MOTOROLA MC33260P Datasheet

MC33260
Product Preview
GreenLine
The MC33260 is a controller for Power Factor Correction preconverters meeting international standard requirements in electronic ballast and off–line power conversion applications. Designed to drive a free frequency discontinuous mode, it can also be synchronized and in any case, it features very effective protections that ensure a safe and reliable operation.
This circuit is also optimized to offer extremely compact and cost effective PFC solutions. While it requires a minimum number of external components, the MC33260 can control the follower boost operation that is an innovative mode allowing a drastic size reduction of both the inductor and the power switch. Ultimately, the solution system cost is significantly lowered.
Also able to function in a traditional way (constant output voltage regulation level), any intermediary solutions can be easily implemented. This flexibility makes it ideal to optimally cope with a wide range of applications.
General Features
Standard Constant Output Voltage or “Follower Boost” Mode
Switch Mode Operation: Voltage Mode
Latching PWM for Cycle–by–Cycle On–Time Control
Constant On–Time Operation That Saves the Use of an Extra Multiplier
Totem Pole Output Gate Drive
Undervoltage Lockout with Hysteresis
Low Start–Up and Operating Current
Improved Regulation Block Dynamic Behavior
Synchronization Capability
Internally Trimmed Reference Current Source
Safety Features
Overvoltage Protection: Output Overvoltage Detection
Undervoltage Protection: Protection Against Open Loop
Effective Zero Current Detection
Accurate and Adjustable Maximum On–Time Limitation
Overcurrent Protection
ESD Protection on Each Pin
http://onsemi.com
8
1
DIP–8
P SUFFIX
CASE 626
PIN CONNECTIONS AND
MARKING DIAGRAM
AWL
YYWW
V
CC
Gate Drive
7
Gnd
6
Synchronization
5
Input
Feedback Input
V
control
Oscillator
Capacitor (CT)
Current Sense
Input
AWL = Manufacturing Code
18 2 3
MC33260
4
YYWW = Date Code
(Top View)
ORDERING INFORMATION
Device Package Shipping
MC33260P Plastic DIP–8 50 Units / Rail
TYPICAL APPLICATION
D1...D4
R
cs
This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.
Semiconductor Components Industries, LLC, 1999
November, 1999 – Rev. 1
Filtering Capacitor
V
control
R
OCP
L1
8
1 2
7
3
6
MC33260
4
CT
5
V
Sync
D1
C1
CC
+
M1
LOAD
(SMPS, Lamp
Ballast,...)
R
o
1 Publication Order Number:
MC33260/D
CT
MC33260
BLOCK DIAGRAM
V
o
Current Mirror
2 x IO x I
I
– ch =
OSC
3
O
I
ref
11 V
I
o
I
oIo
I
ref
V
ref
1.5 V
Current
Mirror
I
o
FB
1
Current
Sense
01
Output_Ctrl
REGULATOR
Enable
– +
Ics (205 mA)
–60 mV
01
4
11 V
LEB
15 pF
V
ref
I
ref
11 V/8.5 V
+ –
Output_Ctrl
300 k
V
reg
I
o
97%I
r
r
Synchro
Arrangement
I
ref
ref
I
ovpH/IovpL
r
I
+ –
uvp
+ –
11 V
OVP
UVP
11 V
V
control
2
Synchro
5
V
CC
8
+ –
PWM Comparator
ThStdwn
S
R
PWM
R
Latch
RQ
http://onsemi.com
2
Drive
7
Gnd
6
Q
Output_Ctrl
MC33260
MC33260
MAXIMUM RATINGS
Rating Pin # Symbol Value Unit
Gate Drive Current (Pin 7)*
Source
Sink VCC (Pin 8) Maximum Voltage 8 (Vcc) Input Voltage V Power Dissipation and Thermal Characteristics
P Suffix, DIP Package
Maximum Power Dissipation @ TA = 85°C
Thermal Resistance Junction to Air Operating Junction Temperature T Operating Ambient Temperature T
*The maximum package power dissipation must be observed.
7
I
O(Source)
I
O(Sink)
max
in
P
D
R
θJA
J A
–500
500
16 V
–0.3 to +10 V
600 100
150 °C
–40 to +105 °C
mA
mW
°C/W
ELECTRICAL CHARACTERISTICS (V
unless otherwise noted.)
Characteristic
GATE DRIVE SECTION
Gate Drive Resistor
Source Resistor @ I Sink Resistor @ I
Gate Drive Voltage Rise Time (From 3 V Up to 9 V)
(Note 1) Output Voltage Falling Time (From 9 V Down to 3 V)
(Note 1)
OSCILLATOR SECTION
Maximum Oscillator Swing 3 V Charge Current @ I Charge Current @ I Ratio Multiplier Gain Over Maximum Swing
@ I
=100 µA
pin1
Ratio Multiplier Gain Over Maximum Swing
@ I
=200 µA
pin1
Average Internal Pin 3 Capacitance Over Oscillator
Maximum Swing (V
(Note 2) Discharge Time (CT = 1 nF) 3 T
REGULATION SECTION
Regulation High Current Reference 1 I Ratio (Regulation Low Current Reference)/I Pin 2 Impedance 1 Z Pin 1 Clamp Voltage @ I Pin 1 Clamp Voltage @ I
pin1 pin1
= 100 mA
pin7
= 100 mA
pin7
= 100 µA 3 I = 200 µA 3 I
Varying From 0 Up to 1.5 V)
pin3
= 100 µA 1 V
pin1
= 200 µA 1 V
pin1
= 13 V, TJ = 25°C for typical values, TJ = –40 to 105°C for min/max values
CC
Pin # Symbol Min Typ Max Unit
7
7 t
7 t
3 K
3 K
3 C
reg–H
1 I
reg–L/Ireg–H
R
OL
R
OH
r
f
T charge charge
osc
osc
int
disch
reg–H
pin3 pin1–100 pin1–200
10
5
50 ns
50 ns
1.4 1.5 1.6 V
87.5 100 112.5 µA 350 400 450 µA
5600 6400 7200 1/(V.A)
5600 6400 7200 1/(V.A)
10 15 20 pF
0.5 1 µs
192 200 208 µA
0.965 0.97 0.98 — — 300 k
1.5 2.1 2.5 V 2 2.6 3 V
20 10
35 25
http://onsemi.com
3
MC33260
ELECTRICAL CHARACTERISTICS (V
unless otherwise noted.)
Characteristic UnitMaxTypMinSymbolPin #
CURRENT SENSE SECTION
Zero Current Detection Comparator Threshold 4 V Negative Clamp Level (I Bias Current @ V Propagation Delay (V Pin 4 Internal Current Source 4 I Leading Edge Blanking Duration τ OverCurrent Protection Propagation Delay
(Pin 4 < V
SYNCHRONIZATION SECTION
Synchronization Threshold 5 V Negative Clamp Level (I Minimum Off–Time 7 T Minimum Required Synchronization Pulse Duration 5 T
OVERVOLTAGE PROTECTION SECTION
OverVoltage Protection High Current Threshold
and I
reg–H
OverVoltage Protection Low Current Threshold
and I
reg–H
Ratio (I
OVP–H/IOVP–L
Propagation Delay (I
UNDERVOLTAGE PROTECTION SECTION
Ratio (UnderVoltage Protection Current Threshold)/I Propagation Delay (I
THERMAL SHUTDOWN SECTION
Thermal Shutdown Threshold 7 T Hysteresis 7 T
VCC UNDERVOLTAGE LOCKOUT SECTION
Start–Up Threshold 8 V Disable Voltage After Threshold T urn–On 8 V
TOTAL DEVICE
Power Supply Current
Start–Up (VCC = 5 V with VCC Increasing) Operating @ I
NOTES: (1) 1 nF being connected between the pin 7 and ground. (2) Guaranteed by design. (3) No load is connected to the gate drive which is kept high during the test.
pin4
ZCD–th
Difference
Difference
pin1
= –1 mA) 4 Cl–neg –0.7 V
pin2
= V
ZCD–th
> V
pin4
ZCD–th
to Gate Drive Low)
= –1 mA) 5 Cl–neg –0.7 V
pin5
) 1 I
pin1
pin1
= 200 µA
> 110% I
< 12% I
to Gate Drive Low) 7 T
ref
to Gate Drive Low) 7 T
ref
= 13 V, TJ = 25°C for typical values, TJ = –40 to 105°C for min/max values
CC
4 I
) to Gate Drive High 7 T
7 T
reg–H
1 I
1 I
1 I
8 I
OVP–H–Ireg–H
OVP–L–Ireg–H
OVP–H/IOVP–L
ZCD–th
b–cs
ZCD
OCP
LEB
OCP
sync–th
off
sync
OVP
UVP/Ireg–H
UVP
stdwn
stdwn
stup–th
disable
CC
–90 –60 –30 mV
–0.2 µA
500 ns
192 205 218 µA
400 ns
100 160 240 ns
0.8 1 1.2 V
1.5 2.1 2.7 µs
0.5 µs
8 13 18 µA
0
1.02 — — 500 ns
12 14 16 % — 500 ns
150 °C — 30 °C
9.7 11 12.3 V
7.4 8.5 9.6 V
— —
0.1 4
0.25 8
mA
http://onsemi.com
4
MC33260
1.6
1.4
1.2
1.0
0.8
control
V : REGULATION BLOCK OUTPUT (V)
0.6
0.4
0.2 0
20
0
60
40
I
pin1
–40°C 25°C 105°C
100
80 : FEEDBACK CURRENT (µA)
120
140
Figure 1. Regulation Block Output versus
Feedback Current
1.340
1.335
1.330
1.325
1.320
1.315
1.310
MAXIMUM OSCILLAT OR SWING (V)I , OSCILLATOR CHARGE CURRENT ( A)
1.305
1.300 –40
–20 0
20
40 60
JUNCTION TEMPERATURE (°C)
160
180
200
80
220
100
240
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
control
V : REGULATION BLOCK OUTPUT (V)
0
185
190 195 200 205 210
I
: FEEDBACK CURRENT (µA)
pin1
Figure 2. Regulation Block Output versus
Feedback Current
3.5
3.0
2.5
2.0
1.5
1.0
FEEDBACK INPUT VOLTAGE (V)
0.5 0
0
20 40 60 80 100 120 140 160 180 200 220 240
I
: FEEDBACK CURRENT (µA)
pin1
–40°C 25°C 105°C
–40°C 25°C 105°C
Figure 3. Maximum Oscillator Swing versus
Temperature
m
500 450 400 350
300 250 200 150 100
50
osc–ch
0
0
20 40 60 80 100 120 140 160 180 200 220 240
I
pin1
–40°C 25°C 105°C
: FEEDBACK CURRENT (µA)
Figure 5. Oscillator Charge Current versus
Feedback Current
Figure 4. Feedback Input Voltage versus
Feedback Current
m
410
I
= 200 mA
pin1
405
400
395
390
385
osc–ch
I , OSCILLATOR CHARGE CURRENT ( A)
–40
–20 0
20
40 60
JUNCTION TEMPERATURE (°C)
Figure 6. Oscillator Charge Current versus
Temperature
80
100
http://onsemi.com
5
MC33260
104 103 102 101 100
99 98
OSCILLATOR CHARGE CURRENT ( A)µ
97
I
= 100 mA
pin1
–40
–20 0 20 40 60 80 100
TJ, JUNCTION TEMPERATURE (°C)
Figure 7. Oscillator Charge Current versus
T emperature
75
65
55
45
ON–TIME ( s)µ
35
25 15
50
60 70 80 90 100
I
: FEEDBACK CURRENT (µA)
pin1
1 nF Connected to Pin 3
–40°C 25°C 105°C
120
100
80
60
ON–TIME ( s)µ
40
20
0
30
50 70 90 110 130 150 170 190 210
I
: FEEDBACK CURRENT (mA)
pin1
1 nF Connected to Pin 3
Figure 8. On–Time versus Feedback Current
207
I
206 205 204 203 202 201 200 199 198
197
REGULATION AND CS CURRENT SOURCE ( A)µ
–20 0 20 40 60 80 100
–40
TJ, JUNCTION TEMPERATURE (°C)
OCP
I
regH
–40°C 25°C 105°C
Figure 9. On–Time versus Feedback Current Figure 10. Internal Current Sources versus
T emperature
1.07
)
1.06
ref
/I
1.05
regL
1.04
), (I
1.03
ref
/I
1.02
1.01
ovpL
1.00
), (I
ref
0.99
/I
0.98
ovpH
(I
0.97
0.96 –40
Figure 11. (I
(I
(I
–20 0 20 40 60 80 100
TJ, JUNCTION TEMPERATURE (°C)
ovpH/Iref
ovpH/Iref
ovpL/Iref
(I
regL/Iref
)
)
)
), (I
ovpL/Iref
), (I
regL/Iref
)
versus T emperature
0.150
0.148
ref
/I )
0.146
uvp
0.144
0.142
0.140
0.138
0.136
0.134
UNDERVOLTAGE RATIO (I
0.132
0.130 –20 0 20 40 60 80 100
–40
TJ, JUNCTION TEMPERATURE (°C)
Figure 12. Undervoltage Ratio versus
T emperature
http://onsemi.com
6
Loading...
+ 14 hidden pages