SEMICONDUCTOR TECHNICAL DATA
3–1
REV 6
Motorola, Inc. 1995
10/95
High–Performance Silicon–Gate CMOS
The MC54/74HC374A is identical in pinout to the LS374. The device
inputs are compatible with standard CMOS outputs; with pullup resistors,
they are compatible with LSTTL outputs.
Data meeting the setup time is clocked to the outputs with the rising edge
of the clock. The Output Enable input does not affect t he states of the
flip–flops, but when Output Enable is high, the outputs are forced to the
high–impedance state; thus, data may be stored even when the outputs are
not enabled.
The HC374A is identical in function to the HC574A which has the input
pins on the opposite side of the package from the output. This device is
similar in function to the HC534A which has inverting outputs.
• Output Drive Capability: 15 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS, and TTL
• Operating Voltage Range: 2.0 to 6.0 V
• Low Input Current: 1.0 µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 266 FETs or 66.5 Equivalent Gates
LOGIC DIAGRAM
DATA
INPUTS
D0
11
CLOCK
D1
D2
D3
D4
D5
D6
D7
18
17
14
13
8
7
4
3
1
OUTPUT ENABLE
19
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
16
15
12
9
6
5
2
PIN 20 = V
CC
PIN 10 = GND
NONINVERTING
OUTPUTS
FUNCTION TABLE
Inputs Output
Output
Enable Clock D Q
L H H
L L L
L L,H, X No Change
H X X Z
X = don’t care
Z = high impedance
PIN ASSIGNMENT
Q2
D1
D0
Q0
OUTPUT
ENABLE
GND
Q3
D3
D2
Q1 5
4
3
2
1
10
9
8
7
6
14
15
16
17
18
19
20
11
12
13
Q6
D6
D7
Q7
V
CC
CLOCK
Q4
D4
D5
Q5
DW SUFFIX
SOIC PACKAGE
CASE 751D–04
N SUFFIX
PLASTIC PACKAGE
CASE 738–03
ORDERING INFORMATION
MC54HCXXXAJ
MC74HCXXXAN
MC74HCXXXADW
MC74HCXXXASD
MC74HCXXXADT
Ceramic
Plastic
SOIC
SSOP
TSSOP
DT SUFFIX
TSSOP PACKAGE
CASE 948E–02
J SUFFIX
CERAMIC PACKAGE
CASE 732–03
1
20
1
20
SD SUFFIX
SSOP PACKAGE
CASE 940C–03
1
20
1
20
1
20
MC54/74HC374A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
3–2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
SSOP or TSSOP Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP, SOIC, SSOP or TSSOP Package)
(Ceramic DIP)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
SSOP or TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or V
IL
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
V
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
MC54/74HC374A
High–Speed CMOS Logic Data
DL129 — Rev 6
3–3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Maximum Low–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or V
IL
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
Maximum Input Leakage Current
Maximum Three–State
Leakage Current
Output in High–Impedance State
Vin = VIL or V
IH
V
out
= VCC or GND
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0 µA
µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
SWITCHING WAVEFORMS
Figure 1.
t
r
t
f
V
CC
GND
t
THL
t
TLH
90%
50%
10%
90%
50%
10%
CLOCK
t
PLH
t
PHL
Q
t
W
1/f
max
50%
50%
50%
OUTPUT
ENABLE
Q
t
PZL
t
PLZ
t
PZHtPHZ
10%
90%
V
CC
GND
HIGH
IMPEDANCE
V
OL
V
OH
HIGH
IMPEDANCE
50%
DATA
CLOCK
V
CC
V
CC
GND
GND
VALID
t
h
t
su
50%
Q
Figure 2.
Figure 3.