Semiconductor Components Industries, LLC, 2000
March, 2000 – Rev. 8
1 Publication Order Number:
MC74HC574A/D
MC74HC574A
Octal 3-State Noninverting
D Flip-Flop
High–Performance Silicon–Gate CMOS
The MC74HC574A is identical in pinout to the LS574. The device
inputs are compatible with standard CMOS outputs; with pullup
resistors, they are compatible with LSTTL outputs.
Data meeting the setup time is clocked to the outputs with the rising
edge of the Clock. The Output Enable input does not affect the states
of the flip–flops, but when Output Enable is high, all device outputs
are forced to the high–impedance state. Thus, data may be stored even
when the outputs are not enabled.
The HC574A is identical in function to the HC374A but has the
flip–flop inputs on the opposite side of the package from the outputs to
facilitate PC board layout.
• Output Drive Capability: 15 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS and TTL
• Operating Voltage Range: 2.0 to 6.0 V
• Low Input Current: 1.0 µA
• In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 266 FETs or 66.5 Equivalent Gates
http://onsemi.com
MARKING
DIAGRAMS
1
20
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
SOIC WIDE–20
DW SUFFIX
CASE 751D
HC574A
AWLYYWW
PDIP–20
N SUFFIX
CASE 738
1
20
MC74HC574AN
AWLYYWW
1
20
1
20
Device Package Shipping
ORDERING INFORMATION
MC74HC574AN PDIP–20 1440 / Box
MC74HC574ADW SOIC–WIDE
38 / Rail
MC74HC574ADWR2 SOIC–WIDE 1000 / Reel
MC74HC574A
http://onsemi.com
2
LOGIC DIAGRAM
DATA
INPUTS
D0
219
Q0
D1
D2
D3
D4
D5
D6
D7
CLOCK
OUTPUT ENABLE
3
4
5
6
7
8
9
11
1
18
17
16
15
14
13
12
Q1
Q2
Q3
Q4
Q5
Q6
Q7
NON–
INVERTING
OUTPUTS
PIN 20 = V
CC
PIN 10 = GND
PIN ASSIGNMENT
D4
D2
D1
D0
OUTPUT
ENABLE
GND
D7
D6
D5
D3 5
4
3
2
1
10
9
8
7
6
14
15
16
17
18
19
20
11
12
13
Q3
Q2
Q1
Q0
V
CC
CLOCK
Q7
Q6
Q5
Q4
FUNCTION TABLE
Inputs Output
OE Clock D Q
LHH
LLL
L L,H, X No Change
HXXZ
X = Don’t Care
Z = High Impedance
Internal Gate Propagation Delay
Internal Gate Power Dissipation
pJ
*Equivalent to a two–input NAND gate.
MC74HC574A
http://onsemi.com
3
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air, Plastic DIP†
SOIC Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: –10 mW/_C from 65_ to 125_C
SOIC Package: –7 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = V
IH
|I
out
| v 20 µA
Vin = V
IH
|I
out
| v 2.4 mA
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
Maximum Low–Level Output
Voltage
Vin = V
IL
|I
out
| v 20 µA
Vin = V
IL
|I
out
| v 2.4 mA
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
Maximum Input Leakage
Current
µA
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.