The MC33260 is a controller for Power Factor Correction
preconverters meeting international standard requirements in
electronic ballast and off–line power conversion applications.
Designed to drive a free frequency discontinuous mode, it can also be
synchronized and in any case, it features very effective protections that
ensure a safe and reliable operation.
This circuit is also optimized to offer extremely compact and cost
effective PFC solutions. While it requires a minimum number of
external components, the MC33260 can control the follower boost
operation that is an innovative mode allowing a drastic size reduction
of both the inductor and the power switch. Ultimately, the solution
system cost is significantly lowered.
Also able to function in a traditional way (constant output voltage
regulation level), any intermediary solutions can be easily
implemented. This flexibility makes it ideal to optimally cope with a
wide range of applications.
General Features
• Standard Constant Output Voltage or “Follower Boost” Mode
• Switch Mode Operation: Voltage Mode
• Latching PWM for Cycle–by–Cycle On–Time Control
• Constant On–Time Operation That Saves the Use of an Extra Multiplier
• Undervoltage Protection: Protection Against Open Loop
• Effective Zero Current Detection
• Accurate and Adjustable Maximum On–Time Limitation
• Overcurrent Protection
• ESD Protection on Each Pin
http://onsemi.com
8
1
DIP–8
P SUFFIX
CASE 626
PIN CONNECTIONS AND
MARKING DIAGRAM
AWL
YYWW
V
CC
Gate Drive
7
Gnd
6
Synchronization
5
Input
Feedback Input
V
control
Oscillator
Capacitor (CT)
Current Sense
Input
AWL = Manufacturing Code
18
2
3
MC33260
4
YYWW = Date Code
(Top View)
ORDERING INFORMATION
DevicePackageShipping
MC33260PPlastic DIP–850 Units / Rail
TYPICAL APPLICATION
D1...D4
R
cs
This document contains information on a product under development. ON Semiconductor
reserves the right to change or discontinue this product without notice.
Semiconductor Components Industries, LLC, 1999
November, 1999 – Rev. 1
Filtering
Capacitor
V
control
R
OCP
L1
8
1
2
7
3
6
MC33260
4
CT
5
V
Sync
D1
C1
CC
+
M1
LOAD
(SMPS, Lamp
Ballast,...)
R
o
1Publication Order Number:
MC33260/D
CT
MC33260
BLOCK DIAGRAM
V
o
Current Mirror
2 x IO x I
I
– ch =
OSC
3
O
I
ref
11 V
I
o
I
oIo
I
ref
V
ref
1.5 V
Current
Mirror
I
o
FB
1
Current
Sense
01
Output_Ctrl
REGULATOR
Enable
–
+
Ics (205 mA)
–60 mV
01
4
11 V
LEB
15 pF
V
ref
I
ref
11 V/8.5 V
+
–
Output_Ctrl
300 k
V
reg
I
o
97%I
r
r
Synchro
Arrangement
I
ref
ref
I
ovpH/IovpL
r
I
+
–
uvp
+
–
11 V
OVP
UVP
11 V
V
control
2
Synchro
5
V
CC
8
+
–
PWM Comparator
ThStdwn
S
R
PWM
R
Latch
RQ
http://onsemi.com
2
Drive
7
Gnd
6
Q
Output_Ctrl
MC33260
MC33260
MAXIMUM RATINGS
RatingPin #SymbolValueUnit
Gate Drive Current (Pin 7)*
Source
Sink
VCC (Pin 8) Maximum Voltage8(Vcc)
Input VoltageV
Power Dissipation and Thermal Characteristics
P Suffix, DIP Package
Maximum Power Dissipation @ TA = 85°C
Thermal Resistance Junction to Air
Operating Junction TemperatureT
Operating Ambient TemperatureT
*The maximum package power dissipation must be observed.
7
I
O(Source)
I
O(Sink)
max
in
P
D
R
θJA
J
A
–500
500
16V
–0.3 to +10V
600
100
150°C
–40 to +105°C
mA
mW
°C/W
ELECTRICAL CHARACTERISTICS (V
unless otherwise noted.)
Characteristic
GATE DRIVE SECTION
Gate Drive Resistor
Source Resistor @ I
Sink Resistor @ I
Gate Drive Voltage Rise Time (From 3 V Up to 9 V)
(Note 1)
Output Voltage Falling Time (From 9 V Down to 3 V)
(Note 1)
OSCILLATOR SECTION
Maximum Oscillator Swing3∆V
Charge Current @ I
Charge Current @ I
Ratio Multiplier Gain Over Maximum Swing
@ I
=100 µA
pin1
Ratio Multiplier Gain Over Maximum Swing
@ I
=200 µA
pin1
Average Internal Pin 3 Capacitance Over Oscillator
Maximum Swing (V
(Note 2)
Discharge Time (CT = 1 nF)3T
REGULATION SECTION
Regulation High Current Reference1I
Ratio (Regulation Low Current Reference)/I
Pin 2 Impedance1Z
Pin 1 Clamp Voltage @ I
Pin 1 Clamp Voltage @ I
pin1
pin1
= 100 mA
pin7
= 100 mA
pin7
= 100 µA3I
= 200 µA3I
Varying From 0 Up to 1.5 V)
pin3
= 100 µA1V
pin1
= 200 µA1V
pin1
= 13 V, TJ = 25°C for typical values, TJ = –40 to 105°C for min/max values
CC
Pin #SymbolMinTypMaxUnit
7
7t
7t
3K
3K
3C
reg–H
1I
reg–L/Ireg–H
R
OL
R
OH
r
f
T
charge
charge
osc
osc
int
disch
reg–H
pin3
pin1–100
pin1–200
10
5
—50—ns
—50—ns
1.41.51.6V
87.5100112.5µA
350400450µA
5600640072001/(V.A)
5600640072001/(V.A)
101520pF
—0.51µs
192200208µA
0.9650.970.98—
—300—kΩ
1.52.12.5V
22.63V
20
10
35
25
Ω
http://onsemi.com
3
MC33260
ELECTRICAL CHARACTERISTICS (V
unless otherwise noted.)
CharacteristicUnitMaxTypMinSymbolPin #
CURRENT SENSE SECTION
Zero Current Detection Comparator Threshold4V
Negative Clamp Level (I
Bias Current @ V
Propagation Delay (V
Pin 4 Internal Current Source4I
Leading Edge Blanking Durationτ
OverCurrent Protection Propagation Delay
Ratio (UnderVoltage Protection Current Threshold)/I
Propagation Delay (I
THERMAL SHUTDOWN SECTION
Thermal Shutdown Threshold7T
Hysteresis7∆T
VCC UNDERVOLTAGE LOCKOUT SECTION
Start–Up Threshold8V
Disable Voltage After Threshold T urn–On8V
TOTAL DEVICE
Power Supply Current
Start–Up (VCC = 5 V with VCC Increasing)
Operating @ I
NOTES:
(1) 1 nF being connected between the pin 7 and ground.
(2) Guaranteed by design.
(3) No load is connected to the gate drive which is kept high during the test.
pin4
ZCD–th
Difference
Difference
pin1
= –1 mA)4Cl–neg—–0.7—V
pin2
= V
ZCD–th
> V
pin4
ZCD–th
to Gate Drive Low)
= –1 mA)5Cl–neg—–0.7—V
pin5
)1I
pin1
pin1
= 200 µA
> 110% I
< 12% I
to Gate Drive Low)7T
ref
to Gate Drive Low)7T
ref
= 13 V, TJ = 25°C for typical values, TJ = –40 to 105°C for min/max values
CC
4I
) to Gate Drive High7T
7T
reg–H
1I
1I
1I
8I
OVP–H–Ireg–H
OVP–L–Ireg–H
OVP–H/IOVP–L
ZCD–th
b–cs
ZCD
OCP
LEB
OCP
sync–th
off
sync
OVP
UVP/Ireg–H
UVP
stdwn
stdwn
stup–th
disable
CC
–90–60–30mV
–0.2——µA
—500—ns
192205218µA
—400—ns
100160240ns
0.811.2V
1.52.12.7µs
——0.5µs
81318µA
0———
1.02———
—500—ns
121416%
—500—ns
—150—°C
—30—°C
9.71112.3V
7.48.59.6V
—
—
0.1
4
0.25
8
mA
http://onsemi.com
4
MC33260
1.6
1.4
1.2
1.0
0.8
control
V: REGULATION BLOCK OUTPUT (V)
0.6
0.4
0.2
0
20
0
60
40
I
pin1
–40°C
25°C
105°C
100
80
: FEEDBACK CURRENT (µA)
120
140
Figure 1. Regulation Block Output versus
Feedback Current
1.340
1.335
1.330
1.325
1.320
1.315
1.310
MAXIMUM OSCILLAT OR SWING (V)I, OSCILLATOR CHARGE CURRENT ( A)
1.305
1.300
–40
–200
20
4060
JUNCTION TEMPERATURE (°C)
160
180
200
80
220
100
240
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
control
V: REGULATION BLOCK OUTPUT (V)
0
185
190195200205210
I
: FEEDBACK CURRENT (µA)
pin1
Figure 2. Regulation Block Output versus
Feedback Current
3.5
3.0
2.5
2.0
1.5
1.0
FEEDBACK INPUT VOLTAGE (V)
0.5
0
0
20 40 60 80 100 120 140 160 180 200 220 240
I
: FEEDBACK CURRENT (µA)
pin1
–40°C
25°C
105°C
–40°C
25°C
105°C
Figure 3. Maximum Oscillator Swing versus
Temperature
m
500
450
400
350
300
250
200
150
100
50
osc–ch
0
0
20 4060 80 100 120 140 160 180 200 220 240
I
pin1
–40°C
25°C
105°C
: FEEDBACK CURRENT (µA)
Figure 5. Oscillator Charge Current versus
Feedback Current
Figure 4. Feedback Input Voltage versus
Feedback Current
m
410
I
= 200 mA
pin1
405
400
395
390
385
osc–ch
I, OSCILLATOR CHARGE CURRENT ( A)
–40
–200
20
4060
JUNCTION TEMPERATURE (°C)
Figure 6. Oscillator Charge Current versus
Temperature
80
100
http://onsemi.com
5
MC33260
104
103
102
101
100
99
98
OSCILLATOR CHARGE CURRENT ( A)µ
97
I
= 100 mA
pin1
–40
–20020406080100
TJ, JUNCTION TEMPERATURE (°C)
Figure 7. Oscillator Charge Current versus
T emperature
75
65
55
45
ON–TIME ( s)µ
35
25
15
50
60708090100
I
: FEEDBACK CURRENT (µA)
pin1
1 nF Connected to Pin 3
–40°C
25°C
105°C
120
100
80
60
ON–TIME ( s)µ
40
20
0
30
507090110130150170190210
I
: FEEDBACK CURRENT (mA)
pin1
1 nF Connected to Pin 3
Figure 8. On–Time versus Feedback Current
207
I
206
205
204
203
202
201
200
199
198
197
REGULATION AND CS CURRENT SOURCE ( A)µ
–20020406080100
–40
TJ, JUNCTION TEMPERATURE (°C)
OCP
I
regH
–40°C
25°C
105°C
Figure 9. On–Time versus Feedback CurrentFigure 10. Internal Current Sources versus
T emperature
1.07
)
1.06
ref
/I
1.05
regL
1.04
), (I
1.03
ref
/I
1.02
1.01
ovpL
1.00
), (I
ref
0.99
/I
0.98
ovpH
(I
0.97
0.96
–40
Figure 11. (I
(I
(I
–20020406080100
TJ, JUNCTION TEMPERATURE (°C)
ovpH/Iref
ovpH/Iref
ovpL/Iref
(I
regL/Iref
)
)
)
), (I
ovpL/Iref
), (I
regL/Iref
)
versus T emperature
0.150
0.148
ref
/I )
0.146
uvp
0.144
0.142
0.140
0.138
0.136
0.134
UNDERVOLTAGE RATIO (I
0.132
0.130
–20020406080100
–40
TJ, JUNCTION TEMPERATURE (°C)
Figure 12. Undervoltage Ratio versus
T emperature
http://onsemi.com
6
Loading...
+ 14 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.