling or modifying the deceleration adjustments. Both, acceleration and deceleration adjustments should be made under normal load conditions. The deceleration feature provides a slow decrease in the output voltage, accomplishing a gentle decrease in motor torque during the stopping mode. This is the OPPOSITE OF BRAKING in that, it will take longer to come to a stop than if the starter were just turned off. The primary use of this function is to reduce the sudden changes in pressure that are associated with “Water Hammer” and slamming of check valves with centrifugal pumps. Decel control in pump applications is often referred to as Pump Control. In a pump system, liquid is being pushed uphill. The force exerted by gravity on the column of liquid as it goes up hill is called the “Head Pressure” in the system. The pump is sized to provide enough Output Pressure to overcome the Head Pressure and move the fluid up the pipe. When the pump is turned off, the Output Pressure rapidly drops to zero and the Head Pressure takes over to send the fluid back down the hill. A “Check Valve” is normally used somewhere in the system to prevent this (if necessary) by only allowing the liquid to flow in one direction. The kinetic energy in that moving fluid is suddenly trapped when the check valve slams closed. Since fluids can’t compress, that energy is transformed into a “Shock Wave” that travels through the piping system looking for an outlet in which to dissipate. The sound of that shock wave is referred to as “Water Hammer” and the energy in that shock wave can be extremely damaging to pipes, fittings, flanges, seals and mounting systems.
By using the Soft Stop/Deceleration feature of the soft starter, the pump output torque is gradually and gently reduced, which slowly reduces the pressure in the pipe. When the Output Pressure is just slightly lower than the Head Pressure, the flow slowly reverses and closes the Check Valve. By this time there is very little energy left in the moving fluid and the Shock Wave is avoided. When the output voltage to the motor is low enough to no longer be needed, the soft starter will end the Decel cycle and turn itself off. (See FIG. 3.3)
FIG. 3.3 Deceleration Control
Another common application for decel control is on material handling conveyors as a means to prevent sudden stops that
may cause products to fall over or to bump into one another. In overhead crane applications, soft stopping of the Bridge or Trolley can prevent loads from beginning to over swing on sudden stops.
Motortronics Inc. Page 22
MOTOR STOPPED READY TO START
MOTOR STARTING 00 x FLA
OVERLOAD ALARM TIME TO TRIP .XXX SECS
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
3.3.2 Start Deceleration Voltage
Factory Setting = 100% of line voltage Range = 80% - 100% of line voltage
The step down voltage adjustment eliminates the dead band in the deceleration mode that is experienced while the Voltage drops to a level where the motor deceleration is responsive to decreased voltage. This feature allows for an instantaneous drop in voltage when deceleration is initiated.
3.3.3 Stop Deceleration Voltage
Factory Setting = 20% of line voltage Range = 0% - 100% of line voltage
The stop voltage level set point is where the deceleration voltage drops to zero.
3.3.4 Deceleration Time
Factory Setting = 5 sec. Range = 0 - 60 sec.
The deceleration ramp time adjusts the time it takes to reach the stop voltage level set point. The unit should be restarted and stopped to verify that the desired deceleration time has been achieved. When calculating the number of starts per hour, a decel curve should be counted as a start curve. For example, recommended number of starts per hour = 6, allowable starts with decel cycle per hour = 3.
Note: Do not exceed the motor manufacturer’s recommended number of starts per hour.
3.4 Sequence of Normal Operation
It is best to operate the motor at its full load starting condition to achieve the proper time, torque and ramp settings. Initial settings are set to accommodate most motor conditions.
TRY INITIAL SETTINGS FIRST FOR: - Initial Voltage
- Current Limit
- Ramp Time
See (Section 5.1.2 Set- point Page 2) to make any adjustments. If the Decel function is enabled, related parameters may also need adjusting to achieve optimal Decel performance
Sequence:
Close the disconnect switch to apply 3 phase power" Verify the power LED on the keypad comes on.
Activate the start command, the motor should start accelerating and the RUN LED will come ON.
Motortronics Inc. Page 23
IA:_ _ _ IB:_ _ _ IC:_ _ _ GF:_ _ _
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Check: If the motor decelerates, or stops, during the acceleration period, activate the Stop button immediately. Adjustments to the ramp time and or current limit setting are necessary to provide the motor sufficient energy to reach full speed. If the unit does not follow this operational sequence, please refer to the Troubleshooting Chapter.
If the motor does not enter the run mode in the set time (Acceleration time limit, see SP8.2), a trip will occur. When the motor reaches full speed, the “AUX 4” LED (At Speed) will be ON. The POWER, RUN, AUX3 LEDs will be ON, indicating that the contact has energized. Phase A, B, C and Ground Fault current is shown on the keypad during operation.
Motortronics Inc. Page 24
HAZARDOUS OPERATION
DANGER
Do not operate the Bypass Contactor with medium voltage power applied to the unit. Failure to follow this instruction will cause the motor to start unexpectedly.
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
3.5 Emergency Bypass Operation
Emergency Bypass (2.3 to 7.2kV Class)
Remove input power by opening the disconnect switch and lock out.  Close the emergency Bypass contact located on the TCB board at TB2
(See section 2.2.1 for location).
Unlock and reclose the disconnect switch.
Note: In the emergency bypass mode, there is no overload protection unless a separate (optional or customer supplier) thermal overload relay is installed, or JP-1 (Motor Protection Jumper, Sec.2.2.3) is removed from the TCB Board.
The unit is operable as a normal across-the-line starter. When power is applied, the bypass contactor is energized, tying the input terminals directly to the output terminals. When the "START" command is given, the main (in line) contactor is energized and the motor line starts. When the "STOP" command is given, the motor is disconnected from the line power via the main (in-line) vacuum contactor.
Motortronics Inc. Page 25
ITEM
DESIGNATION
DESCRIPTION
KEY
MENU
Toggle between the menu selection for metering and set point pages.
RESET
Will clear the trip indicator and release the trip relay.
ENTER
Pressing the ENTER button once enters the EDIT mode where set point values can be changed. An "Asterisk" will appear on the display to indicate it is in the edit mode. After a set point value is changed, pressing the ENTER button again will save the revised value to memory and the asterisk will go off indicating the change has been saved. When not in the edit mode, the ENTER pushbutton will toggle through the event indicator list (such as alarms or trips)
HELP
Provides general help information about a specific set point or action.
UP ARROW
Will scroll up through the set point and metering menu page. It will scroll to the top of the set point page or a section. In edit mode it will increase a set point in an incremental step or toggle through the available options in the set point.
RIGHT ARROW
In the main menu the RIGHT ARROW button provides access to the set point page. For set point pages with multiple columns, the RIGHT ARROW will scroll the set point page to the right. When in edit mode it will shift one character to the right.
DOWN ARROW
Will scroll down through the set point pages and down through the set points. In edit mode, it will decrement through values and toggle available options in the set point.
LEFT ARROW
Will move to the left through set point pages with multiple columns. When in edit mode it will become the backspace key and will shift one character to the left.
LED
POWER
Indicates control power is present
RUN
Indicates unit/motor is running
ALARM
Lights in conjunction with Relay AUX 2 to indicate an Alarm event or warn of possible critical condition.
TRIP
Lights in conjunction with Relay AUX 1 to indicate a Trip condition has occurred.
AUX 1- 8
Auxiliary relays (Note: Relays 5-8 are available for customer use)
ENTERRESETMENU
POWER RUN ALARM
TRIP
1
2
3
4
5
6
7
8
AUX. RELAYS
HELP
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Chapter 4 - User Interface & Menu Navigation
This chapter explains the keypad operator interface, the LCD descriptions and the programming features.
4.1 Keypad/Operator Interface
The user keypad/ operator interface consists of:
2 row by 20 characters Liquid Crystal Display (LCD)
12 LEDs
8 pushbuttons
Note: The soft starter is menu driven and there are three levels of programming. The programming for two of these levels is password protected. Level two requires a three digit password and level three requires a four digit password.
4.1.1. Keypad Operator designations and functions
Note: The directional arrow buttons require careful operation. In edit mode, if the buttons are held for a long period, the scrolling speed will increase.
Motortronics Inc. Page 26
Page 1
Basic Configuration
Page 2
Starter Configuration
Page 3
Phase & Ground Settings
Page 4
Relay Assignment
Page 5
Relay Configuration
Page 6
User I/O Configuration
Page 7
Custom Acceleration Curve
Page 8
Overload Curve Config.
Page 9
RTD Configuration
Page 10
Security Set Password
Page 11
Communications
Page 12
System Setpoints
Page 13
Calibration & Service
MENU
LEVEL 1
LEVEL2
LEVEL3
FACTORY LEVEL
Notes:
1. The MENU key allows you to toggle the screens between the Setpoint Menu and the Metering Menu. Simply use the arrow keys to get to the different screens within each menu. Example: To access Setpoint Page 3 PHASE & GROUND SETTINGS, press the MENU key once and the DOWN ARROW twice.
2. Levels 1, 2 and 3 indicate password protection levels for these setpoint pages.
Page 1
Current Metered Data
Page 2
Voltage & Power Data
Page 3
RTD Values
Page 4
Status
Page 5
Event Recorder
Page 6
Last Trip
Page 7
Statistics
METERING MENU
CONFIGURATION MENU
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
4.2 Menu Navigation
Motortronics Inc. Page 27
PAGE 1 BASIC CONFIGURATION
MENU
ENTER
MOTOR FULL LOAD AMPS : 140 AMPS
MOTOR FULL LOAD AMPS* : 140 AMPS
ENTER
MOTOR FULL LOAD AMPS : 142 AMPS
(Push Twice)
(Save Entry)
MOTOR FULL LOAD AMPS : 142 AMPS
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
4.2.1 Password Access
Screens in Level 1 of the set point menu can be changed without password access because they list basic motor information. Screens in Levels 2 and 3 require passwords because they provide more in-depth protection and control of the unit. The password in Levels 2 and 3 can be changed by the user.
Note: Set Points can only be changed when the motor is in Stop/ Ready Mode! The soft starter will not allow a start if it is still in the Edit Mode. When the unit is in the Edit Mode, an asterisk is displayed in the top right corner screen.
4.2.2 Changing Set Points
Example 1: Changing Motor FLA from 140 AMPS to 142 AMPS
1. Press MENU button to display Set point Page 1, Basic Configuration
2. 2Press the RIGHT ARROW you will view the screen Motor Full Load Amps.
3. Press the ENTER button for edit mode. Note: The asterisk (*) in the top right corner of the LCD screen that indicates
Edit Mode.
4. To change the value, select the UP ARROW or DOWN ARROW. In this case push the UP ARROW twice (2x).
5. To accept the new value, press the ENTER button. The unit will accept the changes and will leave the edit mode. Note the * is no longer in the top right corner of the LCD Display.
Motortronics Inc. Page 28
Setpoint
Page
Security
Level
Description
Factory Setting
Default
Range
Section
Page 1
Basic Configuration
Level 1
No Password
Required
Motor Full Load Amps (FLA)
Model dependent
50 - 100% of Unit Max Current Rating (Model and Service Factor dependent)
SP1.1
Service Factor
1.15
1.00 – 1.3
SP1.2
Overload Class
10
O/L Class 5-30
SP1.3
NEMA Design
B
A-F
SP1.4
Insulation Class
B
A, B, C, E, F, H, K, N, S
SP1.5
Line Voltage
Model dependent
100 to 20000V
SP1.6
Line Frequency
60
50 or 60 HZ
SP1.7
Setpoint
Page
Security
Level
Description
Factory Setting
Default
Range
Section
Page 2
Starter Configuration
Level 1
No Password Required
Start Control Mode
Start Ramp 1
Jog, Start Ramp 1, Start Ramp 2, Custom Accel Curve, Start Disabled, Dual Ramp, Tach Ramp
SP2.1
Jog Voltage
50%
5-75%, Off
SP2.2
Start Ramp #1 Type
Voltage
Voltage, Current
SP2.3
Initial Voltage #1
20%
0-100%
Ramp Time #1
10 sec
1-120 sec
Current Limit #1
350% FLA
200-500 %
Initial Current #1
200% FLA
0-300 %
Ramp Time #1
10 sec
1-120 sec
Maximum Current #1
350% FLA
200-500 %
Start Ramp #2 Type
Disabled
Disabled, Voltage, Power
Initial Voltage #2
60%
0-100 %
SP2.4
SP2.5
Ramp Time #2
10 sec
1-120 sec
Current Limit #2
350% FLA
200-500 %
Initial Power #2
20%
0-100 %
Ramp Time #2
10 sec
1-120 sec
Maximum Power #2
80%
0 – 300 %
Kick Start Type
Disabled
Voltage or Disabled
Kick Start Voltage
65%
10-100 %
Kick Start Time
0.50 sec
0.10-2.00
Deceleration
Disabled
Enabled or Disabled
SP2.6
Start Deceleration Voltage
100%
80-100 %
Stop Deceleration Voltage
30%
0-79 %
Deceleration Time
5 sec
1-60 sec
Timed Output Time
Off
1-1000 sec, Off
SP2.7
Run Delay Time
1 Sec
1-30 sec, Off
SP2.8
At Speed Delay Time
1 Sec
1-30 sec, Off
SP2.9
Bypass Pull-in Current
100% FLA
90 – 300%
SP2.10
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Chapter 5 - Setpoint Programming
The soft starter has thirteen programmable Setpoint pages which define the motor data, ramp curves, protection, I/O configuration and communications. In Section 5.1, the Setpoint pages are outlined in chart form. In Section 5.2 the Setpoint pages are illustrated and defined for easy navigation and programming. Note: Setpoints can only be changed
then the starter is in the Ready Mode. Also the soft start will not start when it is in programming mode.
5.1 Setpoints Page List
These charts list the Setpoint Page, the programmable functions and the section.
5.1.1 Basic Configuration (Setpoint Page1)
5.1.2 Starter Configuration (Setpoint Page 2)
Motortronics Inc. Page 29
Setpoint
Page
Security
Level
Description
Factory Setting
Default
Range
Section
Page 3
Phase and Ground Settings
Level 2
Password Protected
Imbalance Alarm Level
15% FLA
5-30 %, Off
SP3.1
Imbalance Alarm Delay
1.5 sec
1.0-20.0 sec
Imbalance Trip Level
20%
5-30 %, Off
SP3.2
Imbalance Trip Delay
2.0 sec
1.0-20.0 sec
Undercurrent Alarm Level
Off
10-90 %, Off
SP3.3
Undercurrent Alarm Delay
2.0 sec
1.0-60.0 sec
Overcurrent Alarm Level
Off
100-300 %, Off
SP3.4
Overcurrent Alarm Delay
2.0 sec
1.0-20.0 sec
Overcurrent Trip Level
Off
100-300 %, Off
SP3.5
Overcurrent Trip Delay
2.0 sec
1.0-20.0 sec
Phase Loss Trip
Enabled
Enabled or Disabled
SP3.6
Phase Loss Trip Delay
0.1 sec
0-20.0 sec
Phase Rotation Detection
ABC
ABC, ACB or Disabled
SP3.7
Phase Rotation Trip Delay
1.0 sec
1.0 - 20.0 sec
*Ground Fault Alarm Level
Off
5-90 %, Off
SP3.8
*Ground Fault Alarm Delay
0.1 sec
0.1-20.0 sec
*Ground Fault Loset Trip Level
Off
5-90 %, Off
SP3.9
*Ground Fault Loset Trip Delay
0.5 sec
0.1-20 sec
*Ground Fault Hiset Trip Level
Off
5-90 %, Off
SP3.10
*Ground Fault Hiset Trip Delay
0.008 sec
0.008-0.250 sec
Overvoltage Alarm Level
Off
5 -30%, Off
SP3.11
Overvoltage Alarm Delay
1.0 sec
1.0-30.0 sec
Overvoltage Trip Level
10%
5-30%, Off
SP3.12
Overvoltage Trip Delay
2.0 sec
1.0-30.0 sec
Undervoltage Alarm Level
Off
5-30%, Off
SP3.13
Undervoltage Alarm Delay
1.0 sec
1.0-30.0 sec
Undervoltage Trip Level
15%
5-30%, Off
SP3.14
Undervoltage Trip Delay
2.0 sec
1.0-30.0 sec
Line Frequency Trip Window
Disabled
0-6 Hz, Disabled
SP3.15
Line Frequency Trip Delay
1.0 sec
1.0-20.0 sec
P/F Lead P/F Alarm
Off
0.1-1.00, Off
SP3.16
P/F Lead Alarm Delay
1.0 sec
1-120 sec
P/F Lead P/F Trip
Off
.01-1.00, Off
SP3.17
P/F Lead Trip Delay
1.0 sec
1-120 sec
P/F Lag P/F Alarm
Off
.01-1.00, Off
SP3.18
P/F Lag Alarm Delay
1.0 sec
1-120 sec
P/F Lag P/F Trip
Off
.01-1.00, Off
SP3.19
P/F Lag Trip Delay
1.0 sec
1-120 sec
Power Demand Period
10 min
1 - 60 min
SP3.20
KW Demand Alarm Pickup
Off KW
Off, 1-100000
KVA Demand Alarm Pickup
Off KVA
Off, 1-100000
KVAR Demand Alarm Pickup
Off KVAR
Off, 1-100000
Amps Demand Alarm Pickup
Off Amps
Off, 1-100000
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
5.1.3 Phase and Ground Settings (Setpoint Page 3)
* Ground fault option must be installed
Motortronics Inc. Page 30
Setpoint
Page
Security
Level
Description
Factory Setting
Range
Section
1st
2nd
3rd
Page 4
Relay Assignments
Level 2
Password Protected
O/L Trip
Trip Only
None
None
None Trip(AUX1) / Trip Only Alarm(AUX2) AUX3 AUX4 AUX5 - 8 Only Available in 8 Relay System
Notes: AUX1 to AUX4 are for Factory Use only. Do not change! Only AUX 5 - 8 are used in the 2nd & 3rd relay assignments.
SP4.1
I/B Trip
Trip
None
None
S/C Trip
Trip Only
None
None
Overcurrent Trip
Trip
None
None
Stator RTD Trip
None
None
None
Non Stator RTD Trip
None
None
None
*G/F Hi Set Trip
Trip
None
None
*G/F Lo Set Trip
Trip
None
None
Phase Loss Trip
Trip
None
None
Accel. Time Trip
Trip Only
None
None
Start Curve Trip
Trip Only
None
None
Over Frequency Trip
None
None
None
Under Frequency Trip
Trip
None
None
I*I*T Start Curve
Trip
None
None
Learned Start Curve
Trip
None
None
Phase Reversal
Trip
None
None
Overvoltage Trip
Trip
None
None
Undervoltage Trip
Trip
None
None
Power Factor Trip
None
None
None
Tach Accel Trip
None
None
None
Inhibits Trip
Trip
None
None
Shunt Trip
None
None
None
Bypass Discrepancy
Trip Only
None
None
Low Control Voltage
Trip Only
None
None
TCB Fault
Trip
None
None
External Input #2
None
None
None
Dual Ramp
None
None
None
Thermostat
Trip
None
None
O/L Warning
Alarm
None
None
Overcurrent Alarm
Alarm
None
None
SCR Fail Shunt Alarm
None
None
None
*Ground Fault Alarm
Alarm
None
None
Under Current Alarm
None
None
None
Motor Running
AUX3
None
None
I/B Alarm
Alarm
None
None
Stator RTD Alarm
None
None
None
Non-Stator RTD Alarm
None
None
None
RTD Failure Alarm
None
None
None
Self Test Fail
Trip
None
None
Thermal Register
Alarm
None
None
U/V Alarm
Alarm
None
None
O/V Alarm
Alarm
None
None
Power Factor Alarm
None
None
None
KW Demand Alarm
None
None
None
KVA Demand Alarm
None
None
None
KVAR Demand Alarm
None
None
None
Amps Demand Alarm
None
None
None
Timed Output
None
None
None
Run Delay Time
None
None
None
At Speed
AUX4
None
None
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
5.1.4 Relay Assignments (Setpoint Page 4)
* Ground fault option must be installed
Motortronics Inc. Page 31
Setpoint
Page
Security
Level
Description
Factory Setting
Default
Range
Section
Page 5
Relay Configuration
Level 2
Password Protected
Trip (AUX1) Fail-Safe
No
Yes or No
SP5.1
Trip (AUX1) Relay Latched
Yes
SP5.2
Alarm (AUX2) Fail-Safe
No
SP5.1
Alarm (AUX2) Relay Latched
No
SP5.2
AUX3 Relay Fail-Safe
No
SP5.1
AUX3 Relay Latched
No
SP5.2
AUX4 Relay Fail-Safe
No
SP5.1
AUX4 Relay Latched
No
SP5.2
AUX5 Relay Fail-Safe
No
SP5.1
AUX5 Relay Latched
No
SP5.2
AUX6 Relay Fail-Safe
No
SP5.1
AUX6 Relay Latched
No
SP5.2
AUX7 Relay Fail-Safe
No
SP5.1
AUX7 Relay Latched
No
SP5.2
AUX8 Relay Fail-Safe
No
SP5.1
AUX8 Relay Latched
No
SP5.2
Setpoint
Page
Security
Level
Description
Factory Setting
Default
Range
Section
Page 6
User I/O Configuration
Level 2
Password Protected
Tachometer Scale Selection
Disabled
Enabled or Disabled
SP6.1
Manual Tach Scale 4.0 mA:
0 RPM
0 - 3600
Manual Tach Scale 20.0 mA:
2000 RPM
0 - 3600
Tach Accel Trip Mode Select
Disabled
Underspeed, Overspeed or Disabled
SP6.2
Tach Ramp Time
20 sec
1 - 120
Tach Underspeed Trip PT
1650 RPM
0 - 3600
Tach Overspeed Trip PT
1850 RPM
0 - 3600
Tach Accel Trip Delay
1 sec
1 - 60
Analog Output #1
RMS Current
Off, RPM 0-3600, Hottest Non-Stator RTD 0-200°C, Hottest Stator RTD 0 - 200°C, RMS Current 0 - 7500 A, % Motor Load 0 - 600% Kw
SP6.3
Analog Output #1 4mA:
0
0-65535
Analog Output #1 20mA:
250
0-65535
Analog Output #2
% Motor Load
Same As Analog Input #1
SP6.4
Analog Output #2 4mA:
0
0-65535
Analog Output #2 20mA:
1000
0-65535
User Programmable External Inputs
SP6.5
TCB Fault
Enabled
User Defined, up to 15 Characters
Name Ext. Input #1
TCB Fault
Normally Open or Closed
TCB Fault Type
NO
0-60 sec
TCB Fault Time Delay
1 sec
Enabled or Disabled
External Input #2
Disabled
User Defined, up to 15 Characters
Name Ext. Input #2
NO
Normally Open or Closed
External Input #2 Type
0 sec
0-60 sec
External Input #2 Time Delay
Dual Ramp
Enabled or Disabled or Dual Ramp
Dual Ramp
Dual Ramp
User Defined, up to 15 Characters
Name Ext. Input #3
NO
Normally Open or Closed
Dual Ramp Type
0 sec
0-60 sec
Dual Ramp Time Delay
Enabled
Enabled or Disabled
Thermostat
Thermostat
User Defined, up to 15 Characters
Name Ext. Input #4
NC
Normally Open or Closed
Thermostat Type
1 sec
0-60 sec
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
5.1.5 Relay Configuration (Setpoint Page 5)
5.1.6 User I/O Configuration (Setpoint Page 6)
Motortronics Inc. Page 32
Setpoint
Page
Security
Level
Description
Factory Setting
Default
Range
Section
Page 7
Custom Acceleration Curve
Level 3
Password Protected
Custom Accel Curve
Disabled
Disabled, Curve A, B, or C
SP7.1
Custom Curve A
Curve A Voltage Level 1
25%
0-100%
Curve A Ramp Time 1
2 sec
1-60 sec
Curve A Voltage Level 2
30%
0-100%
Curve A Ramp Time 2
2 sec
1-60 sec
Curve A Voltage Level 3
37%
0-100%
Curve A Ramp Time 3
2 sec
1-60 sec
Curve A Voltage Level 4
45%
0-100%
Curve A Ramp Time 4
2 sec
1-60 sec
Curve A Voltage Level 5
55%
0-100%
Curve A Ramp Time 5
2 sec
1-60 sec
Curve A Voltage Level 6
67%
0-100%
Curve A Ramp Time 6
2 sec
1-60 sec
Curve A Voltage Level 7
82%
0-100%
Curve A Ramp Time 7
2 sec
1-60 sec
Curve A Voltage Level 8
100%
0-100%
Curve A Ramp Time 8
2 sec
1-60 sec
Curve A Current Limit
350% FLA
200-500%
Custom Curve B
Same Programmable Data Points and Ranges as Custom Curve A
Custom Curve C
Same Programmable Data Points and Ranges as Custom Curve A
Setpoint
Page
Security
Level
Description
Factory Setting
Default
Range
Section
Page 8
Overload Curve Configuration
Level 3
Password Protected
Basic Run Overload Curve
SP8.1
Run Curve Locked Rotor Time
O/L Class
1-30 sec, O/L Class
Run Locked Rotor Current
600% FLA
400-800%
Coast Down Timer
Disabled
1-60 Min, Disabled
Basic Start Overload Curve
SP8.2
Start Curve Locked Rotor Time
O/L Class
1-30 sec, O/L Class
Start Locked Rotor Current
600% FLA
400-800%
Acceleration Time Limit
30 sec
1-300 sec, Disabled
Number of Starts Per Hour
Disabled
1-6, Disabled
Time Between Starts Time
5 min
1-60 Min, Disabled
Area Under Curve Protection
Disabled
Enabled or Disabled
SP8.3
Max I*I*T Start
368 FLA
1-2500 FLA*FLA*sec
Current Over Curve
Disabled
Disabled, Learn, Enabled
SP8.4
Learned Start Curve Bias
10%
5-40%
Time for Sampling
30 sec
1-300 sec
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
5.1.7 Custom Acceleration Curve (Setpoint Page 7)
5.1.8 Overload Curve Configuration (Setpoint Page 8)
Motortronics Inc. Page 33
Setpoint
Page
Security
Level
Description
Factory Setting
Default
Range
Section
Page 9
RTD Configuration
Level 3
Password Protected
Use NEMA Temp for RTD Values
Disabled
Enabled or Disabled
SP9.1
# of RTD Used for Stator
4
0-6
SP9.2
RTD Voting
Disabled
Enabled or Disabled
SP9.3
Stator Phase A1 Type
Off
120 OHM NI, 100 OHM NI, 100 OHM PT, 10 OHM CU
SP9.4
RTD #1 Description
Stator A1
User defined, Up to 15 Characters
Stator Phase A1 Alarm Level
Off
0-240C (32-464F), Off
Stator Phase A1 Trip Level
Off
0-240C (32-464F), Off
Stator Phase A2 Type
Off
Same as Stator Phase A1
RTD #2 Description
Stator A2
User defined, Up to 15 Characters
Stator Phase A2 Alarm
Off
0-240C (32-464F), Off
Stator Phase A2 Trip Level
Off
0-240C (32-464F), Off
Stator Phase B1 Type
Off
Same as Stator Phase A1
RTD #3 Description
Stator B1
User defined, Up to 15 Characters
Stator Phase B1 Alarm Level
Off
0-240C (32-464F), Off
Stator Phase B1 Trip Level
Off
0-240C (32-464F), Off
Stator Phase B2 Type
Off
Same as Stator Phase A1
RTD #4 Description
Stator B2
User defined, Up to 15 Characters
Stator Phase B2 Alarm Level
Off
0-240C (32-464F), Off
Stator Phase B2 Trip Level
Off
0-240C (32-464F), Off
Stator Phase C1 Type
Off
Same as Stator Phase A1
RTD #5 Description
Stator C1
User defined, Up to 15 Characters
Stator Phase C1 Alarm Level
Off
0-240C (32-464F), Off
Stator Phase C1 Trip Level
Off
0-240C (32-464F), Off
Stator Phase C2 Type
Off
Same as Stator Phase A1
RTD #6 Description
Stator C2
User defined, Up to 15 Characters
Stator Phase C2 Alarm Level
Off
0-240C (32-464F), Off
Stator Phase C2 Trip Level
Off
0-240C (32-464F), Off
End Bearing Type
Off
Same as Stator A1
RTD #7 Description
End Bearing
User defined, Up to 15 Characters
End Bearing Alarm Level
Off
0-240C (32-464F), Off
End Bearing Trip Level
Off
0-240C (32-464F), Off
Shaft Bearing Type
Off
Same as Stator Phase A1
RTD #8 Description
Shaft Bearing
User defined, Up to 15 Characters
Shaft Bearing Alarm Level
Off
0-240C (32-464F), Off
Shaft Bearing Trip Level
Off
0-240C (32-464F), Off
RTD #9 Type
Off
Same as Stator Phase A1
RTD #9 Description
User defined
User defined, Up to 15 Characters
RTD #9 Alarm Level
Off
0-240C (32-464F), Off
RTD #9 Trip Level
Off
0-240C (32-464F), Off
RTD #10 Type
Off
Same as Stator Phase A1
RTD #10 Description
User defined
User defined, Up to 15 Characters
RTD #10 Alarm Level
Off
0-240C (32-464F), Off
RTD #10 Trip Level
Off
0-240C (32-464F), Off
RTD #11 Type
Off
Same as Stator Phase A1
RTD #11 Description
User defined
User defined, Up to 15 Characters
RTD #11 Alarm Level
Off
0-240C (32-464F), Off
RTD #11 Trip Level
Off
0-240C (32-464F), Off
RTD #12 Type
Off
Same as Stator Phase A1
RTD #12 Description
User defined
User defined, Up to 15 Characters
RTD #12 Alarm Level
Off
0-240C (32-464F), Off
RTD #12 Trip Level
Off
0-240C (32-464F), Off
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
5.1.9 RTD Option Configuration (Setpoint Page 9)
Motortronics Inc. Page 34
Setpoint Page
Security Level
Description
Factory Setting Default
Range
Section
Page 10 Password
Level 3 Password
Set Level 2 Password
100
000 – 999 Three Digits
SP10.1
Set Level 3 Password
1000
0000 – 9999 Four Digits
SP10.2
Setpoint Page
Security Level
Description
Factory Setting Default
Range
Section
Page 11 Communi­cations
Level 3 Password
Set Front Baud Rate
9.6 KB/sec
2.4, 4.8, 9.6, 19.2, 38.4 KB/sec
SP11.1
Set Modbus Baud Rate
9.6 KB/sec
2.4, 4.8, 9.6, 19.2, 38.4 KB/sec
SP11.2
Modbus Address Number
247
1 – 247
SP11.3
Set Access Code
1
1 – 999
SP11.4
Set Link Baud Rate
38.4 KB/sec
2.4, 4.8, 9.6, 19.2, 38.4 KB/sec
SP11.5
Remote Start/Stop
Disabled
Enabled or Disabled
SP11.6
Setpoint Page
Security Level
Description
Factory Setting Default
Range
Section
Page 12
System Setpoints
Level 3
Password Protected
Default Display Screen
SP12.1
Metering Data Page #
1
Enter Metering Page (1-4)
Metering Data Screen # 1
Enter Metering Screen Page 1(1-10) Page 2 (1-11) Page 3 (1 - 29) Page 4 (1 - 6)
Alarms
SP12.2
RTD Failure Alarm
Disabled
Enabled or Disabled
Thermal Register Alarm
90%
Off, 40-95%
Thermal Alarm Delay
10 sec
1-20 sec
Thermal Register Setup Info
SP12.3
Cold Stall Time
O/L Class
O/L Class (5-30) or 4-40 second time delay
Hot Stall Time
½ O/L Class
½ O/L Class, 4-40 sec
Stopped Cool Down Time
30 Min
10-300 Min
Runing Cool Down Time
15 Min
10-300 Min
Relay Measured Cool Rates
Disabled
Enabled or Disabled
Thermal Register Minimum
15%
10-50%
Motor Design Ambient Temp
40C
10-90C
Motor Design Run Temperature
80% Max
50-100% of Motor Stator Max Temp
Motor Stator Max Temp
INS CLS
INS CLS, 10-240 C
I/B Input to Thermal Register
Enabled
Enabled or Disabled
Use Calculated K or Assign
7
1-50, On
Press Enter to Clr Thermal Register
SP12.4
Setpoint
Page
Security
Level
Description
Factory Setting
Default
Range
Section
Page 13
Calibration & Service
Factory Use Only
Set Date and Time (DDMMYY:HHMM)
FACTORY SET; ## / ## / ## ## : ##
SP13.1
Enter Date (DDMMYYYY)
FACTORY SET; ## / ## / ####
D=1-31, M=1-12, Y=1970-2069
Enter Time (HH:MM)
FACTORY SET; ## :##
H=00-23, M=0-59
Model # Firmware REV. #
FACTORY SET; ###### ######
Display Only, Cannot be changed
SP13.2
Press Enter to Access Factory Settings
Available to Qualified Factory Personnel
SP13.3
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
5.1.10 Password Level Configuration (Setpoint Page10)
5.1.11 Communications Configuration (Setpoint Page11)
5.1.12 System (Setpoint Page 12)
5.1.13 Calibration and Service (Setpoint Page 13)
Motortronics Inc. Page 35
Page 1
Basic Configuration
MOTOR FULL LOAD AMPS : 200AMPS
SERVICE FACTOR : 1.15 X FLA
OVERLOAD CLASS: 10
NEMA DESIGN: B
INSULATION BLASS: B
LINE VOLTAGE INPUT: 4160 VOLTS*
LINE FREQUENCY HZ: 60
MENU
Range: 1.00 - 1.3
Increments of 0.01
Range: 5 - 30
Increments of 5
Range: A - F
Range: A - S
Range: 100 – 20,000
* Model dependent
Range: 50 or 60
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
5.2 Setpoints Menu and Parameter Explanation (SP1 – SP13)
SP.1 Basic Configuration (Setpoint Page 1)
In Setpoint Page 1, is used to setup basic nameplate data of the motor.
SP1.1 Motor Full Load Amps (FLA): Allows the user to enter the motor’s FLA rating. Range of adjustment is 50 - 100% (less programmed service factor).
SP1.2 Service Factor: Sets the pickup point on the overload curve as defined by the programmed motor full load current. Ex: If the motor FLA is 100 and the service factor is 1.15, the overload pickup point will be 115 Amps.
Motortronics Inc. Page 36
0 1 2 3 4 5 6 7 8 9 M FLA
1x10
1000
100
10
1
4
Overload Class 30 Overload Class 25 Overload Class 20
Overload Class 15
Overload Class 10
Overload Class 5
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP1.3 Overload Class: Choose the motor protection overload class, range from 5-30. Ex: Overload Class 10 will trip in 10 seconds at six times.
SP1.4 NEMA design: The motor design maximum allowed slip (Select from Class A through F).
SP1.5 Insulation Class: The motor insulation temperature class (Select A, B, C, E, F, G, H, K, N or S).
SP1.6 Line Voltage Input: Applied Voltage.
SP1.7 Line Frequency: The user may choose either 50 Hz or 60 Hz.
Motortronics Inc. Page 37
Page 2
Starter Configuration
START CONTROL MODE : START RAMP 1
JOG VOLTAGE : 50%
START RAMP #1 TYPE : VOLTAGE
START RAMP #2 : DISABLED
MENU
Range: 5-75% or
Off Increments of 5
Options: Voltage, Current, or Off
Options: Voltage, Power, or Off
INITIAL VOLTAGE #1: 20%
RAMP TIME #1: 10 SEC.
CURRENT LIMIT #1: 350% FLA
Range: 0-100%
Increments of 1
Range: 1-120 SEC. Increments of 1
Range: 200-500%. Increments of 10
INITIAL VOLTAGE #2: 60%
RAMP TIME #2: 10 SEC.
CURRENT LIMIT #2: 350% FLA
Range: 0-100%
Increments of 1
Range: 1-120 SEC. Increments of 1
Range: 200-500%. Increments of 10
INITIAL CURRENT #1: 200% FLA
RAMP TIME #1: 10 SEC.
MAXIMUM CURRENT #1: 350% FLA
Range: 0-300%
Increments of 1
Range: 1-120 SEC. Increments of 1
Range: 200-500%. Increments of 10
INITIAL POWER #2: 20%
RAMP TIME #2: 10 SEC.
MAXIMUM POWER #2: 80% FLA
Range: 0-100%
Increments of 1
Range: 1-120 SEC. Increments of 1
Range: 0-300%. Increments of 10
KICK START TYPE: DISABLED
DECELERATION : DISABLED
TIMED OUTPUT TIME: OFF
Range: Voltage or
Disabled
Range: Enabled or Disabled
Range: 1-1000 SEC.. Increments of 10
RUN DELAY TIME: 1 SEC.
AT SPEED DELAY TIME: 1 SEC.
BYPASS PULL-IN CURRENT: 100% FLA
Range: 0-30 SEC., Off
Increments of 1
Range: 0-30 SEC. ,Off Increments of 1
Range: 90-300%. Increments of 1
KICK START VOLTAGE : 55%
KICK START TIME : 0.50 SEC.
START DECEL VOLTAGE : 60%
Range: 10-100%
Increments of 5
Range: 0.10-2.00 SEC. Increments of 0.10
Range: 0-100% Increments of 1
DECELERATION TIME: 5 SEC.
Range: 0-59%
Increments of 1
Range: 1-60 SEC. Increments of 1
STOP DECELERATION VOLTAGE: 30%
If Power is selected these screens will appear
If Current is selected these screens will appear
If Voltage is selected these screens will appear
or
or
OPTIONS: Jog, Start Ramp 1, Start Ramp 2, Dual Ramp, Custom Accel Curve, Start Disabled
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.2 Starter Configuration (Setpoint Page 2)
Provides multiple choices for starting ramps that can be selected for particular loads and applications.
Motortronics Inc. Page 38
Ramp 1 = Voltage
New Start
Command
Voltage
Jog Button
Held
Jog Voltage
Setting
Start Control Mode
Setpoint changed from Jog to
Start Ramp #1 Type: Voltage
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP2 Starter Configuration (Setpoint Page 2) Menu Navigation
SP2.1 Start Control Mode: Dual Ramp, Custom Accel Curve, Jog Voltage, Start Ramp 1, Start Ramp 2.
• Dual Ramp: The dual ramp mode works in conjunction with External Input #3. This allows the user to switch between
the two start ramps without having to reconfigure the start mode. (For details on configuring External Input #3 for DUAL RAMP see Setpoint Page 6.)
• Custom Accel Curve: Allows the user to custom design the acceleration start curve to the application. (See Setpoint
page 7 for configuration setup.)
Note: If Custom Accel Curve has not been enabled in Setpoint page 7, the soft starter will ignore the start control mode and read this Setpoint as disabled.
SP2.2 Jog Voltage: The voltage level necessary to cause the motor to slowly rotate.
SP2.3 Start Ramp 1 Type: The ramp type can be setup for either Voltage or Current. If Voltage is selected, initial voltage,
ramp time and current limit are adjustable. If Current is selected, initial current, ramp time and maximum current are adjustable.
Start Ramp 1 Type: Voltage
• Voltage Ramping is the most reliable starting method, because the starter will eventually reach an output voltage high
enough to draw full current and develop full torque. This method is useful for applications where the load conditions change frequently and where different levels of torque are required. Typical applications include material handling conveyors, positive displacement pumps and drum mixers. Voltage is increased from a starting point, (Initial Torque) to full voltage over an adjustable period of time (Ramp Time). To achieve Voltage Ramping, select VOLTAGE for the START RAMP #1 TYPE Setpoint and set CURRENT LIMIT #1 Setpoint to 500% (The maximum setting). Since this is essentially Locked Rotor Current on most motors, there is little or no Current Limit effect on the Ramp profile.
FIG. SP2.3 Example of Switching from Jog to Start Ramp #1 Type: Voltage
• Voltage Ramping with Current Limit is the most used curve and is similar to voltage ramping however, it adds an
adjustable maximum current output. Voltage is increased gradually until the setting of the Maximum Current Limit Setpoint is reached. The output is held at this level until the motor accelerates to full speed. This may be necessary in applications where the electrical power is limited. Typical applications include portable or emergency generator supplies, utility power near the end of a transmission line and utility starting power demand restrictions.
Note: Using Current Limit will override the Ramp Time setting if necessary, so use this feature when acceleration time is not critical.
To set Voltage Ramping with Current Limit, select VOLTAGE for the START RAMP #1 Setpoint and set CURRENT LIMIT
#1 Setpoint to a desired lower setting, as determined by your application requirements.
Motortronics Inc. Page 39
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Start Ramp 1 Type: Current
• Current Ramping (Closed Loop Torque Ramping)
This method is used for smooth linear increase of output torque. This ramp is only used on some conveyor systems (long haul or down hill). For other applications, use Voltage Ramp or a custom Accel curve. Output voltage is constantly updated to provide the linear current ramp, and therefore the available torque is maximized at any given speed. This is for applications where rapid changes in torque may result in load damage or equipment changes. Typical applications include overland conveyors if belt stretching occurs; fans and mixers if blade warping is a problem; and material handling systems if stacked products fall over or break.
This feature can be used with or without the Maximum Current Limit setting. To achieve Current Ramping select CURRENT for START RAMP #1 TYPE Setpoint and set the MAXIMUM CURRENT #1 Setpoint to the desired level.
• Current Limit Only (Current Step) uses the Current Limit feature exclusively.
This method of starting eliminates the Soft Start voltage/current ramp and instead, maximizes the effective application of motor torque within the limits of the motor. In this mode, Setpoint RAMP TIME #1 is set to minimum so that the output current jumps to the current limit setting immediately. Typically used with a limited power supply when starting a difficult load such as a centrifuge or a deep well pump, when the motor capacity is barely adequate (stall condition or overloading occurs) or if other starting modes fail. Since ramp times are set to minimum, START RAMP #1 TYPE is set to either VOLTAGE or CURRENT.
• Initial Torque (Initial Voltage #1 or Initial Current #1)
Sets the initial start point of either Voltage Ramp or the Current Ramp. Every load requires some amount of torque to start from a standstill. It is inefficient to begin ramping the motor from zero every time, since between zero and the WK2 break­away torque level, no work is being performed. The initial torque level should be set to provide enough torque to start rotating the motor shaft, enabling a Soft Start and preventing torque shock damage. Setting this start point too high will not damage the starter, but may reduce or eliminate the soft start effect.
• Ramp Time #1
Sets the maximum allowable time for ramping the initial voltage, current (torque) or power setting to either of the following:
The Current Limit setting when the motor is still accelerating.  Full output voltage if the Current Limit is set to maximum.  kW if Power Ramp is selected.
Increasing the ramp time softens the start process by gradually increasing the voltage, current or power. Ideally, the ramp time should be set for the longest amount of time the application will allow (without stalling the motor). Some applications require a short ramp time due to the mechanics of the system. (i.e. centrifugal pumps, because pump problems can occur due to insufficient torque).
• Current Limit
Sets the maximum motor current the starter will allow during the acceleration. As the motor begins to ramp, the Current Limit feature sets a maximum at which the current draw is held. Current Limit remains in effect until the following occurs:
1) The motor reaches full speed (Detected by the At-Speed detection circuit) or;
2) The Overload Protection trips on Motor Thermal Overload. Once the motor reaches full speed, the Current Limit feature
becomes inactive. In the Voltage Ramp Profile, the voltage output is increased until it reaches the Current Limit. Ramp time is the maximum amount of time it takes for the voltage to increase until the Current Limit setting takes over. The Current Ramp profile varies the output voltage to provide a linear increase in current up to the Maximum Current Setpoint value. A closed loop feedback of motor current maintains the Current Ramp profile
Motortronics Inc. Page 40
t
Initial Power
Maximum Power
Power Ramp
It is recommended to use the power ramp on a loaded motor! Using the power ramp on an unloaded motor may result is shorter than anticipated acceleration times.
!
CAUTION
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP2.4 Start Ramp 2 Type: Please refer to Ramp 1 settings for Ramp 2 Type: Voltage selection.
Start Ramp 2: Power
The Power Ramp feature has three programmable set points, Initial Power, Ramp Time and Maximum Power.
The Initial Power set point allows the user to define an initial KW
(motor power) value that will be applied to the motor when the start sequence is begun. It has a range of 0-100% and a default value of 20%.
The Ramp Time set point functions as all other ramp time set points
and allows the user to define a time period during which the applied KW (motor power) will be increased linearly to the Maximum Power value set point. The adjustment range is 1 to 120 seconds. Once the Power Limit value is reached, the system enters a constant power mode that regulates the applied motor power until the motor reaches full speed.
The Maximum Power set point has an adjustment range of 0-300% and a default value of 80%.
Power Ramp Calculations: The basic motor power value is derived from the line voltage and motor FLA, using a
unity power factor as a default. This allows for approximation of the motor power rating without any other input data. During the Power Ramp process, the RMS line voltage, RMS motor current and power factor are measured on a cycle by cycle basis and applied to the Power Ramp algorithm. The CPU then calculates the True RMS motor power and will control the SCR firing to deliver the programmed power ramp values to the motor.
FIG. SP2.4
Initial Power: The Initial power set point allows the user to define an initial KW (motor power) value that will be
applied to the motor at the beginning of the start sequence.
Ramp Time #2: See Ramp Time #1 for description
Maximum Power: Sets the maximum motor power the starter will allow during the acceleration. As the motor begins
to ramp, the “Maximum Power” sets a limit.
SP2.5 Kick Start: Used as an initial energy burst in applications with high friction loads.
Kick Start Voltage: The initial voltage (as a percent of full voltage value) that is needed to start the motor. (i.e.
Breakaway or Initial Torque.)
Kick Start Time: The time the initial torque boost is applied.
Motortronics Inc. Page 41
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP2.6 Deceleration: Allows the motor to gradually come to a soft stop.
Start Deceleration Voltage: Upon receiving a STOP command the output voltage initially drops to this voltage.
(Represented as a percent of voltage value.)
Stop Deceleration Voltage: The drop-off point of the deceleration ramp. (Percent of voltage value.) The point at
which the unit output drops to zero to end the deceleration.
Deceleration Time: The time to get to the stop Deceleration Voltage Set point value.
SP2.7 Timed Output: Used with an AUX (5-8) relay. When enabled, and upon a start command, it waits until the
programmed time plus the run delayed time has expired. The relay energizes and remains so until a stop command is received. It de-energizes upon receiving a stop command.
SP2.8 Run Delay Time: Can be used with an AUX (5-8) relay. The delay timer begins upon receipt of the start command. The relay will then drop out when the time has expired.
SP2.9 At Speed Delay Time: Used with the AUX 4 relay, it energizes when the motor reaches At Speed and the programmed delay time has expired. The relay remains energized until a stop command has been received.
Motortronics Inc. Page 42
Overcurrent Trip
Setting 250% FLA
Current
Time
Current Level
Running
Under a
Normal Load
Load Jamb
Trip Delay Time
Trip
Page 2
Phase & Ground Settings
IMBALANCE ALARM LEVEL: 15% FLA
IMBALANCE TRIP LEVEL: 20%FLA
UNDERCURRENT ALARM LEVEL: OFF
Range: 5-30%, Off
Increments of 1
Range: 10-90%, Off. Increments of 1
OVERCURRENT ALARM LEVEL: OFF
OVERCURRENT TRIP LEVEL: OFF
PHASE LOSS TRIP : ENABLED
Range: 100-300%, Off
Increments of 1
Options: Enabled or Disabled
IMBALANCE ALARM DELAY: 1.5 SEC.
IMBALANCE TRIP DELAY: 2.0 SEC.
UNDERCURRENT ALARM DELAY: 2.0 SEC.
OVERCURRENT ALARM DELAY: 2.0 SEC.
OVERCURRENT TRIP DELAY: 2.0 SEC.
PHASE LOSS TRIP DELAY: 0.1 SEC.
PHASE ROTATION DETECTION: ABC
GROUND FAULT ALARM LEVEL: OFF
GROUND FAULT LOSET TRIP LEVEL: OFF
Range: ABC, ACB
or Disabled
Range: 5-90%,Off Increments of 1
GROUND FAULT HISET TRIP LEVEL: OFF
OVERVOLTAGE ALARM LEVEL: OFF
Range: 5-30%, Off
Increments of 1
Range: 100-300%, Off Increments of 1
Range: 5-90%,Off Increments of 1
Range: 5-90%,Off Increments of 1
Range: 5-30%,Off Increments of 1
OVERVOLTAGE TRIP LEVEL: 10%
Range: 5-30%,Off
Increments of 1
Range: 1.0-20.0 SEC. Increments of 0.1
Range: 1.0-20.0 SEC. Increments of 0.1
Range: 1.0-60.0 SEC. Increments of 0.1
Range: 1.0-20.0 SEC, Off. Increments of 0.1
Range: 1.0-20.0 SEC. Increments of 0.1
Range: 1.0-20.0 SEC. Increments of 0.1
PHASE ROTATION TRIP DELAY: 1.0 SEC
GROUND FAULT ALARM DELAY: 0.1 SEC.
GROUND FAULT LOSET TRIP DELAY: 0.5 SEC
GROUND FAULT HISET TRIP DELAY: 0.008 SEC.
OVERVOLTAGE ALARM DELAY: 1.0 SEC
OVERVOLTAGE TRIP DELAY: 2.0 SEC.
Range: 1.0-20.0 SEC.
Increments of 0.1
Range: 1.0-20.0 SEC. Increments of 0.1
Range: 1.0-20.0 SEC. Increments of 0.1
Range: 0.008-0.250 SEC. Increments of 0.002
Range: 1.0-30.0 SEC. Increments of 0.1
Range: 1.0-20.0 SEC. Increments of 0.1
Continued (Next Page)
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.3 Phase & Ground Settings (Setpoint Page
3)
(Security Level 2)
SP3.1 Imbalance Alarm Level: This is an advance warning of a phase imbalance problem. The problem may not be a fault in the motor, but merely caused by imbalanced voltages.
• Imbalance Alarm Delay: The amount of time the
imbalance condition must exist before an alarm occurs.
SP3.2 Imbalance Trip Level: This will trip the motor on excessive phase imbalance. The trip level should be programmed to a higher value than the alarm level.
• Imbalance Trip Delay: The amount of time the imbalance
condition must exist before a trip will occur.
SP3.3 Undercurrent Alarm Level: Typically used to warn of possible load loss, a coupling break or other mechanical problems.
• Undercurrent Alarm Delay: The amount of time the
undercurrent condition must exist before an alarm will occur.
SP3.4 Overcurrent Alarm Level: Typically used to indicate when the motor is overloaded. This feature can be used to either stop the feed to the equipment or warn operators of an overload condition.
• Overcurrent Alarm Delay: The amount of time the
overcurrent condition must exist before an alarm will occur.
SP3.5 Overcurrent Trip Level: Typically used to indicate the motor is severely overloaded and at which point a trip occurs.
• Overcurrent Trip Delay: The amount of time the
overcurrent condition must exist before a trip will occur.
Motortronics Inc. Page 43
FIG. SP3.5
UNDERVOLTAGE TRIP LEVEL: 15%
LINE FREQUENCY TRIP WINDOW: DISABLED
Range: 5-30%, Off
Increments of 1
Range: 0-6, Disabled Increments of 1
POWER FACTOR LEAD P/F ALARM: OFF
POWER FACTOR LEAD P/F TRIP: OFF
POWER FACTOR LAG P/F ALARM: OFF
Range: -.01-1.00, Off
Increments of .01
UNDERVOLTAGE ALARM DELAY: 1.0 SEC.
UNDERVOLTAGE TRIP DELAY: 2.0 SEC.
LINE FREQUENCY TRIP DELAY: 1.0 SEC.
P/F LEAD ALARM DELAY: 1 SEC.
P/F LEAD TRIP DELAY: 1.0 SEC.
P/F LAG ALARM DELAY: 1.0 SEC.
POWER FACTOR LAG P/F TRIP: OFF
POWER DEMAND PERIOD: 10 MINUTES
KW DEMAND ALARM PICKUP: OFF KW
Range: ABC, ACB or
Disabled
Range: 1-60 Min. Increments of 1
KVA DEMAND ALARM PICKUP: OFF KVA
KVAR DEMAND ALARM PICKUP: OFF KVAR
Range: 5-30%, Off
Increments of 1
Range: Off , 1-100000 Increments of 1
AMPS DEMAND ALARM PICKUP: OFF AMPS
Range: 1.0-30.0 SEC.
Increments of 0.1
Range: 1.0-30.0 SEC. Increments of 0.1
Range: 1.0-20.0 SEC. Increments of 0.1
Range: 1-120 SEC. Increments of 1
Continued (From Previous Page)
UNDERVOLTAGE ALARM LEVEL: OFF
Range: -.01-1.00, Off
Increments of .01
Range: -.01-1.00, Off Increments of .01
Range: 1-120 SEC. Increments of 1
Range: 1-120 SEC. Increments of 1
P/F LAG TRIP DELAY: 1.0 SEC.
Range: 1-120 SEC.
Increments of 1
Range: Off , 1-100000 Increments of 1
Range: Off , 1-100000 Increments of 1
Range: Off , 1-100000 Increments of 1
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP3.6 Phase Loss Trip: When enabled, the Soft Starter will trip the motor off-line upon a loss of phase power.
• Phase Loss Trip Delay: The amount of time the
phase loss condition must exist before a trip will occur.
SP3.7 Phase Rotation Detection: The soft starter is continuously monitoring the phase rotation. Upon a start command, a trip will occur if it detects a change in the phase rotation.
• Phase Rotation: There are two possible phase
rotation options: ABC or ACB. This Setpoint monitors the wiring to ensure that the phase rotation is correct. To view the present phase rotation, go to Metering Page1, screen number 4.
SP3.8 *Ground Fault Alarm: Typically used to warn of low level ground current leakage
• Ground Fault Alarm Delay: The amount of time that
the ground fault condition must exist before an alarm will occur.
SP3.9 *Ground Fault Loset Trip Level: Typically used to trip the motor on a low level of ground current leakage. This Setpoint is intended to detect high impedance faults.
• Ground Fault Loset Trip Delay: The amount of time
that the ground fault condition must exist before a trip will occur.
* Ground Fault Option must be installed
SP3.10 *Ground Fault Hiset Trip Level: Used to trip
the motor (within milliseconds) upon detecting a high level of ground current leakage. This Setpoint is intended to detect low impedance faults.
• *Ground Fault Hiset Trip Delay: The amount of
time that the ground fault condition must exist before a trip will occur.
SP3.11 Overvoltage Alarm Level: Typically used to indicate when the line voltage is too high. This is an alarm level.
• Overvoltage Alarm Delay: The amount of time that
the overvoltage condition must exist before an alarm occurs.
Motortronics Inc. Page 44
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP3.12 Overvoltage Trip Level: Typically used to indicate that the line voltage is too high and at which point a trip occurs
• Overvoltage Trip Delay: The amount of time that the overvoltage condition must exist before a trip will occur.
SP3.13 Undervoltage Alarm Level: Typically used to indicate when the line voltage is too low. This is an alarm level.
• Undervoltage Alarm Delay: The amount of time that the undervoltage condition must exist before an alarm occurs.
SP3.14 Undervoltage Trip Level: Typically used to indicate that the line voltage is too low at which point a trip occurs.
• Undervoltage Trip Delay: The amount of time that the undervoltage condition must exist before a trip occurs.
SP3.15 Line Frequency Trip Window: The acceptable amount of drift above or below the line frequency (Hz) before a
trip is generated.
• Line Frequency Trip Delay: The amount of time that the frequency drift condition must exist beyond the window
before a trip occurs.
SP3.16 Power Factor Lead Alarm: Typically used to indicate a leading power factor.
• Power Factor Lead Alarm Delay: The amount of time that the power factor lead condition must exist beyond the
window before an alarm occurs.
SP3.17 Power Factor Lead Trip: The acceptable amount of power factor lead before a trip is generated.
• Power Factor Lead Delay: The amount of time that the power factor lead condition must exist beyond the window
before a trip will occur.
SP3.18 Power Factor Lag Alarm: Typically used to indicate a lagging power factor.
• Power Factor Lag Alarm Delay: The amount of time that the power factor lagging condition must exist beyond the
window before an alarm occurs.
SP3.19 Power Factor Lag Trip: The acceptable mount of power factor lag before a trip is generated.
• Power Factor Lag Delay: The amount of time that the power factor lag condition must exist beyond the window
before a trip will occur.
SP3.20 Power Demand Period: The Soft Starter monitors the demand of the motor based on several parameters (current, kW, kVAR, kVA). Monitoring the demand of the motor assist in the energy management program where processes can be altered or scheduled to reduce overall demand. Demand is calculated by taking samples of the output current, kW, kVAR and kVA over a period of time, then averaged and stored into memory.
Motortronics Inc. Page 45
Page 4
Relay Assignment
MENU
I/B TRIP 1ST: TRIP
S/C TRIP 1ST: TRIP ONLY
OVERCURRENT TRIP 1ST: TRIP
STATOR RTD TRIP 1ST: NONE
NON-STATOR RTD TRIP 1ST: NONE
G/F HI SET TRIP 1ST: TRIP
G/F LO SET TRIP 1ST: TRIP
PHASE LOSS TRIP 1ST: TRIP
ACCEL. TIME TRIP 1ST: TRIP ONLY
START CURVE TRIP 1ST: TRIP ONLY
OVER FREQUENCY TRIP 1ST: NONE
UNDER FREQUENCY TRIP 1ST: TRIP
I*I*T START CURVE 1ST: TRIP
O/L TRIP 1ST: TRIP ONLY
PHASE REVERSAL 1ST: TRIP
OVERVOLTAGE TRIP 1ST: TRIP
UNDERVOLTAGE TRIP 1ST: TRIP
POWER FACTOR TRIP 1ST: NONE
TACH ACCEL TRIP 1ST: NONE
INHIBITS TRIP 1ST: TRIP
SHUNT TRIP 1ST: NONE
BYPASS DISCREPANCY 1ST: NONE
TCB FAULT 1ST: TRIP
EXTERNAL INPUT #2 1ST: NONE
DUAL RAMP 1ST: NONE
THERMOSTAT 1ST: TRIP
O/L WARNING 1ST: ALARM
OVERCURRENT ALARM 1ST: ALARM
SCR FAIL SHUNT ALARM 1ST: NONE
MOTOR RUNNING 1ST: AUX3
I/B ALARM 1ST: ALARM
STATOR RTD ALARM 1ST: NONE
NON-STATOR RTD ALARM 1ST: NONE
RTD FAILURE ALARM 1ST: NONE
SELF-TEST FAIL 1ST: TRIP
THERMAL REGISTER 1ST: ALARM
U/V ALARM 1ST: ALARM
O/V ALARM 1ST: ALARM
POWER FACTOR ALARM 1ST: NONE
KW DEMAND ALARM 1ST: NONE
KVA DEMAND ALARM 1ST: NONE
KVAR DEMAND ALARM 1ST: NONE
AMPS DEMAND ALARM 1ST: NONE
LEARNED START CURVE 1ST: TRIP
GROUND FAULT ALARM 1ST: ALARM
UNDERCURRENT ALARM 1ST: NONE
TIMED OUTPUT 1ST: NONE
RUN DELAY TIME 1ST: NONE
AT SPEED 1ST: AUX4
Range: TRIP (AUX1),
ALARM (AUX2), AUX3, AUX4
(DOWN ARROW 3 TIMES)
LOW CONTROL VOLTAGE 1ST: TRIP ONLY
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.4 Relay Assignment (Setpoint Page 4)
(Security Level 2)
Motortronics Inc. Page 46
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.4 Relay Assignment (Setpoint Page 4) – Continued
(Security Level 2)
All of the protective functions of the Soft Starter are user programmable to an output relay. The factory will ship with all tripping functions assigned to TRIP (AUX1) relay, and all alarm functions to ALARM (AUX2) relay.
Note: AUX1 - 4 are Factory Set and should not be changed. SP4.1 The following is a list of all the user programmable functions.
Note: The 1st Relay Assignments are factory defaults and should not be changed.
RELAY ASSIGNMENTS FUNCTIONS 1st 2nd 3rd
OVERLOAD TRIP TRIP ONLY NONE NONE IMBALANCE TRIP TRIP (AUX1) NONE NONE SHORT CIRCUIT TRIP TRIP ONLY NONE NONE OVERCURRENT TRIP TRIP (AUX1) NONE NONE STATOR RTD TRIP NONE NONE NONE NON-STATOR RTD TRIP NONE NONE NONE GROUND FAULT HI SET TRIP* TRIP (AUX1) NONE NONE GROUND FAULT LO SET TRIP* TRIP (AUX1) NONE NONE PHASE LOSS TRIP TRIP (AUX1) NONE NONE ACCEL TIME TRIP TRIP ONLY NONE NONE START CURVE TRIP TRIP ONLY NONE NONE OVER FREQUENCY TRIP NONE NONE NONE UNDER FREQUENCY TRIP TRIP (AUX1) NONE NONE I*I*T START CURVE TRIP (AUX1) NONE NONE LEARNED START CURVE TRIP (AUX1) NONE NONE PHASE REVERSAL TRIP (AUX1) NONE NONE OVERVOLTAGE TRIP TRIP (AUX1) NONE NONE UNDERVOLTAGE TRIP TRIP (AUX1) NONE NONE POWER FACTOR TRIP NONE NONE NONE TACH ACCEL TRIP NONE NONE NONE INHIBITS TRIP ALARM (AUX2) NONE NONE SHUNT TRIP NONE NONE NONE BYPASS DISCREPANCY TRIP ONLY NONE NONE LOW CONTROL VOLTAGE TRIP ONLY NONE NONE TCB FAULT TRIP (AUX1) NONE NONE EXTERNAL INPUT 2 NONE NONE NONE DUAL RAMP NONE NONE NONE THERMOSTAT TRIP (AUX1) NONE NONE OVERLOAD WARNING ALARM (AUX2) NONE NONE OVERCURRENT ALARM ALARM (AUX2) NONE NONE SCR FAIL SHUNT ALARM ALARM (AUX2) NONE NONE GROUND FAULT ALARM* ALARM (AUX2) NONE NONE UNDERCURRENT ALARM NONE NONE NONE MOTOR RUNNING AUX3 NONE NONE IMBALANCE ALARM ALARM (AUX2) NONE NONE STATOR RTD ALARM NONE NONE NONE NON-STATOR RTD ALARM NONE NONE NONE RTD FAILURE ALARM NONE NONE NONE SELF TEST FAIL TRIP (AUX1) NONE NONE THERMAL REGISTER ALARM (AUX2) NONE NONE U/V ALARM ALARM (AUX2) NONE NONE O/V ALARM ALARM (AUX2) NONE NONE POWER FACTOR ALARM NONE NONE NONE KW DEMAND ALARM NONE NONE NONE KVA DEMAND ALARM NONE NONE NONE KVAR DEMAND ALARM NONE NONE NONE AMPS DEMAND ALARM NONE NONE NONE TIMED OUTPUT NONE NONE NONE RUN DELAY TIME NONE NONE NONE AT SPEED AUX4 NONE NONE
*Ground fault option must be installed
Motortronics Inc. Page 47
TRIP (AUX1) RELAY FAIL-SAFE: NO
AUX 3 RELAY FAIL-SAFE: NO
AUX4 RELAY FAIL-SAFE: NO
AUX5 RELAY FAIL-SAFE: NO
AUX6 RELAY FAIL-SAFE: NO
AUX7 RELAY FAIL-SAFE: NO
AUX8 RELAY FAIL-SAFE: NO
ALARM (AUX2) RELAY FAIL-SAFE: NO
TRIP (AUX1) RELAY LATCHED: YES
AUX3 RELAY LATCHED: NO
AUX4 RELAY LATCHED: NO
AUX5 RELAY LATCHED: NO
AUX6 RELAY LATCHED: NO
AUX7 RELAY LATCHED: NO
AUX8 RELAY LATCHED: NO
ALARM (AUX2) RELAY LATCHED: NO
Page 5
Relay Configuration
MENU
Option: Yes or No
(DOWN ARROW 4 TIMES)
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.5 Relay Configuration (Setpoint Page 5)
(Security Level 2)
In Setpoint Page 5 the user can configure the four output relays as either fail-safe or non fail-safe and latching or non­latching.
SP5.1 When a relay has been configured for "Fail Safe" and power is applied to the unit the relay will energize and its contacts will change state. The relay will then de-energize and its contacts revert back when an event occurs of if power is removed.
NOTE: The relays in the soft starter will not prevent a start sequence unless they are wired in as interlocks. If power is lost, the motor power is also lost. Do not change the programming for AUX 1-4. These are for factory use only. AUX 5-8 are user defined outputs.
SP5.2 A relay configured as non-latching will reset itself when the cause of the trip event is not continuous. The TRIP (AUX1) relay should always be programmed for latching, because this trip should require a visual inspection of the motor and starter before issuing a manual reset to release the relay after a trip has been stored.
Motortronics Inc. Page 48
TACHOMETER SCALE SELECTION: DISABLED
ANALOG OUTPUT #1 :RMS CURRENT
TACH ACCEL TRIP MODE SELECT: DISABLED
MANUAL TACH SCALE
4.0 mA: 0 RPM
TACH RAMP TIME : 20 SEC
TACH UNDERSPEED TRIP PT: 1650 RPM
TACH OVERSPEED TRIP PT: 1850 RPM
TACH ACCEL TRIP DELAY: 1 SEC
ANALOG OUTPUT #1 4ma: 0
ANALOG OUTPUT #1 4ma: 0 20mA: 250
MANUAL TACH SCALE
20.0 mA: 2000 RPM
Page 6
User I/O Configuration
MENU
Option: Enabled or
Disabled
(DOWN ARROW 5 TIMES)
Range: 0-3600RPM
Increments of 5
Range: 0-3600RPM Increments of 5
ENABLED
Option: Underspeed,
Overspeed or Disabled
Range: 0-65535 Increments of 1
Range: 1-120 SEC.,Disabled Increments of 1
Range: 0-3600RPM Increments of 5
Range: 0-3600RPM Increments of 5
Range: 1-60 SEC. Increments of 1
Range: 0-65535 Increments of 1
Range:
Analog Output Range RPM 0 - 3600 Hottest Bearing 0 - 200°C Hottest Stator RTD 0 - 200°C RMS Current 0 - 6500A % Motor Load 0 - 1000% KW 0-30000 KW OFF Increments of 1
ANALOG OUTPUT #2 :% MOTOR LOAD
ANALOG OUTPUT #2 4mA: 0
ANALOG OUTPUT #2 20mA: 1000
Range: 0-65535
Increments of 1
Range: 0-65535 Increments of 1
Range: See Analog Output#1 Increments of 1
USER PROGRAMMABLE EXTERNAL INPUTS
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.6 User I/O Configuration (Setpoint Page 6)
(Security Level 2)
Motortronics Inc. Page 49
Continue on page 51
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.6 User I/O Configuration (Setpoint Page 6) - Continued
(Security Level 2)
The Soft Starter can be configured to accept a tachometer feedback signal using the 4-20mA input.
SP6.1 The first screen of Setpoint page 6 is TACHOMETER SCALE SELECTION. When this is set to ENABLED, the user will need to input the tachometer scale of the 4-20mA input range.
Manual Tach Scale 4.0 mA: The unit is looking for an RPM value to assign to the lowest point on the scale. This
Value should represent the motor at zero speed.
Manual Tach Scale 20.0 mA: The unit is looking for an RPM value to assign to the highest point on the scale. This
value should represent the motor at full speed.
SP6.2 Tach Accel Trip Mode Select: When enabled, the underspeed or overspeed must be selected for the Tach Accel Trip. If underspeed is selected, only the Tach Underspeed Trip Point will be used. If overspeed is selected, only the Tach Overspeed Trip Point will be used.
Tach Ramp Time: This is the duration of time before the starter begins sampling the tachometer.
Tach Underspeed Trip: Defines the minimum motor speed using the Tach feedback. When the underspeed trip
mode is enabled and the motor speed falls below this level for the time specified by the Tach Accel Trip Delay an underspeed trip occurs.
Tach Overspeed Trip: Defines the maximum allowed motor speed using the Tach feedback. When the overspeed
trip mode is enabled and the motor speed exceeds this level for the time specified by the Tach Accel Trip Delay an overspeed trip occurs.
Tach Accel Trip Delay: The duration of time that the Tach Accel trip condition must persist before a trip is generated.
SP6.3 The controller provides two 4-20mA analog outputs. Each analog output is independent of the other and can be
assigned to monitor different functions. The available output ranges are; RPM, Hottest Non-Stator (Bearing) RTD, Hottest Stator RTD, RMS current, and % Motor Load.
Analog Output #1 – Select a function from the available five options to be transmitted from the 4-20mA output.
Note: If selecting RPM, the Tachometer feedback input signal must be present in order for the controller to give proper output. If selecting RTD, the RTD option must be installed and an RTD input signal must be present for a proper output to be given from the analog output.
Analog Output #1 (4 mA): Enter a value that the 4mA level will represent for the selected function; typically this value
should be 0.
Analog Output #1 (20 mA): Enter a value that the 20mA level will represent for the selected function.
SP6.4 Analog Output #2 – All of the Setpoints and setup screens for Analog Output #2 are the same as those for
Analog Output #1.
Motortronics Inc. Page 50
USER
PROGRAMM-
ABLE
EXTERNAL
INPUTS
TCB FAULT SELECT: ENABLED
EXTERNAL INPUT #2 SELECT: DISABLED
DUAL RAMP SELECT: DUAL RAMP
THERMOSTAT SELECT: ENABLED
Options: Enabled or
Disabled
(Continued)
NAME EXT INPUT #2
NAME EXT INPUT #3 SECOND RAMP
See Text for Instructions
NAME EXT INPUT #4 THERMOSTAT
TCB FAULT TYPE: N.O.
EXTERNAL INPUT #2 TYPE: N.O.
DUAL RAMP TYPE: N.O.
THERMOSTAT TYPE: N.C.
NAME EXT. INPUT #1 TCB FAULT
Options: Enabled or
Disabled
Options: Enabled, Disabled or Dual Ramp
Options: Enabled or Disabled
See Text for Instructions
See Text for Instructions
See Text for Instructions
Options: N.O. or N.C.
Options: N.O. or N.C.
Options: N.O. or N.C.
Options: N.O. or N.C.
TCB FAULT TIME DELAY: 1 SEC.
EXTERNAL INPUT #2 TIME DELAY: 0 SEC.
DUAL RAMP TIME DELAY: 0 SEC.
Range: 0 - 60 SEC
Increments of 1
Range: 0 - 60 SEC
Increments of 1
THERMOSTAT TIME DELAY: 1 SEC.
Range: 0 - 60 SEC
Increments of 1
Range: 0 - 60 SEC
Increments of 1
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.6 User I/O Configuration (Setpoint Page 6) - Continued
(Security Level 2)
SP6.5 User Programmable External Inputs: The controller provides up to 4 digital external inputs which are individually programmable. A description name can be assigned to each individual input for easy identification.
External Input #1: Factory programmed for TCB Fault.
External Input #2: If used, this Setpoint must be enabled.
Name Ext. Input #2: The user can assign a description name to the input to easily identify the cause of external trip or
alarm. Up to 15 characters including spaces can be used to assign the name.
External Input #2 Type: The external input can be set as either a normally open or normally closed contact.
External Input #2 Time Delay: Upon a change in contact setting, the unit will wait the programmed amount of time
before generating an output. If no delay is needed, then input 0 seconds. The controller will post an event upon seeing a change in state.
External Input #3: The setup screens and Setpoints for External Input #3 includes the option of being configured for
Dual Ramp. In Dual Ramp mode, the initial contact setting is the same as the START RAMP #1. Upon a change in input contact state, the controller will switch over to START RAMP #2 and use that setting for start control mode.
Note: The start RAMP types should only be switched while the motor is stopped. In Setpoint Page 4 Relay Assignments do not assign any output relay to this function. The controller is programmed with External input #3 programmed for dual ramp. If it is not needed, disable the dual ramp.
• External Input #4 – These input screens are for the thermostat input and can be enabled or disabled.
Note: It is recommended that this function remain enabled. If the thermostat indicates an over temperature condition, the controller will trip the motor.
Motortronics Inc. Page 51
CURVE A RAMP TIME 1: 2 SEC
CURVE A VOLTAGE LEVEL 2: 30%
Range: 0 - 100%
Increments of 1
Range: 1 - 60 SEC Increments of 1
CURVE A RAMP TIME 2: 2 SEC.
CURVE A VOLTAGE LEVEL 3: 37%
CURVE A RAMP TIME 3: 2 SEC.
CUSTOM CURVE A
CURVE A VOLTAGE LEVEL 4: 45%
CURVE A RAMP TIME 4: 2 SEC.
CURVE A VOLTAGE LEVEL 5: 55%
CURVE A RAMP TIME 5: 2 SEC.
CURVE A VOLTAGE LEVEL 6: 67%
CURVE A RAMP TIME 6: 2 SEC.
CURVE A VOLTAGE LEVEL 1: 25%
Range: 0 - 100%
Increments of 1
Range: 1 - 60 SEC Increments of 1
Range: 0 - 100% Increments of 1
Range: 1 - 60 SEC Increments of 1
Range: 0 - 100% Increments of 1
Range: 1 - 60 SEC Increments of 1
Range: 0 - 100% Increments of 1
Range: 1 - 60 SEC Increments of 1
Range: 0 - 100% Increments of 1
Range: 1 - 60 SEC Increments of 1
CURVE A VOLTAGE LEVEL 7: 82%
CURVE A RAMP TIME 7: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
Range: 0 - 100% Increments of 1
(Continued on next page)
Page 7
Custom Acceleration Curve
MENU
CUSTOM ACCEL CURVE : DISABLED
Range: DISABLED,
CURVE A, B or C
(DOWN ARROW six times)
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.7 Custom Acceleration Curve (Setpoint Page 7)
(Security Level 3)
SP7.1 Setpoint Page 7 allows the user to custom design the acceleration curve (start curve) for a specific application. The custom design setup allows for up to three different curves in the Soft Starter. Only one curve can be active (enabled) at any given time. Each of the three curves allow for eight voltage plotting points, with corresponding ramp times and a current limit setting.
Note: Each successive voltage level must be programmed to a voltage level equal to or greater than the previous level. All eight voltage levels must be programmed and the eighth level has been preset at 100%.
If Custom Accel Curve has been set to curve
A, B or C on this page, the Soft Starter will override the Start Control Mode selected in Setpoint Page 2, (even if Start Control Mode in Setpoint Page 2 has not been set to Custom Accel Curve).
Motortronics Inc. Page 52
CUSTOM
CURVE A
CURVE A VOLTAGE LEVEL 8: 100%
CURVE A RAMP TIME 8: 2 SEC
CURVE A CURRENT LIMIT: 350% FLA
Range: 0 - 100%
Increments of 1
CURVE B VOLTAGE LEVEL 1: 25%
(Continued from Prev. page)
Range: 1 - 60 SEC
Increments of 1
Range: 200 - 500% Increments of 10
Range: 0 - 100% Increments of 1
CURVE B RAMP TIME 1: 2 SEC.
CURVE B VOLTAGE LEVEL 2: 30%
CURVE B RAMP TIME 2: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
CURVE B VOLTAGE LEVEL 3: 37%
Range: 0 - 100%
Increments of 1
Range: 0 - 100% Increments of 1
Range: 1 - 60 SEC Increments of 1
CURVE B RAMP TIME 3: 2 SEC.
CURVE B VOLTAGE LEVEL 4: 45%
CURVE B RAMP TIME 4: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
CURVE B VOLTAGE LEVEL 5: 55%
Range: 0 - 100%
Increments of 1
Range: 0 - 100% Increments of 1
Range: 1 - 60 SEC Increments of 1
CUSTOM
CURVE B
CUSTOM
CURVE B
Cont.
CURVE B VOLTAGE LEVEL 6: 67%
CURVE B RAMP TIME 5: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
CURVE B RAMP TIME 6: 2 SEC.
CURVE B VOLTAGE LEVEL 7: 82%
CURVE B RAMP TIME 7: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
CURVE B VOLTAGE LEVEL 8: 100%
Range: 0 - 100%
Increments of 1
Range: 0 - 100% Increments of 1
Range: 1 - 60 SEC Increments of 1
CURVE B CURRENT LIMIT: 350% FLA
Range: 200 - 500%
Increments of 10
Range: 0 - 100% Increments of 1
CUSTOM CURVE C
CURVE C VOLTAGE LEVEL 1: 25%
CURVE C RAMP TIME 1: 2 SEC.
CURVE C VOLTAGE LEVEL 2: 30%
CURVE C RAMP TIME 2: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
CURVE C VOLTAGE LEVEL 3: 37%
Range: 0 - 100%
Increments of 1
Range: 0 - 100% Increments of 1
Range: 1 - 60 SEC Increments of 1
CURVE C RAMP TIME 3: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
Range: 0 - 100% Increments of 1
(Continued on next page)
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.7 Custom Acceleration Curve (Setpoint Page 7) - Continued
(Security Level 3)
Motortronics Inc. Page 53
CUSTOM
CURVE C
Cont.
CURVE C VOLTAGE LEVEL 4: 45%
CURVE C RAMP TIME 4: 2 SEC.
CURVE C VOLTAGE LEVEL 5: 55%
CURVE C RAMP TIME 5: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
CURVE C VOLTAGE LEVEL 6: 67%
Range: 0 - 100%
Increments of 1
Range: 0 - 100% Increments of 1
Range: 1 - 60 SEC Increments of 1
CURVE C RAMP TIME 6: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
Range: 0 - 100% Increments of 1
CURVE C VOLTAGE LEVEL 7: 82%
Range: 0 - 100%
Increments of 1
CURVE C RAMP TIME 7: 2 SEC.
Range: 1 - 60 SEC
Increments of 1
CURVE C VOLTAGE LEVEL 8: 100%
CURVE C RAMP TIME 8: 2 SEC.
CURVE C CURRENT LIMIT: 350% FLA
Range: 200 - 500%
Increments of 10
Range: 1 - 60 SEC Increments of 1
Range: 0 - 100% Increments of 1
(Continued from prev. page)
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.7 Custom Acceleration Curve (Setpoint Page 7) - Continued
(Security Level 3)
Motortronics Inc. Page 54
RUN CURVE LOCKED ROTOR TIME: O/L CLASS
COAST DOWN TIMER TIME: DISABLED
Range:1 - 60 MIN, DISABLED
Increments of 1
BASIC RUN OVERLOAD CURVE
Range: 400-800%
Increments of 1
PAGE 8
OVERLOAD CURVE
CONFIGURATION
MENU
(DOWN ARROW 7 TIMES)
BASIC RUN OVERLOAD CURVE
Range: 1-30 SEC,
O/L Class Increments of 1
RUN LOCKED ROTOR CURRENT: 600% FLA
START CURVE LOCKED ROTOR TIME: O/L CLASS
ACCELERATION TIME LIMIT: 30 SEC
Range:1 – 300 SEC,
DISABLED Increments of 1
Range: 1-30 SEC, O/L Class Increments of 1
NUMBER OF STARTS PER HOUR: DISABLED
TIME BETWEEN STARTS TIME: 5 MIN
Range:1 - 60 MIN,
DISABLED Increments of 1
Range: 1 - 6, DISABLED Increments of
MAX I*I*T START : 368 FLA*FLA*SEC
Range:1 - 2500, FLA*Time
(Sec) Increments of 1
LEARNED START CURVE BIAS: 10%
Range: 5 - 40%
Increments of 1
START LOCKED ROTOR CURRENT: 600% FLA
Range: 400-800%
Increments of 10
Range: 400-800% Increments of 10
TIME FOR SAMPLING : 30 SEC
CURRENT OVER CURVE: DISABLED
Options: DISABLED, LEARN or ENABLED
AREA UNDER CURVE PROTECTION: DISABLED
Options: ENABLED or DISABLED,
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.8 Overload Curve Configuration (Setpoint Page 8)
(Security Level 3)
Configures the unit’s start and run protection mode. The unit has independent start and run curve protection and the settings can be based on the OL Class or set by the motor’s locked rotor current and time.
SP8.1 Basic Run Overload Curve
• Run Curve Locked Rotor Time: Set the locked rotor time to the OL Class default chosen in Setpoint Page 1 or set the
time in seconds. This is the time the locked rotor condition exists before a trip occurs.
• Run Locked Rotor Current: The current the motor draws with full voltage on the windings and no rotor movement (as a
percent of motor FLA). Refer to the nameplate data or contact the motor manufacturer.
• Coast Down Timer: If enabled, this prevents the motor from restarting for the programmed amount of time, after a stop
command is given.
Motortronics Inc. Page 55
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP8.2 Basic Start Overload Curve
Start Curve Locked Rotor Time: The locked rotor time can be set to the OL Class default chosen in Setpoint Page 1
or to a specific time. The overload condition must exist for the programmed amount of time before a trip occurs.
Start Locked Rotor Current: The current the motor draws with full voltage on the windings and no motor movement
(as a percent of motor FLA). Refer to the motor nameplate data or contact the motor manufacturer.
Acceleration Time Limit: If the motor does not enter run mode (reach “at speed”) within the preset time, the unit trips
on acceleration time limit.
Number of Starts per hour: If enabled, this limits the maximum number of starts permitted per hour. This Setpoint
allows a maximum of 6 starts per hour. Contact the motor manufacturer for further information regarding number of starts per hour.
Time Between Starts: If enabled, the soft starter prevents another start attempt until the programmed time has
expired.
SP8.3 Area Under Curve Protection: If enabled, this secondary start protection uses both the basic start protection and the area under the curve protection.
Max I*I*T Start: The maximum I²t allowed during start. If the I²t to start exceeds this number then the Soft Starter will
generate a trip.
SP8.4 Current Over Curve: Learns the motor’s starting characteristics and protects the motor based upon the learned curve. It is useful when commissioning a new motor.
Learn: The unit reads the motor’s starting characteristics. Start the motor and allow it to come to full speed. The start
feedback enables the motor protection based on the learned start curve.
Learned Start Curve Bias: The maximum allowed deviation above or below the start curve before a trip is generated.
Time for sampling: The time the soft starter continues to sample the start curve characteristic during learn mode.
Motortronics Inc. Page 56
Page 9
RTD CONFIGURATION
MENU
STATOR PHASE A1 TYPE : OFF
# OF RTD’S USED FOR STATOR: 4
Options: ENABLED
or DISABLED
(DOWN ARROW 8 TIMES)
RTD VOTING : DISABLED
Range: 0 - 6
Increments of 1
Options: ENABLED or DISABLED
RTD # 1 DESCRIPTION STATOR PHASE A1
STATOR PHASE A1 ALARM LEVEL: OFF
STATOR PHASE A1 TRIP LEVEL: OFF
STATOR PHASE A2 TYPE : OFF
RTD # 2 DESCRIPTION STATOR PHASE A2
STATOR PHASE A2 ALARM LEVEL: OFF
STATOR PHASE A2 TRIP LEVEL: OFF
Range: *
Range: *** Range: ** Range: **
Range: **
Range: **
Range: *** Range: *
STATOR PHASE B1 TYPE : OFF
RTD # 3 DESCRIPTION STATOR PHASE B1
Range: **
Range: **
Range: *** Range: *
STATOR PHASE B1 ALARM LEVEL: OFF
STATOR PHASE B1 TRIP LEVEL: OFF
STATOR PHASE B2 TYPE : OFF
RTD # 4 DESCRIPTION STATOR PHASE B2
Range: **
Range: **
Range: *** Range: *
STATOR PHASE B2 ALARM LEVEL: OFF
STATOR PHASE B2 TRIP LEVEL: OFF
STATOR PHASE C1 TYPE : OFF
RTD # 5 DESCRIPTION STATOR PHASE C1
Range: **
Range: **
Range: *** Range: *
STATOR PHASE C1 ALARM LEVEL: OFF
STATOR PHASE C1 TRIP LEVEL: OFF
STATOR PHASE C2 TYPE : OFF
RTD # 6 DESCRIPTION STATOR PHASE C2
Range: **
Range: **
Range: *** Range: *
STATOR PHASE C2 ALARM LEVEL: OFF
STATOR PHASE C2 TRIP LEVEL: OFF
END BEARING TYPE : OFF
RTD #7 DESCRIPTION END BEARING
Range: **
Range: **
Range: *** Range: *
END BEARING ALARM LEVEL: OFF
END BEARING TRIP LEVEL: OFF
RTD # 9 TYPE : OFF
RTD # 9 DESCRIPTION RTD # 9
Range: **
Range: **
Range: *** Range: *
RTD # 9 ALARM LEVEL: OFF
RTD # 9 TRIP LEVEL: OFF
RTD # 10 TYPE : OFF
Range: **
Range: **
Range: *** Range: *
RTD # 10 ALARM LEVEL: OFF
RTD # 10 TRIP LEVEL: OFF
RTD # 11 TYPE : OFF
Range: **
Range: **
Range: *** Range: *
RTD # 11 ALARM LEVEL: OFF
RTD # 11 TRIP LEVEL: OFF
RTD # 12 TYPE : OFF
Range: **
Range: **
Range: *** Range: *
RTD # 12 ALARM LEVEL: OFF
RTD # 12 TRIP LEVEL: OFF
RTD # 10 DESCRIPTION RTD # 10
RTD # 11 DESCRIPTION RTD # 11
RTD # 12 DESCRIPTION RTD # 12
RANGES: * 120 OHM NICKEL (NI)
100 OHM NICKEL (NI) 10 OHM COPPER (CU) 100 OHM PLATINUM (PT) OFF
**OFF or 0 - 240C (32-464F) Example: ### C = ### F
Increments of 1
***STATOR A1, STATOR A2, STATOR B1, STATOR B2, STATOR C1,
STATOR C2, FRONT BEARING, BACK BEARING, BEARING BOX, AMBIENT, NONE
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Motortronics Inc. Page 57
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.9 RTD Option Configuration (Setpoint Page 9)
(Security Level 3)
Note: The RTD is an option. Contact factory for additional information.
The Soft Starter is available with an optional RTD card that provides 12 programmable RTDs which are individually programmable for type. The available types are 100 ohm platinum, 100 ohm nickel, 120 ohm nickel and 10 ohm copper. Each RTD can be identified with a description name of up to 15 characters (including spacing). Also, each individual RTD has it own alarm and trip level.
SP9.1 Use NEMA Temp for RTD Value:
When this Setpoint is enabled, the Soft Starter will use the NEMA design insulation class to limit the maximum allowed range of the alarm and trip level. The maximum allowed temperature range is 240° C or (464°F).
SP9.2 Number Of RTD’S Used for Stator:
Up to six RTDs can be assigned to monitor the stator of the motor.
SP9.3 RTD Voting:
When this is enabled, the Soft Starter will not post a trip until 2 RTD’s have exceeded the trip level. This prevents nuisance RTD tripping.
SP9.4 RTD Setup:
Each of the 12 RTDs is configured in the following manner. The first column is the RTD type, the second column is the RTD description, the third column is the alarm level, and the fourth column is the trip level. The first six RTDs have been pre-programmed with a description name for the STATOR, with two RTDs per phase.
RTDs #1 & #2 have been named STATOR PHASE A1 and A2 respectively. RTDs #3 & 4 are named STATOR PHASE B1 and B2, RTDs #5 & 6 are named STATOR PHASE C1 and C2.
If other description names are required, press the right arrow button from the RTD Type screen to go the RTD description screen. If no alarm or trip level is required these Setpoints can be turned off.
RTD Available Settings:
RTD TYPE:
120 OHM NICKEL (NI)  100 OHM NICKEL (NI)  10 OHM COPPER (CU)  100 OHM PLATINUM (PT)
OFF
ALARM LEVEL: OFF or 0 - 240C (32-464F) Example: ### C = ### F, Increments of 1
RTD DESCRIPTION:
STATOR A1, STATOR A2, STATOR B1, STATOR B2, STATOR C1, STATOR C2, FRONT BEARING, BACK BEARING, BEARING BOX, AMBIENT, NONE
Motortronics Inc. Page 58
Page 9
RTD CONFIGURATION
MENU
STATOR PHASE A1 TYPE : OFF
# OF RTD’S USED FOR STATOR: 4
Options: ENABLED
or DISABLED
(DOWN ARROW 8 TIMES)
RTD VOTING : DISABLED
Range: 0 - 6
Increments of 1
Options: ENABLED or DISABLED
RTD # 1 DESCRIPTION STATOR PHASE A1
STATOR PHASE A1 ALARM LEVEL: OFF
STATOR PHASE A1 TRIP LEVEL: OFF
STATOR PHASE A2 TYPE : OFF
RTD # 2 DESCRIPTION STATOR PHASE A2
STATOR PHASE A2 ALARM LEVEL: OFF
STATOR PHASE A2 TRIP LEVEL: OFF
Range: *
Range: *** Range: ** Range: **
Range: **
Range: **
Range: *** Range: *
STATOR PHASE B1 TYPE : OFF
RTD # 3 DESCRIPTION STATOR PHASE B1
Range: **
Range: **
Range: *** Range: *
STATOR PHASE B1 ALARM LEVEL: OFF
STATOR PHASE B1 TRIP LEVEL: OFF
STATOR PHASE B2 TYPE : OFF
RTD # 4 DESCRIPTION STATOR PHASE B2
Range: **
Range: **
Range: *** Range: *
STATOR PHASE B2 ALARM LEVEL: OFF
STATOR PHASE B2 TRIP LEVEL: OFF
STATOR PHASE C1 TYPE : OFF
RTD # 5 DESCRIPTION STATOR PHASE C1
Range: **
Range: **
Range: *** Range: *
STATOR PHASE C1 ALARM LEVEL: OFF
STATOR PHASE C1 TRIP LEVEL: OFF
STATOR PHASE C2 TYPE : OFF
RTD # 6 DESCRIPTION STATOR PHASE C2
Range: **
Range: **
Range: *** Range: *
STATOR PHASE C2 ALARM LEVEL: OFF
STATOR PHASE C2 TRIP LEVEL: OFF
END BEARING TYPE : OFF
RTD #7 DESCRIPTION END BEARING
Range: **
Range: **
Range: *** Range: *
END BEARING ALARM LEVEL: OFF
END BEARING TRIP LEVEL: OFF
RTD # 9 TYPE : OFF
RTD # 9 DESCRIPTION RTD # 9
Range: **
Range: **
Range: *** Range: *
RTD # 9 ALARM LEVEL: OFF
RTD # 9 TRIP LEVEL: OFF
RTD # 10 TYPE : OFF
Range: **
Range: **
Range: *** Range: *
RTD # 10 ALARM LEVEL: OFF
RTD # 10 TRIP LEVEL: OFF
RTD # 11 TYPE : OFF
Range: **
Range: **
Range: *** Range: *
RTD # 11 ALARM LEVEL: OFF
RTD # 11 TRIP LEVEL: OFF
RTD # 12 TYPE : OFF
Range: **
Range: **
Range: *** Range: *
RTD # 12 ALARM LEVEL: OFF
RTD # 12 TRIP LEVEL: OFF
RTD # 10 DESCRIPTION RTD # 10
RTD # 11 DESCRIPTION RTD # 11
RTD # 12 DESCRIPTION RTD # 12
RANGES: * 120 OHM NICKEL (NI)
100 OHM NICKEL (NI) 10 OHM COPPER (CU) 100 OHM PLATINUM (PT) OFF
**OFF or 0 - 240C (32-464F) Example: ### C = ### F
Increments of 1
***STATOR A1, STATOR A2, STATOR B1, STATOR B2, STATOR C1,
STATOR C2, FRONT BEARING, BACK BEARING, BEARING BOX, AMBIENT, NONE
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.9 RTD Option Configuration (Setpoint Page 9) - Continued
(Security Level 3)
Motortronics Inc. Page 59
Page 10
SECURITY SET
PASSWORD
MENU
SET LEVEL 2 PASSWORD: 100
(DOWN ARROW 9 TIMES)
Range: 000 - 999
SET LEVEL 3 PASSWORD: 1000
Range: 0000 - 9999
Page 11
COMMUNICATIONS
MENU
SET FRONT BAUD RATE: 9.6 KB/SEC
(DOWN ARROW 10 TIMES)
Range: 2.4, 4.8, 9.6,
19.2 38.4 KB/SEC
REMOTE START/ STOP: DISABLED
Option: Enabled or
Disabled
SET MODBUS BAUD RATE: 9.6 KB/SEC
Range: 2.4, 4.8, 9.6,
19.2 38.4 KB/SEC
MODBUS ADDRESS NUBBER: 247
Range: 1- 247
Increments of 1
SET ACCESS CODE CODE: 1
Range: 1- 999
Increments of 1
SET LINK BAUD RATE: 9.6 KB/SEC
Range: 2.4, 4.8, 9.6,
19.2 38.4 KB/SEC
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.10 Set Password (Setpoint Page 10)
(Security Level 3)
The soft starter has three levels of user programmable setpoint screens. Level one setpoints do not require a password because the data contained in level one is basic nameplate data and starter control. Level two setpoint screens require a three-digit password to configure the protection schemes. Level three setpoint screens require a four-digit password to access the full range of protection and starter schemes.
SP10.1 Set Level 2 Password: This level uses a 3-digit password. The default level 2 password is 100.
SP10.2 Set Level 3 Password: Level three uses a 4-digit password. The default level 3 password is 1000.
SP.11 Communications (Setpoint Page 11) (Security Level 3)
SP11.1 Set Front Baud Rate: Configures the RS232 communications baud rate.
SP11.2 Set Modbus Baud Rate: Configures the Modbus communications baud rate
SP11.3 Modbus Address Number: Assigns a Modbus address to the unit.
SP11.4 Set Access Code: Assigns an access code to the Modbus addressing. This is typically not used
SP11.5 Set Link Baud Rate: Configures the RS422 communications baud rate between the keypad operator and the
CPU board (For applications with remote keypad only).
SP11.6 Remote Start/Stop: Allows the RS485 Modbus communications to start and stop the motor. Contact factory for details.
Motortronics Inc. Page 60
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.12 System Setpoints (Setpoint Page 12)
(Security Level 3)
SP12.1 Default Display Screen: This Setpoint group allows the user to choose the default screen the Soft Starter displays while the motor is running. Select the metering page number (1-3), then, select the metering screen number. The range varies depending on the selected page. To display a default screen, program the following two Setpoints:
Metering Data Page#: Range is Page 1 - 3.
Metering Data Screen#: If Page 1 is selected as the default page, then Screens 1- 10 are available. If Page 2
Screens 1-29 are available. If Page 3 is selected then Screens 1-6 are available. (See Metering Menu, MP.1, for screen number assignment.)
SP12.2 Alarms: Configures the RTD failure alarm (when RTD option is included) and the thermal register alarm.
RTD Failure Alarm: If enabled, and an RTD shorts or open, an alarm occurs. (Only if RTD option is installed).
Thermal Register Alarm: Sets a level in the thermal register to generate an alarm when the Thermal Register
Capacity Used has exceeded this level.
Thermal Alarm Delay: The amount of time that the Thermal Register Used must exceed the Setpoint before an alarm
condition will occur.
SP12.3 Thermal Register Setup Information: This Setpoint group will configure the thermal register and indicate to the soft starter which inputs to use when thermal modeling.
Cold Stall Time: Enter the time from the motor manufacturer’s specification sheet or use the time defined by the OL
Class. This Setpoint is used to define the thermal capacity of the motor.
Hot Stall Time: Enter the amount of time specified by the motor manufacturer or use half of the time defined by the
OL Class.
Stopped Cool Down Time: The time the motor needs to cool down after it has stopped. Use only the data provided
by the motor manufacturer. This Setpoint is used to configure the cooling rate of the thermal register.
Running Cool Down Time: The amount of time the motor needs to cool down while running. Use only the data
provided by the motor manufacturer.
Relay Measured Cool Rates: When the RTD option is supplied, the Soft Starter can be configured to use the
measured cooling rates from the RTDs instead of the programmed settings. This Setpoint should only be enabled when the RTD option is present.
Thermal Register Minimum: Sets the value in the thermal register which represents a motor running at the
nameplate current (with no overheating or negative sequence currents present).
Motor Design Ambient Temperature: Use the data from the motor manufacturer’s specifications. When RTD option
is supplied, this Setpoint will be the base point for the RTD biasing of the Thermal Register.
Motor Design Run Temperature: Use the data from the motor manufacturer’s specifications. This Setpoint defines
the operating temperature rise of the motor at full load amps or 100% load.
Motor Stator Max Temperature: This represents the maximum temperature the stator insulation will withstand. The
user may choose to use the temperature setting of the insulation class (selected in Setpoint Page 1) or enter a specific maximum temperature. This value should not exceed the stator’s insulation temperature. This maximum temperature represents 100% thermal capacity.
U/B Input to Thermal Register: Always enabled. It allows the soft starter to use the line current imbalance
information to bias the Thermal Register.
Motortronics Inc. Page 61
DEFAULT DISPLAY SCREEN
PAGE 12
SYSTEM SETPOINTS
MENU
(DOWN ARROW 11 TIMES)
METERING DATA PAGE #: 1
Enter Metering Page (1 - 4) Number for display
METERING DATA SCREEN #: 1
Enter Metering Screen Number for display
ALARMS
RTD FAILURE ALARM ALARM: DISABLED
Option: Enabled or
Disabled
Range: Off, 40 - 95% Increments of 1
THERMAL REGISTER ALARM: 90%
THERMAL ALARM DELAY: 10 SEC.
Range: 1 - 20 SEC.
Increments of 1
HOT STALL TIME : 1/2 O/L CLASS
COLD STALL TIME : O/L CLASS
Range: O/L CLASS,
4 - 40 SEC Increments of 1
Range: 1/2 O/L CLASS, 4 - 40 SEC Increments of 1
RUNNING COOL DOWN TIME: 15 MIN
STOPPED COOL DOWN TIME: 30 MIN
Range: 10 - 300 MIN
Increments of 1
Range: 10 - 300 MIN Increments of 1
RELAY MEASURED COOL RATES: DISABLED
THERMAL REGISTER MINIMUM: 15%
Range: 10 – 50% ,Off
Increments of 1
Option: Enabled or Disabled
MOTOR DESIGN AMBIENT TEMPERATURE: 40 C
MOTOR DESIGN RUN TEMPERATURE: 80% MAX
Range: 50 - 100% of Motor
Stator Max Temp. Increments of 1%
Range: 10 - 90 C Increments of 1
MOTOR STATOR MAX TEMPERATURE: INS CLS
I/B INPUT TO THERMAL REGISTER: ENABLED
Range: Insulation Class
10 - 240 C Increments of 1
Option: Enabled or Disabled
USE CALCULATED K OR ASSIGN: 7
Range: 1 - 50, ON
THERMAL REGISTER SETUP INFORMATION
PRESS ENTER TO CLR THERMAL REGISTER
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
User Calculated K or Assign: When the Setpoint is set to ON, the soft starter will calculate the k constant factor for
biasing the thermal register, or the user may choose to assign the k value.
SP12.4 Press Enter to CLR Thermal Register: Allows the level three password user to clear the thermal register for
emergency restarts.
Motortronics Inc. Page 62
SET DATE AND TIME ##/##/## ##:##
PAGE 13
CALIBRATION &
SERVICE
MENU
(DOWN ARROW 12 TIMES)
MODEL #: ###### FIRMWARE REV. #: ######
ENTER DATE (DDMMYYYY) ##/##/####
Range: D = 1 - 31, M = 1-12,
Y = 1970 – 2069 Increments of 1
ENTER TIME (hh:mm) :##:##
Range: H = 00 - 23,
M = 0 - 59 Increments of 1
PRESS ENTER TO ACCESS FACTORY SETTINGS
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
SP.13 Calibration & Service (Setpoint Page 13)
(Security Level 3)
Certain screens are displayed for user information only, such as Current date and time, Model number and Firmware revision number. Setpoint changes in this page will only be accessible to factory personnel.
SP13.1 Set Date and Time: Displays the date and time.
Enter Date (DDMMYYYY): Allows the factory personnel to program the date for the soft starter in the format shown.
Enter Time (HH:MM): Allows the factory personnel to program the time for the soft starter.
SP13.2 Model & Firmware #: Displays the model number and firmware revision in the soft starter.
SP13.3 Press Enter to Access Factory Settings: Available to qualified personnel.
Motortronics Inc. Page 63
Metering
Page
Description of Display
Screen
PAGE 1
Metering Menu & Data
Phase A, B, C and Ground Fault (Option)
1
Average current of the % of imbalance and the motor's RPM (Tach Option)
2
Motor load as a percentage of motor FLA
3
Line frequency and present phase sequence
4
Percentage of remaining Thermal Register
5
Thermal capacity required to start the motor
6
Average time required to start
7
Average current during start
8
Measured I2T required to start the motor
9
Amount of time required to start the motor during the last successful start
10
Metering
Page
Description of Display
Screen
PAGE 2
Metering
Phase A, B, C currents and Power Factor
1
Phase A, B, C currents and Ground Fault (Option)
2
Displays KW and KVA
3
Displays KVAR and Power Factor
4
Displays Peak ON and KW Demand
5
Displays Peak ON and KVA Demand
6
Displays Peak ON and KVAR Demand
7
Displays Peak ON and Amps Demand
8
Clears Demand values
9
Displays Megawatt hours used
10
Press enter to clear statistics on MWH values
11
Metering
Page
Description of Display
Screen
PAGE 3
RTD Values
Hottest stator RTD (#1 - 6)
1
Hottest non-stator RTD (#7 - 12)
2
Temperature of start phase A1 in °C and °F
3
Maximum temperature for RTD #1
4
Same as Screens 3 - 4 for RTDs #2 - 12
5 - 26
Clear the maximum temperature register (Level 3 password required)
27
Measured running thermal stabilization time of motor (in minutes)
28
Measured stopped cooling time (to ambient) of motor (in minutes)
29
Metering
Page
Description of Display
Screen
PAGE 4
Status
Current status
1
Amount of time remaining before an overload trip occurs
2
Amount of time remaining from a thermal inhibit signal
3
Coast down time remaining
4
Amount of time remaining before a start command can be given
5
Excessive number of starts per hour
6
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Chapter 6 - Metering Pages
The Soft Starter offers performance metering which gives the user the ability to view information about the motor and the unit.
6.1 Metering Page List
The following charts list each Metering Page and the functions within that page. The applicable section of the manual is also referenced.
6.1.1 Metering Menu & Data (Metering Page 1)
6.1.2 Metering (Metering Page 2)
6.1.3 RTD Option Values (Metering Page 3)
6.1.4 Status (Metering Page 4)
Motortronics Inc. Page 64
Metering
Page
Description of Display
Screen
PAGE 5
Event
Recorder
Displays the event with date and time (Up to 60 events)
1
Displays Phase A, B, C current values, Ground Fault (Option) at time of trip
1A
Displays Vab, Vbc, Vca and Power Factor at time of trip
1B
Metering
Page
Description of Display
Screen
PAGE 6
Last Trip
Cause of last trip
1
Measured phase current
2
Measured voltage and power factor
3
Imbalance percentage, the frequency and the kW
4
Hottest stator RTD temperature
5
Hottest non-stator RTD temperature
6
Metering
Page
Description of Display
Screen
PAGE 7
Statistics
Total Megawatt Hours
1
Accumulated Total Running Hours
2
Clear the Total Running Hour Count
3
Total Number of Trips / Number of Short CircuitTrips
4
Number of Start and Run Overload Trips since the last statistical data clearing
5
Number of frequency and Current Imbalance trips
6
Number of Over Current Trips
7
Stator and Non-Stator RTD Trips
8
Ground Fault Hiset and Loset Trips
9
Acceleration Time Trips
10
Start Curve Trips
11
I2T Start Curve Trips
12
Learned Start Curve Trips
13
Shunt Trip Trips
14
Phase Loss Trips
15
Tach Acceleration Trips
16
Undervoltage and Overvoltage Trips
17
Power Factor Trips
18
Phase Reversal Trips
19
Low Control Voltage Trips
20
Ext Inp #1 Trips
21
Ext Inp #2 Trips
22
Ext Inp #3 Trips
23
Ext Inp #4 Trips
24
Press ENTER to Clear Statistics
25
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
6.1.5 Event Recorder (Metering Page 5)
6.1.6 Last Trip (Metering Page 6)
6.1.7 Statistics (Metering Page 7)
Motortronics Inc. Page 65
METERING PAGE 1 CURRENT METERED DATA
METERING PAGE 2 VOLTAGE & POWER DATA
MENU
METERING PAGE 3 RTD VALUES
METERING PAGE 4 STATUS
METERING PAGE 5 EVENT RECORDER
METERING PAGE 6 LAST TRIP
METERING PAGE 7 STATISTICS
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
6.2 Metering Menu and Explanation
Push MENU key to toggle the screens between Setpoint Menu and Metering Menu and follow the arrow keys to get to different screens.
Motortronics Inc. Page 66
IA: ###### IB: ###### IC: ###### G/F: #####
I (AVG): #### I/B: ## % RPM: ####
MENU
MOTOR LOAD % OF FLA FLA: ### %
LINE FREQUENCY:: ##.## PHASE ORDER: ###
THERMAL REGISTER REMAINING: ### %
THERMAL CAPACITY TO START: ### %
AVERAGE START TIME TIME: ##.# SECS
METERING PAGE 1 CURRENT METERED DATA
AVG START CURENT : ###### AMPS
I*I*T TO START I*I*T: #######
LAST START TIME: ##.# SEC
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
MP.1 Metering (Metering Page 1)
Displays basic current metering data.
Screen 1: Phase A, B, C and ground fault (option) current.
Screen 2: Displays the average current, the percent of imbalance and the motor’s
RPM (available with tachometer input)
Screen 3: Displays the motor load in percent of motor FLA.
Motortronics Inc. Page 67
Screen 4: Displays the line frequency and the present Phase Order.
Screen 5: Displays the percent of the remaining thermal register. In order for the
motor to successfully start, the percentage must be greater than the thermal capacity required for a successful start.
Screen 6: Displays the thermal capacity required to successfully start the motor.
Screen 7: Displays the average time required to start.
Screen 8: Displays the average current during start.
Screen 9: Displays the measured I2T required to start the motor.
Screen 10: Displays the amount of time required to start the motor during the last
successful start.
Vab: ### Vbc: ### Vca: ### P/F: ## #.##
IA: ##### IB: ##### IC: ##### G/F:###.#
MENU
kW: ##### kVA: #####
kVAR: ##### P/F: ## #.##
PEAK ON: ##/## ##:## kW: #####
PEAK ON: ##/## ##:## kVA: #####
PEAK ON: ##/## ##:## kVAR: #####
METERING PAGE 2 VOLTAGE & POWER DATA
PEAK ON: ##/## ##:## AMPS: #####
PRESS ENTER TO CLEAR DEMAND VALUES
MWH USED : #####
PRESS ENTER TO CLEAR MWH VALUES
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
MP.2 Metering (Metering Page 2)
Displays the soft starter statistical voltage metering information
Screen 1: Displays Phase A, B, C and Power Factor.
Note: P/F: N/A Motor stopped
P/F: LG #.## (Lagging) P/F: LD #.## (Leading)
Screen 2: Displays Phase A, B, C and Ground Fault Current.
Screen 3: Displays kW and kVA.
Screen 4: Displays kVAR and Power Factor.
Screen 5: Displays Peak On and kW demand.
Screen 6: Displays Peak On and kVA demand.
Screen 7: Displays Peak On and kVAR demand.
Screen 8: Displays the average current during start.
Motortronics Inc. Page 68
Screen 9: Clears Demand Values.
Screen 10: Displays the Megawatt hours used.
Screen 11: Press Enter to clear statistics on MWH values.
HOTTEST STATOR RTD#: # @ ### C
METERING PAGE 3 RTD VALUES
MENU
(DOWN ARROW 2 TIMES)
HOTTEST NON-STATOR RTD#: # @ ### C
STATOR PHASE A1 RTD #1: ### C = ### F
STATOR PHASE A2 RTD #2: ### C = ### F
STATOR PHASE B1 RTD #3: ### C = ### F
STATOR PHASE B2 RTD #4: ### C = ### F
STATOR PHASE C1 RTD #5: ### C = ### F
STATOR PHASE C2 RTD #6: ### C = ### F
SHAFT BEARING RTD #8: ### C = ### F
RTD #9 RTD #9: ### C = ### F
RTD #10 RTD #10: ### C = ### F
RTD #11 RTD #11: ### C = ### F
RTD #12 RTD #12: ### C = ### F
PRESS ENTER TO CLEAR MAX TEMP REGS
MEASURED RUN COOL TIME: ### MIN
MEASURED STOPPED COOL TIME: ### MIN
MAX TEMP SINCE CLEAR RTD #1: ### C
MAX TEMP SINCE CLEAR RTD #2: ### C
MAX TEMP SINCE CLEAR RTD #3: ### C
MAX TEMP SINCE CLEAR RTD #4: ### C
MAX TEMP SINCE CLEAR RTD #5: ### C
MAX TEMP SINCE CLEAR RTD #6: ### C
MAX TEMP SINCE CLEAR RTD #7: ### C
MAX TEMP SINCE CLEAR RTD #8: ### C
MAX TEMP SINCE CLEAR RTD #9: ### C
MAX TEMP SINCE CLEAR RTD #10: ### C
MAX TEMP SINCE CLEAR RTD #11: ### C
MAX TEMP SINCE CLEAR RTD #12: ### C
END BEARING RTD #7: ### C = ### F
Screen 1
Screen 2
Screen 3 Screen 4
Screen 5
Screen 6
Screen 7
Screen 8
Screen 9
Screen 10
Screen 11
Screen 12
Screen 13
Screen 14
Screen 15
Screen 16
Screen 17
Screen 18
Screen 19
Screen 20
Screen 21
Screen 22
Screen 23
Screen 24
Screen 25
Screen 26
Screen 27
Screen 28
Screen 29
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
MP.3 Metering (Metering Page 3)
Displays the RTD information (When RTD option is installed)
Screen 1: Displays the hottest stator RTD (#1 – 6 depending upon number of RTDs used for stator).
Screen 2: Displays the hottest non-stator RTD (#7-12 if #1-6 is used for stator).
Screen 3: Displays the temperature of stator phase A1 in °C and °F.
Screen 4: Displays the maximum temperature for RTD #1 since the last command to clear the thermal register.
Screen 5 - 26: Same as Screens 3 - 4 for RTDs # 2 - 12.
Screen 27: Allows the user to clear the maximum
temperature register upon entering the setpoint level 3 password.
Screen 28: Displays the measured run cool time in minutes.
Screen 29: Displays the measured stopped cool time in minutes.
Motortronics Inc. Page 69
METERING PAGE 4 STATUS
MENU
O/L TIME LEFT TO TRIP TRIP: ###### SEC
THERM INH TIME LEFT : #### MIN
COAST DOWN TIMER TIME LEFT: #:## MIN
TIME BETWEEN STARTS TIME: #:## MIN
STARTS PER HOUR TIME ## ## ## ## ## ## ##
*(CURRENT STATUS)
Screen 3
Screen 4
Screen 5
Screen 6
Screen 1
Screen 2
MOTOR STOPPED READY TO START
MOTOR STARTING MULT. OF FLA
MOTOR RUNNING AT ###.## X FLA
LAST TRIP CAUSE NONE (or trip cause)
PROGRAMMING SETPOINTS
MOTOR STATUS UNKNOWN STATE ###
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
MP.4 Metering (Metering Page 4)
Displays the present status of the soft start
*Screen 1: Displays the present state of the unit as follows:
Screen 2: Displays the amount of time remaining before an overload trip will
occur.
Screen 3: Displays the amount of time remaining from a thermal inhibit. The inhibit time comes from the amount of thermal register remaining versus the amount of thermal capacity required to start.
Screen 4: Displays the coast down time remaining (Backspin time). The time remaining depends upon the user setting in Setpoint Page 8, Coast Down Time.
Screen 5: Displays the amount of time remaining before a start command can be given. The time remaining depends upon the setting in Setpoint page 5.
Screen 6: If the number of starts per hour has exceeded the setting in Setpoint page 8.
* NOTE: Screen 1 CURRENT STATUS Screens include:
(Displays relay state upon error)
Motortronics Inc. Page 70
METERING PAGE 5 EVENT RECORDER (60 events)
MENU
(DOWN ARROW 4 TIMES)
:<cause of event> :##/##/## ##:##
Screen 1
IA: ###### IB: ###### IC: ###### G/F: ####
Screen 1a
Vab: ###### Vbc: ###### Vca: ###### P/F: ####
Screen 1b
1st Event
:<cause of event> :##/##/## ##:##
IA: ###### IB: ###### IC: ###### G/F: ####
Vab: ###### Vbc: ###### Vca: ###### P/F: ####
2nd Event
:<cause of event> :##/##/## ##:##
Screen 1
IA: ###### IB: ###### IC: ###### G/F: ####
Screen 1a
Vab: ###### Vbc: ###### Vca: ###### P/F: ####
Screen 1b
59th Event
:<cause of event> :##/##/## ##:##
IA: ###### IB: ###### IC: ###### G/F: ####
Vab: ###### Vbc: ###### Vca: ###### P/F: ####
60th Event
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
MP.5 Metering (Metering Page 5)
Displays the present status of the soft start
Screen 1: Displays the event (i.e., Imbalance Trip) with the date and time it occurred.
Screen 1a: Displays the current at Phase A, B, C and the ground fault at the time of the trip. (Note: Ground fault option
must be present)
Screen 1b: Displays the Vab, Vbc, Vca and power factor at the time of trip.
All events will be viewed from oldest event in buffer to most recent event.
NOTES-
Motortronics Inc. Page 71
MENU
METERING PAGE 6 LAST TRIP
Ia: #### Ib: #### Ic: #### G/F: ####.#
Vab: ###### Vbc: ###### Vca: ###### P/F: ######
I/B: ## % Hz: ##.# KW: #######
HOTTEST STATOR RTD# # @ ### C
HOTTEST NON-STATOR RTD# # @ ### C
(CAUSE OF TRIP) (VALUE AT TIME OF TRIP)
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
MP.6 Metering (Metering Page 6)
Displays the last trip information
Screen 1: Displays the cause of the last trip.
Screen 2: Displays the measured phase current at the time of the trip.
Screen 3: Displays the Vab, Vbc, Vca and power factor at the time of trip.
Screen 4: Displays the imbalance percentage, the frequency and the kW at the
time of the trip.
Screen 5: Displays the hottest stator RTD temperature (when RTD option present) at time of the trip.
Screen 6: Displays the hottest non-stator RTD temperature (when RTD option present) at the time of the trip.
Motortronics Inc. Page 72
MWH TOTAL : ###
METERING PAGE 7 STATISTICS
MENU
(DOWN ARROW 6 TIMES)
RUNNING HOURS TOTAL TIME: ## ## HOURS
TOTAL TRIPS: ### S/C TRIPS: ###
START O/L TRIPS: ### RUN O/L TRIPS: ###
FREQUENCY TRIPS: ### I/B TRIPS: ###
OVERCURRENT TRIPS: ###
G/F HISET TRIPS: ### G/F LOSET TRIPS: ###
ACCELERATION TIME TRIPS: ###
START UNDER CURVE TRIPS: ###
START OVER CURVE TRIPS: ###
I*I*T START CURVE TRIPS: ###
LEARNED START CURVE TRIPS: ###
FAIL SHUNT TRIP TRIPS: ###
PHASE LOSS TRIP TRIPS: ###
TACH ACCEL TRIP TRIPS: ###
PRESS ENTER TO CLEAR RUN HOURS
U/V TRIPS: ### O/V TRIPS: ###
POWER FACTOR TRIPS: ###
PHASE REVERSAL TRIPS: ###
LOW CONTROL VOLTAGE TRIPS: ###
EXT INP #1: ###
EXT INP #3: ###
EXT INP #2: ###
Screen 1
Screen 2
Screen 3
Screen 4
Screen 5
Screen 6
Screen 7
Screen 8
Screen 9
Screen 10
Screen 11
Screen 12
Screen 13
Screen 14
Screen 15
Screen 16
Screen 17
Screen 18
Screen 19
Screen 20
Screen 21
Screen 22
Screen 23
Screen 24
Screen 25
STATOR TRIPS: ### NON-STATOR TRIPS: ###
PRESS ENTER TO CLEAR STATISTICS
Screen 26
LEVEL 2 Password required
EXT INP #4: ###
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
MP.7 Statistics (Metering Page 7)
Displays the statistical trip information
Screen 1: Displays the total of megawatt hours. Screen 2: Displays the accumulated total running hours. Screen 3: Clears the total running hour count. Screen 4: Displays the total number of trips since the
last clearing of the statistical data and the total number of short circuit trips. Screen 5: Displays the number of start overload and run overload trips since the last clearing of the statistical data. Screen 6: Displays the number of frequency trips and Imbalance trips.
Screen 7: Displays the number of overcurrent trips Screen 8: Displays the number of Stator and non-Stator
RTD Trips Screen 9: Displays the number of Ground Fault Hi and Lo Set trips Screen 10: Displays the number of acceleration time trips. Screen 11: Displays the number of start under curve trips
Screen 12: Displays the number start over curve trips Screen 13: Displays the number of I2T start curve trips Screen 14: Displays the number of learned start curve
trips.
Screen 15: Displays the number of fail shunt trips. Screen 16: Displays the number of phase loss trips. Screen 17: Displays the number of tachometer
acceleration trips. Screen 18: Displays the number of undervoltage and overvoltage trips.
Screen 19: Displays the number of power factor trips. Screen 20: Displays the number of phase reversal trips. Screen 21: Displays the number of low control voltage trips. Screen 22: Displays the number of external input #1
trips. Screen 23: Displays the number of external input #2 trips. Screen 24: Displays the number of external input #3 trips. Screen 25: Displays the number of external input #4 trips. Screen 26: Requires a Security Level 2 password to clear the statistics.
Motortronics Inc. Page 73
Problem
CPU LCD
Display
LED
AUX
Relay
Possible Cause
Solutions
One of the main fuses blows or circuit breaker opens when the power is applied or disconnect is closed.
TCB FAULT TRIP
Trip
AUX1
Short circuit between the inputs
Locate and remove short
Faulty SCRs
Remove power and test SCR(s). Refer to Section 7.1.1 for the SCR testing procedure
Short Circuit Trip
SHORT CIRCUIT TRIP
Trip
AUX1
Short circuit or ground fault in motor/cabling
Locate and remove short or ground
Phase Loss
Repair cause of phase loss
Branch circuit protection not correctly sized
Verify correct sizing of branch circuit protection
Faulty main circuit board
Remove power and replace main circuit board.
Faulty SCRs
Remove power and test SCR(s). Refer to Section 7.1.1 for the SCR testing procedure
Single Phase Trip
SINGLE PHASE TRIP
(Check LCD display for possible fault indicators)
Trip
AUX1
Single phase incoming power
Correct problem with incoming power
Faulty SCRs
Remove power and test SCR(s). Refer to Section 7.1.1 for the SCR testing procedure
Environment Temperature over 122° F (ambient temperature for chassis units) or over 104°F (ambient temperature for enclosed version
Place unit in environment temperature less than 122°F for panel version or less than 104°F for enclosed version.
Bypass failed to close
Check bypass contactor and wiring. The "At Speed" delay is incorrectly programmed. Reprogram back to factory default value.
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
Chapter 7 - Maintenance and Troubleshooting
The Soft Starter is designed to be a maintenance-free product. However, as with all electronic equipment, the unit should be checked periodically for build-up of dirt, moisture or industrial contaminants. These can cause high voltage arc-over, carbon tracking or prevent proper cooling of the SCR heat sinks. All bolts should be checked annually for proper tightness using an accurate torque wrench. According to the manufacturer’s manual, check the contactor for air gap spacing of the vacuum bottles.
Note: If the unit is installed in a contaminated environment and forced air cooling is used, blower filters must be checked and cleaned regularly to insure proper air flow and cooling of the enclosure.
7.1 Failure Analysis
When a fault occurs, the LCD will display the fault error while the listed LED and AUX Relay will be lit. Please clear all faults before attempting to restart the unit.
Note: If the problem persists after the required programming changes have been made, and all corrective action has
been taken, please contact the factory for assistance.
Motortronics Inc. Page 74
Problem
CPU LCD
Display
LED
AUX
Relay
Possible Cause
Solutions
Phase Loss
PHASE LOSS
Trip
AUX1
Loss of 1 or more phases of power from utility or generated power.
Check power source.
Blown power fuses
Check for short circuits.
Overload
OVERLOAD TRIP
Trip
AUX1
Improper programming
Check motor nameplate versus programmed parameters.
Possible load damage or jammed load
Check motor currents.
Stall prevention
ACCEL TIME TRIP
Trip
AUX1
Improper setting for motor load condition
Verify current limit setting. Damaged load
Check for load failure.
Under Voltage Trip
UNDER VOLTAGE TRIP
Trip
AUX1
Improper programming
Check Setpoint settings.
Wrong position of disconnect or breaker
Check disconnect or open breaker
Main contactor failed to close
Check internal connections
Transformer too small
Reduce current limit setting, saturation or sagging power supply transformer
Unloaded motor
Check load
Self-test Failure
SELF-TEST FAILURE
Trip
AUX1
Failed CPU or Main Firing Board
Contact factory Vibration
Check internal wiring connections
Line Frequency Trip
OVER OR UNDER FREQUENCY TRIP
Trip
AUX1
Generator Power Problem or grid change
Troubleshoot and repair generator
Contact utility company
Main board failure
Three phase power removed from Main
Any Ground Fault Trip
GROUND FAULT HI-SET OR LO-SET
Trip
AUX1
Improper programming
Check Setpoint settings
Any wire going to ground (I.e. stator ground, motor ground, soft start ground)
Check with megger or Hi-pot motor leads and motor
High vibration or loose connections
Check internal connections
Short Circuit Trip
Check for fault indication
Trip
AUX1
!
WARNING
This is a serious fault condition. Ensure that the fault condition is cleared on the load side before attempting to restart the motor.
Load shorted
Remove power and repair.
Faulty main circuit board
Replace the main circuit board
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
7.1 Failure Analysis - Continued
Motortronics Inc. Page 75
Problem
CPU LCD
Display
LED
AUX
Relay
Possible Cause
Solutions
Control circuit fuses blow after control power is applied.
None
None
None
Short in Control Circuit
Remove Power, locate and remove the short.
Wrong Control Voltage
Apply the correct voltage to the control circuit.
Motor will not start
Any fault indication message
Trip
AUX1
No Control Voltage applied to Control Board
Apply control voltage to TCB board.
Control Power Transformer failure or CPT Fuse failure
Remove power and replace the power transformer or the CPT fuse
Start Circuit Wired Incorrectly
Remove power and correct the start circuit wiring.
No Start Command
Apply the start command.
No 3 Phase Line Voltage
Apply 3 phase line voltage to the unit.
Shorted SCR in Starter
Remove power and Test SCR(s). Refer to Sec. 7.1.1 for the testing procedure.
Faulty Control Logic
Remove power and repair the Control Logic.
Failure of Main Circuit Board
Replace the Main Circuit Board.
Motor vibrates / Motor growls while starting or extremely unbalanced motor currents run mode
IMBALANCE TRIP
Trip
AUX1
Faulty Motor
Check the Motor and the Motor connections.
Faulty SCR(s)
Remove Power and perform the SCR device checks.
Faulty Gate / Cathode on SCR(s)
Remove Power and Test SCR(s). Refer to Sec. 7.1.1 for the testing procedure.
Faulty Main Circuit Board.
Replace the Main Circuit Board.
IMBALANCE ALARM
Alarm
AUX2
Faulty Motor / Wiring
Troubleshoot and repair / replace wiring.
Faulty Main Circuit Board
Replace the Main Circuit Board.
Test Points
OHM Meter Reading
Test Results
From Position A to Position B
Greater than 10K Ohm
Pass
Less than 5K Ohm
Fail
From Position B to Position C
Greater than 10K Ohm
Pass
Less than 5K Ohm
Fail
Gate (G) to Cathode (K) for each SCR
8 to 50 Ohms
Pass (Typical 8 to 20 Ohms)
Less than 8 or greater than 50 Ohms
Fail
Notes
1 - Allow 15 minutes after shutdown for DV/DT network to discharge.
2 - Voltage sharing resistors may need to be disconnected to obtain correct readings for tests between positions A, B & C...
K
K
G
G
Red
Red White
White
Gate Drive Board
A
C
B
CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net
7.1 Failure Analysis - Continued
7.1.1 - SCR Testing Procedure
Perform the SCR Heat Sink Ohm test on each Stack Assembly.
Motortronics Inc. Page 76
Loading...