MOTOROLA MC74VHC1G66DFT1 Datasheet

MC74VHC1G66
Advance Information
Analog Switch
The MC74VHC1G66 is an advanced high speed CMOS bilateral analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. This bilateral switch controls analog and digital voltages that may vary across the full power–supply range (from VCC to GND).
The MC74VHC1G66 is compatible in function to a single gate of the High Speed CMOS MC74VHC4066 and the metal–gate CMOS MC14066. The device has been designed so that the ON resistances (RON) are much lower and more linear over input voltage than RON of the metal–gate CMOS or High Speed CMOS analog switches.
The ON/OFF control inputs are compatible with standard CMOS outputs; with pull–up resistors, it is compatible with LSTTL outputs.
High Speed: t
Low Power Dissipation: I
Diode Protection Provided on Inputs and Outputs
Improved Linearity and Lower ON Resistance over Input Voltage
than the MC14066 or the HC4066
Pin and Function Compatible with Other Standard Logic Families
Latchup Performance Exceeds 300 mA
ESD Performance: HBM > 2000 V; MM > 200 V, CDM > 1500 V
Chip Complexity: 11 FETs or 3 Equivalent Gates
= TBD (Typ) at VCC = 5 V
PD
= 2 mA (Max) at TA = 25°C
CC
IN/OUT X
A
OUT/IN Y
2
A
V
51
CC
http://onsemi.com
SC–88A / SOT–353
DF SUFFIX
CASE 419A
MARKING DIAGRAM
d
V9
Pin 1 d = Date Code
PIN ASSIGNMENT
1 2
3 GND
4
5 VCC
IN/OUT X OUT/IN Y
ON/OFF CONTROL
A A
ON/OFF CONTROLGND
43
5–Lead SOT–353 Pinout (Top View)
LOGIC SYMBOL
ON/OFF CONTROL
IN/OUT X
A
This document contains information on a new product. Specifications and information herein are subject to change without notice.
Semiconductor Components Industries, LLC, 1999
November, 1999 – Rev. 1
X 1 1
U U
1
OUT/IN Y
A
1 Publication Order Number:
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.
FUNCTION TABLE
On/Off Control Input State of Analog Switch
L
H
Off On
MC74VHC1G66/D
MC74VHC1G66
ABSOLUTE MAXIMUM RATINGS
Characteristics Symbol Value Unit
DC Supply Voltage V Digital Input Voltage V Analog Output Voltage V Digital Input Diode Current I DC Supply Current, VCC and GND I Power dissipation in still air, SC–88A † P Lead temperature, 1 mm from case for 10 s T Storage temperature T
†Derating — SC–88A Package: –3 mW/_C from 65_ to 125_C
CC
IN IS
IK
CC
D L
stg
RECOMMENDED OPERATING CONDITIONS
Characteristics Symbol Min Max Unit
DC Supply Voltage V Digital Input Voltage V Analog Input Voltage V Static or Dynamic Voltage Across Switch VIO* 1.2 V Operating Temperature Range T Input Rise and Fall Time
ON/OFF Control Input VCC = 3.3V ± 0.3V
VCC = 5.0V ± 0.5V
* For voltage drops across the switch greater than 1.2V (switch on), excessive VCC current may be drawn; i.e. the current out of the switch may
contain both VCC and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
CC
IN IS
tr , t
A
f
–0.5 to +7.0 V
–0.5 to VCC +0.5 V
–0.5 to VCC + 0.5 V
–20 mA +25 mA 200 mW 260 °C
–65 to +150 °C
4.5 5.5 V GND V GND V
–55 +85 °C
0 0
CC CC
100
20
V V
ns/V
http://onsemi.com
2
MC74VHC1G66
V
CC
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
C
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
DC ELECTRICAL CHARACTERISTICS
V
CC
Symbol Parameter Test Conditions (V) Min Typ Max Min Max Min Max Unit
V
IH
Minimum High–Level Input Voltage ON/OFF Control Input
RON = Per Spec 2.0
3.0
4.5
5.5
V
IL
Maximum Low–Level Input Voltage ON/OFF Control Input
RON = Per Spec 2.0
3.0
4.5
5.5
I
IN
Maximum Input Leakage Current
VIN = VCC or GND 0 to
5.5
ON/OFF Control Input
I
R
CC
ON
Maximum Quiescent Supply Current
Maximum ”ON” Resistance
VIN = VCC or GND VIO = 0V
VIN = V
IH
VIS = VCC or GND |IIS| ≤ 10mA (Figure 1)
Endpoints VIN = V
IH
VIS = VCC or GND
5.5 2.0 20 40 µA
3.0
4.5
5.5
3.0
4.5
5.5
|IIS| ≤ 10mA (Figure 1)
I
OFF
Maximum Off–Channel Leakage Current
VIN = V
IL
VIS = VCC or GND
5.5 0.1 0.5 1.0 µA
Switch Off (Figure 2)
I
ON
Maximum On–Channel Leakage Current
VIN = V
IH
VIS = VCC or GND Switch On (Figure 3)
5.5 0.1 0.5 1.0 µA
TA = 25°C TA 85°C TA 125°C
1.5
2.1
3.15
3.85
1.35
1.65
0.5
0.9
1.5
2.1
3.15
3.85
0.5
0.9
1.35
1.65
±0.1 ±1.0 ±1.0 µA
30 20 15
25 12
50 30 20
50 20
8
15
70 40 35
65 26 23
1.5
2.1
3.15
3.85
0.5
0.9
1.35
1.65
100
50 45
90 40 32
V
V
W
W
AC ELECTRICAL CHARACTERISTICS (C
Symbol
t
,
PLH
t
PHL
ÎÎ
ÎÎ
t
,
PLZ
t
PHZ
ÎÎ
t
,
PZL
ÎÎ
t
PZH
ÎÎ
C
IN
ÎÎ
ÎÎ
Parameter
Maximum Propogation Delay,
ООООО
Input X to Y
ООООО
Maximum Propogation Delay, ON/OFF Control to
ООООО
Analog Output Maximum Propogation
ООООО
Delay, ON/OFF Control to
ООООО
Analog Output Maximum Input
apacitance
ООООО
ООООО
Test Conditions
YA = Open
ООООО
Figure 4
ООООО
RL = 1000
Figure 5
ООООО
RL = 1000
ООООО
Figure 5
ООООО
ON/OFF Control Input Contol Input = GND
ООООО
Analog I/O Feedthrough
ООООО
= 50 pF, Input tr/tf = 3.0ns)
load
V
(V)
2.0
3.0
Î
4.5
5.5
Î
W
2.0
3.0
4.5
Î
5.5
W
2.0
Î
3.0
4.5
Î
5.5
0.0
5.0
Î
Î
TA = 25°C
Min
Typ
1 0
Î
Î
Î
0 0
Î
15
8
ÎÎÎ
6 4
Î
Î
15
Î
8 6
Î
4 3
Î
Î
Î
4 4
Î
Max
5 2
Î
1 1
Î
35 15 10
Î
7
35
Î
15 10
Î
7
10
Î
10 10
Î
TA 85°C
Min
Max
6 3
Î
Î
Î
1 1
Î
46 20
ÎÎÎ
13
9
Î
Î
46
Î
20 13
Î
9
10
Î
Î
Î
10 10
Î
TA 125°C
Min
Max
7 4
Î
Î
Î
2 1
Î
57 25
ÎÎÎ
17 11
Î
Î
57
Î
25 17
Î
11 10
Î
Î
Î
10 10
Î
Unit
ns
ns
ns
pF
Typical @ 25°C, VCC = 5.0V
C
PD
Power Dissipation Capacitance (Note NO T AG)
18
pF
1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I
2
power consumption; PD = CPD V
fin + ICC VCC.
CC
CC(OPR
= CPD VCC fin + ICC. CPD is used to determine the no–load dynamic
)
http://onsemi.com
3
MC74VHC1G66
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)
Limit
Symbol
ÎÎÎ
BW
ООООООО
Maximum On–Channel Bandwidth or Minimum
ÎÎÎ
Frequency Response
ООООООО
Figure 7
ISO
off
ÎÎÎ
ÎÎÎ
ÎÎÎÎОООООООÎОООООООООООО
NOISE
ÎÎÎ
ÎÎÎ
ÎÎÎ
THD
ÎÎÎ
ÎÎÎ
Off–Channel Feedthrough
ООООООО
Isolation Figure 8
ООООООО
Feedthrough Noise Control to
feed
Switch
ООООООО
Figure 9
ООООООО
ООООООО
Total Harmonic Distortion Figure 10
ООООООО
ООООООО
Parameter
ОООООООООООО
Test Conditions
fin = 1 MHz Sine Wave Adjust fin voltage to obtain 0 dBm at V Increase fin = frequency until dB meter reads –3dB
ОООООООООООО
OS
RL = 50W, CL = 10 pF fin = Sine Wave
ОООООООООООО
Adjust fin voltage to obtain 0 dBm at V fin = 10 kHz, RL = 600W, CL = 50 pF
ОООООООООООО
IS
fin = 1.0 kHz, RL = 50W, CL = 10 pF
Vin 1 MHz Square Wave (tr = tf = 2ns) Adjust RL at setup so that Is = 0 A
ОООООООООООО
RL = 600W, CL = 50 pF
RL = 50W, CL = 10 pF
ОООООООООООО
ОООООООООООО
fin = 1 kHz, RL = 10kW, CL = 50 pF THD = THD
ОООООООООООО
VIS = 3.0 VPP sine wave VIS = 4.0 VPP sine wave
ОООООООООООО
VIS = 5.0 VPP sine wave
Measured
– THD
Source
V
Î
3.0
4.5
5.5
Î
3.0
Î
4.5
5.5
Î
3.0
4.5
Î
5.5
3.0
4.5
Î
5.5
3.0
Î
4.5
5.5
Î
Î
3.3
4.5
Î
5.5
CC
1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I
2
power consumption; PD = CPD V
fin + ICC VCC.
CC
CC(OPR
= CPD VCC fin + ICC. CPD is used to determine the no–load dynamic
)
25°C
ÎÎ
150 175 200
ÎÎ
–50
ÎÎ
–50 –50
ÎÎ
–40 –40
ÎÎ
–40
45 60
ÎÎ
130
25
ÎÎ
30 60
ÎÎ
ÎÎ
0.20
0.10
ÎÎ
0.06
Unit
Î
MHz
Î
Î
Î
Î
mV
Î
Î
Î
Î
Î
dB
PP
%
http://onsemi.com
4
Loading...
+ 8 hidden pages