SEMICONDUCTOR TECHNICAL DATA
3–1
REV 7
Motorola, Inc. 1995
10/95
! "!
"!"! ! !
High–Performance Silicon–Gate CMOS
The MC54/74HC164 is identical in pinout to the LS164. The device inputs
are compatible with standard CMOS outputs; with pullup resistors, they are
compatible with LSTTL outputs.
The MC54/74HC164 is an 8 –bit, serial–input to parallel–output shift
register. Two serial data inputs, A1 and A2, are provided so that one input
may be used as a data enable. Data is entered on each rising edge of the
clock. The active–low asynchronous Reset overrides the Clock and Serial
Data inputs.
• Output Drive Capability: 10 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS, and TTL
• Operating Voltage Range: 2 to 6 V
• Low Input Current: 1
µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 244 FETs or 61 Equivalent Gates
LOGIC DIAGRAM
PIN 14 = V
CC
PIN 7 = GND
3
Q
A
4
5
6
10
11
12
13
Q
B
Q
C
Q
D
Q
E
Q
F
Q
G
Q
H
PARALLEL
DATA
OUTPUTS
9
RESET
CLOCK
8
SERIAL
DATA
INPUTS
A1
A2
1
2
DATA
PIN ASSIGNMENT
FUNCTION TABLE
Inputs Outputs
Reset Clock A1 A2 QAQB… Q
H
L X X X L L … L
H X X No Change
H H D D QAn… Q
Gn
H D H D QAn… Q
Gn
D = data input
QAn – QGn = data shifted from the preceding
stage on a rising edge at the clock input.
11
12
13
14
8
9
105
4
3
2
1
7
6
Q
E
Q
F
Q
G
Q
H
V
CC
CLOCK
RESET
Q
B
Q
A
A2
A1
GND
Q
D
Q
C
D SUFFIX
SOIC PACKAGE
CASE 751A–03
N SUFFIX
PLASTIC PACKAGE
CASE 646–06
ORDERING INFORMATION
MC54HCXXXJ
MC74HCXXXN
MC74HCXXXD
Ceramic
Plastic
SOIC
1
14
1
14
J SUFFIX
CERAMIC PACKAGE
CASE 632–08
1
14
Do Not Use for New Designs
THIS DEVICE WILL BE SUPERCEDED
BY MC54/74HC164A IN THE
SECOND QUARTER OF 1996
MC54/74HC164
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
3–2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package)
(Ceramic DIP)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
Maximum Low–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
Maximum Input Leakage Current
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0 µA
µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
MC54/74HC164
High–Speed CMOS Logic Data
DL129 — Rev 6
3–3 MOTOROLA
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6 ns)
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 4)
Maximum Propagation Delay, Clock to Q
(Figures 1 and 4)
Maximum Propagation Delay, Reset to Q
(Figures 2 and 4)
Maximum Output Transition Time, Any Output
(Figures 1 and 4)
Maximum Input Capacitance
pF
NOTES:
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Package)*
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).
TIMING REQUIREMENTS (Input t
r
= tf = 6 ns)
Minimum Setup Time, A1 or A2 to Clock
(Figure 3)
Minimum Hold Time, Clock to A1 or A2
(Figure 3)
Minimum Recovery Time, Reset Inactive to Clock
(Figure 2)
Minimum Pulse Width, Clock
(Figure 1)
Minimum Pulse Width, Reset
(Figure 2)
Maximum Input Rise and Fall Times
(Figure 1)
ns
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).