SEMICONDUCTOR TECHNICAL DATA
3–1
REV 6
Motorola, Inc. 1995
10/95
High–Performance Silicon–Gate CMOS
The MC54/74HC74A is identical in pinout to the LS74. The device inputs
are compatible with standard CMOS outputs; with pullup resistors, they are
compatible with LSTTL outputs.
This device consists of two D flip–flops with individual Set, Reset, and
Clock inputs. Information at a D–input is transferred to the corresponding Q
output on the next positive going edge of the clock input. Both Q and Q
outputs are available from each flip–flop. The Set and Reset inputs are
asynchronous.
• Output Drive Capability: 10 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS, and TTL
• Operating Voltage Range: 2.0 to 6.0 V
• Low Input Current: 1.0 µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 128 FETs or 32 Equivalent Gates
LOGIC DIAGRAM
RESET 1
DATA 1
CLOCK 1
SET 1
RESET 2
DATA 2
CLOCK 2
SET 2
1
2
3
4
13
12
11
10
5
6
9
8
Q1
Q1
Q2
Q2
PIN 14 = VCC
PIN 7 = GND
FUNCTION TABLE
PIN ASSIGNMENT
Inputs Outputs
Set Reset Clock Data Q Q
L H X X H L
H L X X L H
L L X X H* H*
H H H H L
H H L L H
H H L X No Change
H H H X No Change
H H X No Change
*Both outputs will remain high as long as
Set and Reset are low, but the output
states are unpredictable if Set and Reset
go high simultaneously.
SET 1
CLOCK 1
DATA 1
RESET 1
11
12
13
14
8
9
105
4
3
2
1
7
6
SET 2
CLOCK 2
DATA 2
RESET 2
V
CC
Q2
Q2
GND
Q1
Q1
D SUFFIX
SOIC PACKAGE
CASE 751A–03
N SUFFIX
PLASTIC PACKAGE
CASE 646–06
ORDERING INFORMATION
MC54HCXXAJ
MC74HCXXAN
MC74HCXXAD
MC74HCXXADT
Ceramic
Plastic
SOIC
TSSOP
1
14
1
14
1
14
DT SUFFIX
TSSOP PACKAGE
CASE 948G–01
J SUFFIX
CERAMIC PACKAGE
CASE 632–08
1
14
MC54/74HC74A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
3–2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
TSSOP Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP, SOIC or TSSOP Package)
(Ceramic DIP)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figures 1, 2, 3) VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
Maximum Low–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
MC54/74HC74A
High–Speed CMOS Logic Data
DL129 — Rev 6
3–3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) – continued
Maximum Input Leakage Current
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0 µA
µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6.0 ns)
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 4)
Maximum Propagation Delay, Clock to Q or Q
(Figures 1 and 4)
Maximum Propagation Delay, Set or Reset to Q or Q
(Figures 2 and 4)
Maximum Output Transition Time, Any Output
(Figures 1 and 4)
Maximum Input Capacitance
pF
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High–
Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Flip–Flop)*
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).
TIMING REQUIREMENTS (Input t
r
= tf = 6.0 ns)
Minimum Setup Time, Data to Clock
(Figure 3)
Minimum Hold Time, Clock to Data
(Figure 3)
Minimum Recovery Time, Set or Reset Inactive to Clock
(Figure 2)
Minimum Pulse Width, Clock
(Figure 1)
Minimum Pulse Width, Set or Reset
(Figure 2)
Maximum Input Rise and Fall Times
(Figures 1, 2, 3)