MOTOROLA MPC2002, MPC2003 User Manual

MPC2002MPC2003
1
MOTOROLA FAST SRAM
256KB and 512KB BurstRAM Secondary Cache Module for PowerPC– Based Systems
The MPC2002SG and MPC2003SG are designed to provide a burstable, high performance, 256K/512K L2 cache for the PowerPC 60x processors. The mod­ules are configured as 32K x 72 and 64K x 72 bits in a 136 pin dual readout single inline memory module (DIMM). The module uses four of Motorola’s MCM67M518 or MCM67M618 BiCMOS BurstRAMs.
Bursts can be initiated with either transfer start processor (TSP
) or transfer
start controller (TSC
). Subsequent burst addresses are generated internal to the
BurstRAM by the burst address advance (BAA
) pin.
Write cycles are internally self timed and are initiated by the rising edge of the clock (K) input. Eight write enables are provided for byte write control.
The cache family is designed to interface with the PowerPC 60x bus and re­quires external tag.
PD0 – PD2 are reserved for density and speed identification.
PowerPC–style Burst Counter on Board
Dual Readout SIMM for Circuit Density
Single 5 V ± 5% Power Supply
All Inputs and Outputs are TTL Compatible
Three State Outputs
Byte Parity
Byte Write Capability
Fast Module Clock Rates: 66 MHz, 60 MHz, 50MHz
Decoupling Capacitors for each Fast Static RAM
High Quality Multi–Layer FR4 PWB With Separate Power and Ground Planes
I/Os are 3.3 V Compatible
BurstRAM is a trademark of Motorola. PowerPC and PowerPC 601 are trademarks of International Business Machines Corp.
Order this document
by MPC2002/D
MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
MPC2002 MPC2003
(Formerly MCM72MS32/64)
136–LEAD DIMM
CASE 1104–01
TOP VIEW
68
35
34
1
5/95
Motorola, Inc. 1995
查询MPC2002供应商
PIN ASSIGNMENT
136–LEAD DIMM
CASE 1104–01
TOP VIEW
PD0
PD1 DQ0 DQ1 V
CC
DQ4 DQ6
DQP0
DQ8
DQ10
V
SS
K0
V
SS
DQ14
V
CC
DQ16 DQ17 DQ19 DQ21
V
CC
DQP2
DQ24 DQ26 DQ28
V
SS
DQ31
DQP3
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
99 100 101 102
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
V
SS
PD2 V
CC
DQ2 DQ3 DQ5 DQ7 V
SS
DQ9 DQ11 DQ12 V
SS
DQ13 DQ15 DQP1 V
SS
DQ18 DQ20 DQ22 DQ23 V
SS
DQ25 DQ27 DQ29 DQ30
103 104 105 106 107 108 109 110
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
W6 DQ32 DQ33
V
SS
DQ36 DQ38 DQ39 DQ40
V
CC DQ43
DQ45 DQ46
DQP5
V
SS
K1
V
SS
DQ52 DQ53 DQ55
DQP6
V
CC DQ58
DQ60 DQ62
DQP7
A0 A2 A4 A6
A8 A10 A12 A14
V
SS
W7 E1 DQ34 DQ35 DQ37 V
CC
DQP4 DQ41 DQ42 DQ44 V
SS
DQ47 DQ48 DQ49 V
SS
DQ50 DQ51 DQ54 DQ56 V
SS
DQ57 DQ59 DQ61 DQ63 V
CC
A1 A3 A5 A7 NC A9 A11 A13 A15*
W0 W2
TSP
BAA
E0 W1 W3 G0 TSC
W4
G1 W5
V
CC
V
SS
V
SS
V
SS
PIN NAMES
A0 – A15 Address Inputs. . . . . . . . . . . . . . . . . . . . . .
K0, K1 Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W0
– W7 Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . .
E0
, E1 Module Enable. . . . . . . . . . . . . . . . . . . . . . . .
G0
, G1 Module Output Enable. . . . . . . . . . . . . . . . .
DQ0 – DQ63 Cache Data Input/Output. . . . . . . . . .
DQP0 – DQP7 Data Parity Input/Output. . . . . . . . .
TSC
Transfer Start Controller. . . . . . . . . . . . . . . . . .
TSP
Transfer Start Processor. . . . . . . . . . . . . . . . .
BAA
Burst Address Advance. . . . . . . . . . . . . . . . . .
PD0 – PD2 Presence Detect. . . . . . . . . . . . . . . . . .
V
CC
+ 5 V Power Supply. . . . . . . . . . . . . . . . . . . . . .
V
SS
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
* This pin on the MPC2002 is a No Connect (NC)
MPC2002MPC2003 2
MOTOROLA FAST SRAM
PD2 PD1 PD0
Cache
Size
Module
V
SS
NC NC 512KB MPC2003SG66/60
V
SS
NC V
SS
512KB MPC2003SG50
V
SS
V
SS
NC 256KB MPC2002SG66/60
V
SS
V
SS
V
SS
256KB MPC2002SG50
MPC2002MPC2003
3
MOTOROLA FAST SRAM
MPC2003 (64K x 72) MODULE BLOCK DIAGRAM
LW
MCM67M618
A0 – A15
BAA
K
G E
DQ0 – DQ7
A0 – A15
E0
16
K1
E1
G1
DQ8
UW
TSP TSC
DQ9 – DQ16
DQ17
BAA
TSP TSC
K0
G0
DQ0 – DQ7 DQP0
DQ8 – DQ15
DQP1
W0
W1
8
8
LW
MCM67M618
A0 – A15
BAA
K
G E
DQ0 – DQ7
DQ8
UW
TSP TSC
DQ9 – DQ16
DQ17
DQ16 – DQ23 DQP2
DQ24 – DQ31
DQP3
W2
W3
8
8
LW
MCM67M618
A0 – A15
BAA
K
G E
DQ0 – DQ7
DQ8
UW
TSP TSC
DQ9 – DQ16
DQ17
DQ32 – DQ39 DQP4
DQ40 – DQ47
DQP5
W4
W5
8
8
LW
MCM67M618
A0 – A15
BAA
K
G E
DQ0 – DQ7
DQ8
UW
TSP TSC
DQ9 – DQ16
DQ17
DQ48 – DQ55 DQP6
DQ56 – DQ63
DQP7
W6
W7
8
8
MPC2002MPC2003 4
MOTOROLA FAST SRAM
MPC2002 (32K x 72) MODULE BLOCK DIAGRAM
LW
MCM67M518
A0 – A14
BAA
K
G E
DQ0 – DQ7
A0 – A14
E0
15
K1
E1
G1
DQ8
UW
TSP TSC
DQ9 – DQ16
DQ17
BAA
TSP TSC
K0
G0
DQ0 – DQ7 DQP0
DQ8 – DQ15
DQP1
W0
W1
8
8
LW
MCM67M518
A0 – A14
BAA
K
G E
DQ0 – DQ7
DQ8
UW
TSP TSC
DQ9 – DQ16
DQ17
DQ16 – DQ23 DQP2
DQ24 – DQ31
DQP3
W2
W3
8
8
LW
MCM67M518
A0 – A14
BAA
K
G E
DQ0 – DQ7
DQ8
UW
TSP TSC
DQ9 – DQ16
DQ17
DQ32 – DQ39 DQP4
DQ40 – DQ47
DQP5
W4
W5
8
8
LW
MCM67M518
A0 – A14
BAA
K
G E
DQ0 – DQ7
DQ8
UW
TSP TSC
DQ9 – DQ16
DQ17
DQ48 – DQ55 DQP6
DQ56 – DQ63
DQP7
W6
W7
8
8
A15 NC
MPC2002MPC2003
5
MOTOROLA FAST SRAM
BLOCK DIAGRAM (See Note)
EXTERNAL
ADDRESS
16
9
9
18
16
A15 – A2
DQ0 – DQ8
INTERNAL ADDRESS
64K x 18
MEMORY
ARRAY
ADDRESS
REGISTERS
WRITE
REGISTER
ENABLE
REGISTER
DATA–IN
REGISTERS
OUTPUT BUFFER
BAA
K
TSP
TSC
A15 – A0
UW
E
G
9
DQ9 – DQ17
99
9
LW
A0
A1
A1
LOAD
D1
BINARY
COUNTER
D0
Q1
Q0
BURST LOGIC
A0
NOTE: All registers are positive–edge triggered. The TSC or TSP signals control the duration of the burst and the start of the next
burst. When TSP
is sampled low, any ongoing burst is interrupted and a read (independent of W and TSC) is performed
using the new external address. Alternatively, a TSP
–initiated two cycle WRITE can be performed by asserting TSP and
a valid address on the first cycle, then negating both TSP
and TSC and asserting L W and/or UW with valid data on the se­cond cycle (see Single Write Cycle in WRITE CYCLES timing diagram). When TSC
is sampled low (and TSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on
W
) is performed using the new external address. Chip enable (E) is sampled only when a new base address is loaded. After
the first cycle of the burst, BAA
controls subsequent burst cycles. When BAA is sampled low, the internal address is ad-
vanced prior to the operation. When BAA
is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE GRAPH. Write refers to either or both byte write enables (LW
, UW).
BURST SEQUENCE GRAPH
(See Note)
1,0
1,1
0,0
0,1
A1
, A0′ =
NOTE: The external two values for A1 and A0
provide the starting point for the burst sequence g raph. T he burst logic ad­vances A1 and A0 as shown above.
Loading...
+ 9 hidden pages