Mitsubishi M37560MF-XXXGP, M37560MF-XXXFP, M37560ME-XXXGP, M37560ME-XXXFP, M37560MD-XXXGP Datasheet

...
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 7560 group is the 8-bit microcomputer based on the 740 fam­ily core technology. The 7560 group has the LCD drive control circuit, an 8-channel A­D/D-A converter, UART and PWM as additional functions. The various microcomputers in the 7560 group include variations of internal memory size and packaging. For details, refer to the section on part numbering. For details on availability of microcomputers in the 7560 Group, refer the section on group expansion.

FEATURES

Basic machine-language instructions....................................... 71
The minimum instruction execution time............................ 0.5 µs
Memory size
ROM ................................................................ 32 K to 6 0 K bytes
RAM ............................................................... 1024 to 2560 bytes
Programmable input/output ports ............................................. 55
Software pull-up resistors .................................................... Built-in
Output ports ................................................................................. 8
Input ports .................................................................................... 1
Interrupts .................................................. 17 sources, 16 vectors
(at 8 MHz oscillation frequency)
(includes key input interrupt)
Timers ........................................................... 8-bit 3, 16-bit 2
Serial I/O1 ..................... 8-bit 1 (UART or Clock-synchronous)
Serial I/O2 .................................... 8-bit 1 (Clock-synchronous)
PWM output .................................................................... 8-bit 1
A-D converter .................................................. 8-bit 8 channels
D-A converter .................................................. 8-bit 2 channels
LCD drive control circuit
Bias ................................................................................... 1/2, 1/3
Duty ............................................................................ 1/2, 1/3, 1/4
Common output .......................................................................... 4
Segment output......................................................................... 40
2 Clock generating circuits
(connect to external ceramic resonator or quartz-crystal oscillator)
Watchdog timer ............................................................. 14-bit 1
Power source voltage ................................................ 2.2 to 5.5 V
Power dissipation
In high-speed mode ...........................................................40 mW
(at 8 MHz oscillation frequency, at 5 V power source voltage)
In low-speed mode..............................................................6 0 µW
(at 32 kHz oscillation frequency, at 3 V power source voltage)
Operating temperature range ...................................– 20 to 85°C

APPLICATIONS

Camera, household appliances, consumer electronics, etc.

PIN CONFIGURATION (TOP VIEW)

0
1
2
3
4
5
1
1
1
1
1
G
G
G
G
G
S
S
E
S
E
S
E
E
S
E
1
7
6
4
5
L
N
N
N
N
V
/
/
/
/
7
6
5
4
6
6
6
6
P
P
P
P
A
A
A
A
A
L K 2
S E G S E G S E G S E G S E G S E G S E G S E G S E G S E G
V
A V C O M C O M C O M C O M
V
R E F
V V
1
G S
E
E
8 1
9
8 2
8
8 3
7
8 4
6
8 5
5
8 6
4
8 7
3
8 8
2
8 9
1
9 0
0
9 1
C C
9 2 9 3
S S
9 4
3
9 5
2
9 6
1
9 7
0
9 8
L 3
9 9
L 2
10 0
C
2
1 234567891 01 11 21 314151617181 9202 122232425262 72 82 93 0
1
C
9
8
0
1
2
3
5
6
7
8
1
1
G
G
6
7
1
1
/
/
G
G
1
0
3
3
S E
S E
S E
P
S
S
E
P
4
2
2
2
2
2
2
2
2
2
G
G
G
G
G
G
G
G
/
/
/
/
2
3
4
5
3
3
3
3
S E
S E
S E
S E
P
P
P
P
G
/
/
/
/
/
6
7
0
1
2
3
0
0
3
0
S E
S E
S E
S E
S E
P
P
P
P
P
M37560MF-XXXFP
2
1
1
0
1
0
2
3
N
N
/
/
1
2
C
C
S
S
/
/
2
3
6
6
A
U T
P
P
A
L K 2
1
0
A
A
N
N
R
R
/
/
/
2
2
6
5
I
/
/
P
D
5
4
S
O
/
/
R T
5
5
0
S
7
/
P
P
6
C N T
C N T
5
1
P
A
N
6
P
A D T / D
P
1
1
0
P
P
M
M
R
S
/
/
/
3
2
/
/
7
0
1
5
5
4
5
5
P
P
R T
L K
P
D Y
P
P
P W
P W
9
0
1
2
4
5
6
7
8
3
2
3
3
3
3
3
G
G
G
G
G
G
/
/
/
/
/
/
3
4
5
6
7
0
0
0
0
0
0
S E
P
1 C
S
/
6
4 P
1
S E
S E
S E
S E
P
P
P
S E
P
P
2
1
T
D
D
T
T
X
X
O
T
R
/
T
/
/
/
5
4
2
1
4
4
/φ/
4
4
3
P
P
P
P
I N
I N
4
U
P
9
3
3
3
3
3
G
G
G
G
G
/
/
/
/
/
1
2
3
4
5
1
1
1
1
1
S E
S E
S E
P
P
P
S E
P
P
51525 35 45 55 65 7585 96 06 162636 46 56 66 76 86 97 0717 27 37 47 57 67 77 87 98 0
5 0
P 1
4 9 4 8 4 7 46 4 5 4 4 4 3 4 2 4 1 4 0 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1
6
0
7
5
4
4
7
7
7
7
P
P
P
P
P
6
P 1
7
P 2
0
P 2
1
P 2
2
P2
3
P 2
4
P2
5
P 2
6
P 2
7
V
SS
X
OUT
X
IN
X
COUT
X
CIN
R E S E T P 70/ I N T P 7
1
P 7
2
P 7
3
0
Package type : 100P6S-A
Fig. 1 Pin configuration of M37560MF-XXXFP
PIN CONFIGURATION (TOP VIEW)
3
4
5
6
1
1
1
1
G
G
G
G
S
E
S
E
S
E
S
E
S E G S E G S E G
S E G S E G S E G S E G SEG S E G S E G SEG SEG S E G
V
AV C O M C O M COM COM
V
REF
V V
V
1 2 1 1 1 0
9 8 7 6 5 4 3 2 1 0
CC
SS
3 2 1 0
L 3 L2
C
2
C
1
L 1
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
0 01
1 2345678910111 21 31 41 51 61 71 81 92 02 12 22 32 42 5
9
8
0
1
2
4
5
1
1
G
G
7 1
/
/
G
1
0
3
3
S E
S E
S E
P
P
S
E
3
2
2
2
2
2
G
G
/
/
2
3
3
3
S E
S E
P
P
2
G
G
G
G
/
/
/
/
4
5
6
7
3
3
3
3
S E
S E
S E
P
P
P
P
M37560MF-
6 2
G /
0
0
S E
S E
P
XXX
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
8
9
0
1
3
4
7 2
2
2
3
G /
1
0
S E
P
3
G
G
G
G
/
/
/
/
2
3
4
5
0
0
0
0
S E
S E
S E
S E
P
P
P
P
GP
5
2 3
G /
6
0
S E
P
6
3
G /
7
0
S E
P
7
3
3
3
3
G
G
G
G
/
/
/
/
0
1
2
3
1
1
1
1
S E
S E
S E
P
P
P
P
5 15253545556575859606 1626364656 66 76 86 97 07 17 27 37 47 5
5 0 4 9 4 8 4 7 4 6 45 4 4 4 3 42 41 4 0 3 9 3 8 3 7 3 6 35 3 4 33 3 2 31 30 29 2 8 2 7 2 6
P14/SEG P15/SEG P1
6
P1
7
P2
0
P2
1
P2
2
P2
3
P2
4
P2
5
P2
6
P2
7
V
SS
X
OUT
X
IN
X
COUT
X
CIN
RESET P70/INT P7
1
P7
2
P7
3
P7
4
P7
5
P7
6
38 39
0
7
6
5
N
N
N
/
/
/
6
5
7
6
6
6
A
A
A
A
P
P
P
Package type : 100P6Q-A
Fig. 2 Pin configuration of M37560MF-XXXGP
4
2
3
N
N
N
/
/
/
4
1
2
6 P
C
C
S
S
/
/
2
3
6
6
A
U T
A
L K 2
A
P
P
L K 2
1
1
0
2
1
0
A
N
N
/
/
2
2 I
D
S
O
/
/
0
S
7
/
6
5
1
N
A
P
A D T / D
6
P
P
1
A /
6
5 P
C N T
0
P
P
R
R
/
/
3
2
/
/
5
5
5
4
R T
R T
P
P
5
5
P W
C N T
P
P
1
1
0
1
D
D
X
M /
1
5
P W
P
X
M
C
T
R
R
/
/
S
5
4
S
/
/
4
/
0
5
D Y
P
4
6
7
4
P
P
4
P
L K
P
U
0
7
1
2
T
4
7
T
T
P
P
O
/
/
T
1
2
4
4
/φ/
3
I N
I N
P
P
4 P
2
MITSUBISHI MICROCOMPUTERS
I N
T
1
,
I
N
T
2
N
T
R
0
,
C
N
T
R
1
D
A
1
A D
T
C
P
U
A
X
S
P
C
H
C
L
P
S
R
E S E
T
C
C
V
S
S
5
V
) 0
V
)
R O
M A
M
5
9
1
0
P
4 ( 8 )P
2 ( 8
)
0 ( 8
) P
1 ( 8
)
P
6 ( 8
) P
7 ( 8
)
P
3 ( 8
) P
5 ( 8
)
1
2
0
0
9
8
9
7
9
6
5
4
0
8
9
8
7
6
5
8
4
3
2
1
0
9
7
8
7
6
5
7
4
7
3
7
8
5
9
0
1
6
2
3
4
9
0
1
2
5
3
4
5
6
1
4
2
3
4
5
4
6
7
8
5
6
7
8
9
0
1
2
9
0
2
1
2
2
3
4
2
5
6
6
7
2
7
8
9
0
3
1
2
3
4
4
5
6
8
9
0
3
2
1
2
3
1
4
5
6
7
8
C
I
N
X
C
O U
T
X
N U
T
X
C
O U
T
X
I
N
I
/
O
1
(
8
)
V
R
E
F
A
V
S
S L
1
1
2
L
2
V
L
3
C
O
M
0
C
O
M
1
C
O
M
2
C
O
M
3
E
G
0
E
G
1
E
G
2
S
E
G
3
S
E
G
4
S
E
G
5
S
E
G
6
S
E
G
7
S
E
G
8
S
E
G
9
E
G
1
0
E
G
1
1
E
G
1
2
E
G
1
3
E
G
1
4
S
E
G
1
5
S
E
G
1
6
S
E
G
1
7
φ
X
C
I
N C
O U
T
X
3
8
9
S
I / O 2 ( 8
)
P
W M ( 8
)
φ
I N
T
0
D
- A
2
-
A
1
A
2
T
O
U
T
L
C
D
d
r
i
v
e
c
o
n
t
r
o
l
c
i
r
c
u
i
t
L
C
D
d
i
s
p
l
a
y
R
A
M
(
2
0
b
y
t
e
s
)
T
i m e r X ( 1 6
)
T
i m e r Y ( 1 6
)
T
i m e r 1 ( 8
)
T
i m e r 2 ( 8
)
T
i m e r 3 ( 8
)
a
t
a
b
u
s C
l
o
c
k
g
e
n
e
r
a
t
i
n
g
c
i
r
c
u
i
t
C
l o c
k
i
n p u
t
C
l o c
k
o
u t p u
t
u
b
-
c
l
o
c
k
u
t
p
u
t
S
u b - c l o c
k
i
n p u
t
e
s
e
t
K e y i n p u t ( K e y - o n w a k e u p ) i n t e r r u p
t
R e a l t i m e p o r t f u n c t i o
n
A
- D c o n v e r t e r ( 8
)
I
/ O p o r t P
0
I
/ O p o r t P
1
I
/
O
p
o
r
t
P
2
I
/ O p o r t P
4
I
/ O p o r t P
5
I
/
O
p
o
r
t
P
6
O
u
t
p
u
t
p
o
r
t
P
3
I
/
O
p
o
r
t
P
7
e
s
e
t
i
n
p
u
t
C
O
U
T
u
b
­l
o
c
k
u
t
p
u
t
X C I
N
S
u b
­c
l o c
k
i
n p u
t
W
a t c h d o g
t
i m e
r
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL BLOCK DIAGRAM (Package : 100P6S-A)
Fig. 3 Functional block diagram
3

PIN DESCRIPTION

Table 1 Pin description (1)
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
V
CC, VSS
VREF
AVSS
RESET XIN
XOUT
VL1–VL3
C1, C2
COM0–COM
SEG0–SEG P00/SEG26
P07/SEG33
P10/SEG34– P15/SEG39
P16, P17
P20 – P27
P30/SEG18 – P37/SEG
25
FunctionPin Name
Power source Apply voltage of 2.2 V to 5.5 V to VCC, and 0 V to VSS. Analog refer-
ence voltage Analog power
source Reset input
Clock input
Clock output
LCD power source
Charge-pump capacitor pin
Common output
3
17
Segment output I/O port P0
I/O port P1
I/O port P2
Output port P3
Reference voltage input pin for A-D converter.
GND input pin for A-D converter.
Connect to VSS.
Reset input pin for active L”.
Input and output pins for the main clock generating circuit.
Connect a ceramic resonator or a quartz-crystal oscillator between the XIN and XOUT pins to set
the oscillation frequency.
If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open. A feedback resistor is built-in.
Input 0 VL1 VL2 VL3 voltage.
Input 0 VL3 voltage to LCD. (0 VL1 VL2 VL3 when a voltage is multiplied.)
External capacitor pins for a voltage multiplier (3 times) of LCD contorl.
LCD common output pins.
COM2 and COM3 are not used at 1/2 duty ratio.
COM3 is not used at 1/3 duty ratio.
LCD segment output pins.
8-bit I/O port.
CMOS compatible input level.
CMOS 3-state output structure.
Pull-up control is enabled.
I/O direction register allows each 8-bit pin to be pro-
grammed as either input or output.
6-bit I/O port with same function as port P0.
CMOS compatible input level.
CMOS 3-state output structure.
Pull-up control is enabled.
I/O direction register allows each 6-bit pin to be pro-
grammed as either input or output.
2-bit I/O port.
CMOS compatible input level.
CMOS 3-state output structure.
I/O direction register allows each pin to be individually programmred as either input or output.
Pull-up control is enabled.
8-bit I/O port with same function as P16 and P17.
CMOS compatible input level.
CMOS 3-state output structure.
Pull-up control is enabled.
8-bit output port with same function as port P0.
CMOS 3-state output structure.
Port output control is enabled.
Function except a port function
LCD segment output pins
Key input (key-on wake-up) interrupt
input pins
LCD segment output pins
4
Table 2 Pin description (2)
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
P40
P41/INT1, P42/INT2
P43/φ/TOUT
P44/RXD, P45/TXD, P46/SCLK1, P47/SRDY1
P50/PWM0, P51/PWM1
P52/RTP0, P53/RTP1
P54/CNTR0, P55/CNTR1
P56/DA1, P57/ADT/DA
P60/AN0/S
IN2,
P61/AN1/S
OUT2,
P62/AN2/S
CLK21,
P63/AN3/S
CLK22
P64/AN4– P67/AN7
P70/INT0 P71–P77
XCOUT XCIN
I/O port P4
I/O port P5
2
I/O port P6
Input port P7 I/O port P7
Sub-clock output Sub-clock input
FunctionPin Name
1-bit I/O port with same function as P16 and P17.
CMOS compatible input level.
N-channel open-drain output structure.
7-bit I/O port with same function as P16 and P17.
CMOS compatible input level.
CMOS 3-state output structure.
Pull-up control is enabled.
8-bit I/O port with same function as P16 and P17.
CMOS compatible input level.
CMOS 3-state output structure.
Pull-up control is enabled.
8-bit I/O port with same function as P16 and P17.
CMOS compatible input level.
CMOS 3-state output structure.
Pull-up control is enabled.
1-bit input port.
7-bit I/O port with same function as P16 and P17.
CMOS compatible input level.
N-channel open-drain output structure.
Sub-clock generating circuit I/O pins.
(Connect a resonator. External clock cannot be used.)
Function except a port function
Interrupt input pins
φ clock output pin
Timer 2 output pin
Serial I/O1 I/O pins
PWM function pins
Real time port function pins
Timer X, Y function pins
D-A conversion output pins
A-D conversion input pins
Serial I/O2 I/O pins
A-D conversion input pins
Interrupt input pin
5

PART NUMBERING

M
M
X X X
F P
P
ROM/PROM si
b
The fi
ROM
M
Mask ROM
R O M
Pack
r o d u c
3 7 5 6 0
t
F –
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
age type
FPGP: 100P6S-A pac kage
: 100P6Q-A package
n u m b e
1
: 4096
2
: 8192 byt es
3
: 12288 bytes
4
: 16384 bytes
5
: 20480 bytes
6
: 24576 bytes
7
: 28672 bytes
8
: 32768 bytes
9
: 36864 bytes
A
: 40960 bytes
B
: 45056 bytes
C
: 49152 bytes
D
: 53248 bytes
E
: 57344 bytes
F
: 61440 bytes
rst 128 bytes and the last 2 bytes of
are reser ved areas ; they cannot be used.
emory type
M :
r
ze
ytes
version
Fig. 4 Part numbering
6
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION

Mitsubishi plans to expand the 7560 group as follows.
Memory Type
Support for mask ROM version.
Memory Size
ROM size ........................................................... 32 K to 60 K bytes
RAM size .......................................................... 1024 to 2560 bytes
Memory Expansion Plan
ROM size (bytes)
60K 56K 52K
4 8 K
4 4 K
4 0 K
3 6 K
32K
28K
24K
20K 16K
1 2 K
8 K 4K
Under development
M37560M8
Packages
100P6Q-A .................................. 0.5 mm-pitch plastic molded QFP
100P6S-A ................................ 0.65 mm-pitch plastic molded QFP
Under development
M 3 7 5 6 0 M F
2 5 65
Fig. 5 Memory expansion plan
Currently products are listed below.
Table 3. List of products
Product
M37560M8-XXXFP M37560M8-XXXGP M37560MF-XXXFP M37560MF-XXXGP
ROM size (bytes)
ROM size for User in ( )
32768
(32638)
61440
(61310)
1
27 6 81
0 2
RAM size (bytes)
1024
2560
41 2 8 01 5 3 61 7 9 2192 2 0 4 8 2304 2560
RAM size (bytes)
Package
100P6S-A
100P6Q-A
100P6S-A
100P6Q-A
Mask ROM version Mask ROM version Mask ROM version Mask ROM version
Remarks
As of Mar. 2001
7
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL DESCRIPTION CENTRAL PROCESSING UNIT (CPU)
The 7560 group uses the standard 740 family instruction set. Re­fer to the table of 740 family addressing modes and machine instructions or the 740 Family Software Manual for details on the instruction set. Machine-resident 740 family instructions are as follows: The FST and SLW instruction cannot be used. The STP, WIT, MUL, and DIV instruction can be used.
[Accumulator (A)]
The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.
[Index Register X (X)]
The index register X is an 8-bit register. In the index addressing modes, the value of the OPERAND is added to the contents of register X and specifies the real address.
[Index Register Y (Y)]
The index register Y is an 8-bit register. In partial instruction, the value of the OPERAND is added to the contents of register Y and specifies the real address.
[Stack Pointer (S)]
The stack pointer is an 8-bit register used during subroutine calls and interrupts. This register indicates start address of stored area (stack) for storing registers during subroutine calls and interrupts. The low-order 8 bits of the stack address are determined by the contents of the stack pointer. The high-order 8 bits of the stack address are determined by the stack page selection bit. If the stack page selection bit is “0” , the high-order 8 bits becomes 0016. If the stack page selection bit is 1, the high-order 8 bits becomes 0116”. The operations of pushing register contents onto the stack and popping them from the stack are shown in Figure 7. Store registers other than those described in Figure 7 with pro­gram when the user needs them during interrupts or subroutine calls.
[Program Counter (PC)]
The program counter is a 16-bit counter consisting of two 8-bit registers PCH and PCL. It is used to indicate the address of the next instruction to be executed.
b7
b0
A Accumulator
b7
b0
X Index register X
b7
b0
Y Index register Y
b7 b0
S Stack pointer
b7b15 b0
H
PC
L
Program counterPC
b7 b0
N V T B D I Z C Processor status register (PS)
Carry flag Zero flag Interrupt disable flag Decimal mode flag Break flag Index X mode flag Overflow flag Negative flag
Fig. 6 740 Family CPU register structure
8
On-going Routin
e
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
P u s h r e t u r n a d d r e s s o n s t a c k
P O P re t u r n a d d r e s s f r o m s t a c k
I n t e r r u p t r e q u e s t
M ( S )( P CH)
(S)
M ( S )( P CL)
( S )
S u b r o u t i n e
E x e c u t e R T S
( S )
( P CL)M ( S )
(S)
( P CH)M ( S )
(S) – 1
( S ) – 1
( S ) + 1
(S) + 1
( N o t e )
Execute JSR
M (S) (PCH)
(S) – 1
(S)
M ( S )( P CL)
( S )
( S ) – 1
M (S) (PS)
( S )
( S ) – 1
I n t e r r u p t
S e r v i c e R o u t i n e
E x e c u t e R T I
(S)
(S) + 1
( P S )M ( S )
(S)
(S) + 1
( P CL)M ( S )
(S)
(S) + 1
P u s h r e t u r n a d d r e s s o n s t a c k
P u s h c o n t e n t s o f p r o c e s s o r s t a t u s r e g i s t e r o n s t a c k
I F l a g i s s e t f r o m “ 0 ” t o “ 1 ” F e t c h t h e j u m p v e c t o r
POP contents of processor status register from stack
P O P r e t u r n a d d r e s s f r o m s t a c k
(PCH)M (S)
N o t e: C o n d i t i o n f o r a c c e p t a n c e o f a n i n t e r r u p t I n t e r r u p t e n a b l e f l a g i s “ 1 ”
Fig. 7 Register push and pop at interrupt generation and subroutine call
Table 4 Push and pop instructions of accumulator or processor status register
Push instruction to stack
Accumulator Processor status register
Interrupt disable flag is “0”
PHA PHP
Pop instruction from stack
PLA PLP
9
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
[Processor status register (PS)]
The processor status register is an 8-bit register consisting of 5 flags which indicate the status of the processor after an arithmetic operation and 3 flags which decide MCU operation. Branch opera­tions can be performed by testing the Carry (C) flag , Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid.
Bit 0: Carry flag (C) The C flag contains a carry or borrow generated by the arith­metic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction.
Bit 1: Zero flag (Z) The Z flag is set if the result of an immediate arithmetic operation or a data transfer is “0”, and cleared if the result is anything other than “0”.
Bit 2: Interrupt disable flag (I) The I flag disables all interrupts except for the interrupt gener­ated by the BRK instruction. Interrupts are disabled when the I flag is “1”.
Bit 3: Decimal mode flag (D) The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is “0”; decimal arithmetic is executed when it is 1. Decimal correction is automatic in decimal mode. Only the ADC and SBC instructions can be used for decimal aritmetic.
Bit 4: Break flag (B) The B flag is used to indicate that the current interrupt was gen­erated by the BRK instruction. The BRK flag in the processor status register is always “0”. When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to “1”.
Bit 5: Index X mode flag (T) When the T flag is “0”, arithmetic operations are performed be­tween accumulator and memory. When the T flag is “1”, direct arithmetic operations and direct data transfers are enabled be­tween memory locations.
Bit 6: Overflow flag (V) The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128. When the BIT instruction is executed, bit 6 of the memory location op­erated on by the BIT instruction is stored in the overflow flag.
Bit 7: Negative flag (N) The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.
Table 5 Set and clear instructions of each bit of processor status register
Set instruction Clear instruction
C flag
SEC
CLC
Z flag
– –
I flag
SEI CLI
D flag
SED CLD
B flag
– –
T flag
SET CLT
V flag
CLV
N flag
– –
10
[CPU Mode Register (CPUM)] 003B16
N
P
CPU
( C P U M
B
)
b
b
The CPU mode register contains the stack page selection bit and the internal system clock selection bit. The CPU mode register is allocated at address 003B16.
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
7
Fig. 8 Structure of CPU mode register
0
mode register
( C M ) : a d d r e s s 0 0 3
rocessor mode bits b1 b0 0 0 : Single-chip mode 0 1 : 1 0 : 1 1 : Stack page selection bit
0 : 0 page
1 : 1 page Not used (returns “1” when read) (Do not write “0” to this bit) Port X
0 : Oscillation stop
1 : X Main clock (X
0 : Oscillating
1 : Stopped Main clock division ratio selection bit
0 : f(X
1 : f(XIN)/8 (middle-s peed mode) Internal system clock selection bit
0 : X
1 : XCIN–XCOUT selected ( low-speed m ode)
ot available
C switch bit
CIN–XCOUT oscillating function
IN–XOUT) stop bit
IN)/2 (high-speed m ode)
IN–XOUT selected (m iddle-/high-speed mode)
1 6
11
MITSUBISHI MICROCOMPUTERS
FF
RAM
RAM si
Add
6 2 8 4 0 6 2 8 4 0 6 2 8 4 0
F
F
ROM
ROM si
Add
Add
F F
FFDC
FFFE
FFFF
XXXX
YYYY
ZZZZ
RAM
R O M
R
SFR
N
)
I
a
R
ROM
Z
S
LCD displ
RAM
R
ROM
N
RAM
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MEMORY Special Function Register (SFR) Area
The Special Function Register area in the zero page contains con­trol registers such as I/O ports and timers.
RAM
RAM is used for data storage and for stack area of subroutine calls and interrupts.
ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.
Interrupt Vector Area
The interrupt vector area contains reset and interrupt vectors.
area
ze
(bytes)
1 9 2 2 5 6 3 8 4 5 1 2 6 4 0 7 6 8 8 9 6 1 0 2 4 1 5 3 6 2 0 4 8 2 5 6 0
ress
XXXX
00 013F 01BF 023F 02BF 033F 03BF 043F 063F 083F 0A3F
16
16 16
16
16
16
16
16 16 16 16
16
Zero Page
The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function regis­ters (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode.
Special Page
The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Ac­cess to this area with only 2 bytes is possible in the special page addressing mode.
0 0 0 0
1 6
0040 0054
0 1 0 0
0440
area
16 16
1 6
16
ay
area
eserved area
16
e r o p a g
e
area
ze
(bytes)
409
819 1228 1638 2048 2457 2867 3276 3686 4096 4505 4915 5324 5734 6144
ote: When
area exceeds 1024 bytes, the areas shown the table are us ed.
Fig. 9 Memory map diagram
12
YYYY
000 E000 D000 C000 B000 A000 9000 8000 7000 6000 5000 4000 3000 2000 1000
ress
ot used (Note
16
16 16 16 16 16
16 16 16 16 16 16 16 16 16 16
ZZZZ
080 E080 D080 C080 B080 A080 9080 8080 7080 6080 5080 4080 3080 2080 1080
16
16 16 16 16 16
16 16 16 16 16 16 16 16 16 16
ress
16
eserved
area
(128 by tes)
16
0
1 6
0
16
16
16
nterrupt vector are
eserved
area
p e c i a l p a g
e
MITSUBISHI MICROCOMPUTERS
A
B
C
D
E
F
A
B
C
D
E
F
A
B
C
D
E
F
A
B
C
D
E
F
P
)
P
)
P
)
P
)
P
)
P
)
P
)
P
)
P
)
P
D)
P
)
P
)
P
)
P
)
Serial I/O
(SIO1STS)
Serial I/O
(SIO1CON)
UART
(UARTCON)
B
)
I
)
T i
)
Ti
(TXM)
( I N T E D G E )
CPU
(CPUM)
I
)
I
)
I
)
T i
)
T i
)
T i
)
T i
)
T i
)
Ti
(high) (TYH)
PULL
(PULLA)
P U L L
)
Ti
(TYM)
Ti
M)
T
(CKOUT)
S
(SEG)
L C D
)
A-D
(ADCON)
A-D
(AD)
T
(TB/RB)
R
K
(KIC)
P
)
P
)
R
Serial I/O
(SIO2CON)
S
)
PWM
(PWMCON)
P W M
)
P W M
)
R
R
R
R
D-A
(DA1)
D-A
(DA2)
D
A
l
)
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
0 0 0 0 0001 0002 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8
0 0 0 9 000 000 0 0 0 0 0 0 0 0 0 000
0010
0 0 1 1
0 0 1 2
0 0 1 3
0014
0015
0016
0017
0 0 1 8
0 0 1 9 001 001 001 001 001 0 0 1
o r t P 0 ( P 0
1 6
o r t P 0 d i r e c t i o n r e g i s t e r ( P 0 D
16 16
ort P1 (P1
o r t P 1 d i r e c t i o n r e g i s t e r ( P 1 D
1 6
o r t P 2 ( P 2
1 6
o r t P 2 d i r e c t i o n r e g i s t e r ( P 2 D
1 6
o r t P 3 ( P 3
1 6
o r t P 3 o u t p u t c o n t r o l r e g i s t e r ( P 3 C
1 6
o r t P 4 ( P 4
1 6
o r t P 4 d i r e c t i o n r e g i s t e r ( P 4 D
1 6 16
ort P5 (P5
16
ort P5 direction register (P5
o r t P 6 ( P 6
1 6
o r t P 6 d i r e c t i o n r e g i s t e r ( P 6 D
1 6
o r t P 7 ( P 7
1 6
o r t P 7 d i r e c t i o n r e g i s t e r ( P 7 D
16 16 1 6 1 6 1 6
e s e r v e d a r e
16 16
ey input control register
16
r e g i s t e r B ( P U L L B
16 1 6
ransmit/Receive buffer register
1 6 16 16
a u d r a t e g e n e r a t o r ( B R G
16 16
e s e r v e d a r e
16
e r i a l I / O 2 r e g i s t e r ( S I O 2
1 6
a
register A
1 status register 1 control register
control register
2 control register
a
m e r X ( l o w ) ( T X L
0 0 2 0
1 6
m e r X ( h i g h ) ( T X H
0021
16
m e r Y ( l o w ) ( T Y L
0022
16
0 0 2 3
1 6
mer Y
m e r 1 ( T 1
0 0 2 4
1 6
m e r 2 ( T 2
0 0 2 5
1 6
m e r 3 ( T 3
0 0 2 6
1 6
0 0 2 7
1 6
0 0 2 8
0 0 2 9 002 002 0 0 2 0 0 2 002
002
0030
0 0 3 1
0 0 3 2
0 0 3 3
0034
0035
0036
0037
0 0 3 8
0 0 3 9 003 003 003 003 003
003
mer X mode register
1 6
mer Y mode register
1 6
mer 12 3 mode register (T123
16
OUT
/φ output cont rol register
16
control register
p r e s c a l e r ( P R E P W M
1 6
r e g i s t e r ( P W M
1 6
e s e r v e d a r e
16
e s e r v e d a r e
16
e s e r v e d a r e
16 1 6
eserved area
1 6 1 6 16 16
-
r e g i s t e r ( D A C O N
16 16
W a t c h d o g t i m e r c o n t r o l r e g i s t e r ( W D T C O N )
1 6
egment output enable register
m o d e r e g i s t e r ( L M
1 6 16
I n t e r r u p t e d g e s e l e c t i o n r e g i s t e r
16
n t e r r u p t r e q u e s t r e g i s t e r 1 ( I R E Q 1
16
n t e r r u p t r e q u e s t r e g i s t e r 2 ( I R E Q 2
16
n t e r r u p t c o n t r o l r e g i s t e r 1 ( I C O N 1
16
n t e r r u p t c o n t r o l r e g i s t e r 2 ( I C O N 2
16
a a a
1 conversion register 2 conversion register control register conversion register
c o n t r o
mode register
Fig. 10 Memory map of special function register (SFR)
13
MITSUBISHI MICROCOMPUTERS
P
P U L L
A
b
b
P
D i
PULL
B
b
b
N
PULL
PULL
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
I/O PORTS Direction Registers
The I/O ports (ports P0, P1, P2, P4, P5, P6, P71–P77) have direc­tion registers which determine the input/output direction of each individual pin. (Ports P00–P07 are shared with bit 0 of the port P0 direction register, and ports P10–P15 shared with bit 0 of the port P1 direction register.) Each bit in a direction register corresponds to one pin, and each pin can be set to be input port or output port. When “0” is written to the bit corresponding to a pin, that pin be­comes an input pin. When “1” is written to that bit, that pin be­comes an output pin. If data is read from a pin set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.
Port P3 Output Control Register
Bit 0 of the port P3 output control register (address 000716) en­ables control of the output of ports P30–P37. When the bit is set to “1”, the port output function is valid. When resetting, bit 0 of the port P3 output control register is set to 0 (the port output function is invalid) and pulled up.
Pull-up Control
By setting the PULL register A (address 001616) or the PULL reg­ister B (address 001716), ports P0 to P2, P4 to P6 can control pull­up with a program. However, the contents of PULL register A and PULL register B do not affect ports programmed as the output ports. The PULL register A setting is invalid for pins set to segment out­put with the segment output enable register.
7
7
ote:The contents of
do not affect ports programmed as the output port.
0
r e g i s t e r ( P U L L A : a d d r e s s 0 0 1 61
00, P01 pull-up
P0
2, P03 pull-up
P0
4–P07 pull-up
P1
0–P13 pull-up
P1
4, P15 pull-up
P1
6, P17 pull-up
P2
0–P23 pull-up
P2
4–P27 pull-up
0
register
(PULLB : addr ess 001716)
41–P43 pull-up
P4
4–P47 pull-up
P5
0–P53 pull-up
P5
4–P57 pull-up
P6
0–P63 pull-up
P6
4–P67 pull-up
Not used (return “0” when read)
register A and
6)
s a b l 0 :
1 : E n a b l e
register B
e
Fig. 11 Structure of PULL register A and PULL register B
14
Table 6 List of I/O port function (1)
Pin
P00/SEG26– P07/SEG33
P10/SEG34– P15/SEG39
P16 , P17
P20–P27
P30/SEG18– P37/SEG25
Port P0
Port P1
Port P2
Port P3
Input/OutputName
Input/output, byte unit
Input/output, 6-bit unit
Input/output, individual bits
Input/output, individual bits
Output
I/O Format
CMOS compatible input level
CMOS 3-state output CMOS compatible
input level CMOS 3-state output
CMOS compatible input level
CMOS 3-state output CMOS compatible
input level CMOS 3-state output
CMOS 3-state output
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Non-Port Function
LCD segment output
LCD segment output
Key input (key-on wake-up) interrupt input
LCD segment output
MITSUBISHI MICROCOMPUTERS
7560 Group
Related SFRs PULL register A Segment output enable
register PULL register A
Segment output enable register
PULL register A
PULL register A Interrupt control register2 Key input control register Segment output enable
register
P3 output enable register
Diagram No.
(1) (2)
(1) (2)
(4)
(3)
P40
P41/INT1, P42/INT2
P43/φ/TOUT
P44/RXD, P45/TXD, P46/SCLK1, P47/SRDY1
P50/PWM0, P51/PWM1
P52/RTP0, P53/RTP1
P54/CNTR0
P55/CNTR1
P56/DA1
P57/ADT/ DA2
Port P4
Port P5
Input/output, individual bits
Input/output, individual bits
CMOS compatible input level
N-channel open-drain output
CMOS compatible input level
CMOS 3-state output
CMOS compatible input level
CMOS 3-state output
External interrupt input
Timer output φ output
Serial I/O1 function I/O
PWM output
Real time port function output
Timer X function I/O
Timer Y function input
DA1 output
DA2 output A-D trigger input
Interrupt edge selection register
PULL register B Timer 123 mode register
TOUT/φ output control register
PULL register B Serial I/O1 control register
Serial I/O1 status register UART control register
PULL register B PWM control register
PULL register B Timer X mode register
PULL register B Timer X mode register PULL register B
Timer Y mode register PULL register B D-A control register PULL register B D-A control register A-D control register
(13)
(4)
(12)
(5) (6) (7) (8)
(10)
(9)
(11)
(14)
(15)
(15)
15
MITSUBISHI MICROCOMPUTERS
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 7 List of I/O port function (2)
Pin Name I/O Format Non-Port Function Related SFRS
P60/SIN2/AN0
P61/SOUT2/ AN1
P62/SCLK21/ AN2
P63/SCLK22 / AN3
P64/AN4– P67/AN7
P70/INT0
P71–P77
Port P6
Port P7
Input/Output
Input/ output, individual bits
Input
Input/ output, individual bits
CMOS compatible input level CMOS 3-state output
CMOS compatible input level
CMOS compatible input level
N-channel open-drain output
A-D conversion input Serial I/O2 function I/O
A-D conversion input
External interrupt input
PULL register B A-D control register Serial I/O2 control register
A-D control register PULL register B
Interrupt edge selection register
7560 Group
Diagram No.
(17)
(18)
(19)
(20)
(16)
(23)
(13)
COM0–COM3
SEG0–SEG17
Notes1: How to use double-function ports as function I/O ports, refer to the applicable sections.
2: Make sure that the input level at each pin is either 0 V or V
tential, a current will flow V
Common
Segment
Output
Output
CC to VSS through the input-stage gate.
LCD common output
LCD segment output
CC during execution of the STP instruction. When an input level is at an intermediate po-
LCD mode register
(21)
(22)
16
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
( 1 ) P o r t s P 01– P 07, P 11– P 1
S e g m e n t d a t a
D a t a b u s
(2) Ports P00, P1
D a t a b u sP
P o r t l a t c h
P o r t d i r e c t i o n r e g i s t e r
0
D i r e c t i o n r e g i s t e r
S e g m e n t d a t a
o r t l a t c
h
( 3 ) P o r t P 3
Segment data
D a t a b u s
Port latch
5
L C D d r i v e t i m i n g
I n t e r f a c e l o g i c l e v e l
s h i f t c i r c u i t
P o r t / S e g m e n t
LCD drive timing
Port/Segment
LCD drive timing
I n t e r f a c e l o g i c l e v e l
s h i f t c i r c u i t
Port/Segment
Port direction register
Interface logic level
shift circuit
Port direction register
Output control
P u l l - u p
VL2/VL3/V
S e g m e n t / P o r t
S e g m e n t
V
L 1
/ V
P o r t
VL2/VL3/V
S e g m e n t / P o r t
Segment
Pull-up
V
L 2
/ V
L 3
/ V
Segment/Port
S e g m e n t
VL1/V
P o r t
CC
S S
Pull-up
Port
C C
SS
VL1/V
CC
SS
( 4 ) P o r t s P 16, P 17, P 2 , P 41, P 4
D i r e c t i o n r e g i s t e r
D a t a b u s
Fig. 12 Port block diagram (1)
Port latch
Key-on wake up interrupt input
1
, INT2 interrupt input
INT
2
E x c e p t P 1
Pull-up control
6
, P 1
7
(5) Port P4
S e r i a l I / O 1 e n a b l e b i t
R e c e p t i o n e n a b l e b i t
Data bus
4
D i r e c t i o n r e g i s t e r
Port latch
P u l l - u p c o n t r o l
S e r i a l I / O 1 i n p u t
17
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
( 6 ) P o r t P 4
5
P 4
D a t a b u s
( 8 ) P o r t P 4
S e r i a l I / O 1 m o d e s e l e c t i o n b i t
Data bus
5
/ T x D P - c h a n n e l o u t p u t d i s a b l e b i t
S e r i a l I / O 1 e n a b l e b i t
T r a n s m i s s i o n e n a b l e b i t
S
D i r e c t i o n
r e g i s t e r
P o r t l a t c h
S e r i a l I / O 1 o u t p u t
7
S e r i a l I / O 1 e n a b l e b i t
R D Y 1
o u t p u t e n a b l e b i t
D i r e c t i o n
r e g i s t e r
Port latch
P u l l - u p c o n t r o l
P u l l - u p c o n t r o l
( 7 ) P o r t P 4
Serial I/O1 synchronization clock selection bit
S e r i a l I / O 1 e n a b l e b i t
Serial I/O1 mode selection bit
Data bus
( 9 ) P o r t s P 52, P 5
Data bus
6
Serial I/O1 enable bit
Serial I/O1 clock output
D i r e c t i o n
r e g i s t e r
P o r t l a t c h
3
D i r e c t i o n
r e g i s t e r
Port latch
P u l l - u p c o n t r o l
S e r i a l I / O 1 c l o c k i n p u t
Pull-up control
Serial I/O1 ready output
(10) Ports P50,P5
Data bus
P W M f u n c t i o n e n a b l e b i t
P W M o u t p u t
1
Direction
register
Port latch
P u l l - u p c o n t r o l
Real time control bit
Real time port data
( 1 1 ) P o r t P 5
D a t a b u s
Pulse output mode
4
D i r e c t i o n
r e g i s t e r
P o r t l a t c h
Timer output
Pull-up control
CNTR0 interrupt input
Fig. 13 Port block diagram (2)
18
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
( 1 2 ) P o r t P 4
T
OUT
/φ output control
T
O U T
/φ s e l e c t i o n b i t
( 1 4 ) P o r t P 5
Data bus
3
D i r e c t i o n
r e g i s t e r
P o r t l a t c hD a t a b u s
Timer output
φ o u t p u t
5
Direction
register
P o r t l a t c h
P u l l - u p c o n t r o l
P u l l - u p c o n t r o l
( 1 3 ) P o r t s P 40, P 71– P 7
Direction
register
P o r t l a t c hData bus
(15) Ports P56,P5
D a t a b u s
7
D i r e c t i o n
r e g i s t e r
Port latch
7
P u l l - u p c o n t r o l
C N T R1 i n t e r r u p t i n p u t
( 1 6 ) P o r t s P 64– P 6
Data bus
7
D i r e c t i o n
r e g i s t e r
P o r t l a t c h
A - D c o n v e r s i o n i n p u t
Fig. 14 Port block diagram (3)
Pull-up control
Analog input pin selection bit
(17) Port P6
Data bus
E x c e p t P 5
0
Port latch
6
D - A c o n v e r t e r o u t p u t
D i r e c t i o n
r e g i s t e r
A-D conversion input
A - D t r i g g e r i n p u t
D-A
Pull-up control
S e r i a l I / O 2 i n p u t
Analog input pin selection bit
1
,D-A2 output enable bit
19
MITSUBISHI MICROCOMPUTERS
t t
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
( 1 8 ) P o r t P 6
P61/S
OUT2
S e r i a l I / O 2 t r a n s m i t e n d s i g n a l
S y n c h r o n o u s c l o c k s e l e c t i o n b i
S e r i a l I / O 2 p o r t s e l e c t i o n b i
( 2 0 ) P o r t P 6
Synchronous clock selection bit
Synchronous clock output pin selection bit
1
P-channel output disable bit
D i r e c t i o n
r e g i s t e r
Port latchD a t a b u s
S e r i a l I / O 2 o u t p u t
3
Serial I/O2 port selection bit
A - D c o n v e r s i o n i n p u t
Direction
register
P o r t l a t c hD a t a b u s
Pull-up control
Synchronous clock output pin
Analog input pin selection bit
Pull-up control
(19) Port P6
S y n c h r o n o u s c l o c k s e l e c t i o n b i t
Serial I/O2 port selection bit
2
selection bit
D i r e c t i o n
r e g i s t e r
Port latchD a t a b u s
S e r i a l I / O 2 c l o c k o u t p u t
(21)COM0–COM
V
L 3
V
L 2
V
L1
Pull-up control
S e r i a l I / O 2 c l o c k i n p u t
A-D conversion input
Analog input pin selection bit
3
The gate input signal of each transistor is controlled by the LCD duty ratio and the bias value.
S e r i a l I / O 2 c l o c k o u t p u t
( 2 2 ) S E G0– S E G
VL2/V
V
L 1
/ V
S S
1 7
L3
Fig. 15 Port block diagram (4)
A-D conversion input
Analog input pin selection bit
T h e v o l t a g e a p p l i e d t o t h e s o u r c e s o f P ­c h a n n e l a n d N - c h a n n e l t r a n s i s t o r s i s t h e c o n t r o l l e d v o l t a g e b y t h e b i a s v a l u e .
( 2 3 ) P o r t P 7
Data bus
0
V
SS
Direction
register
Port latch
I N T0 i n p u t
20
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

Interrupts occur by seventeen sources: seven external, nine inter-
nal, and one software.
Interrupt Control
Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software in­terrupt set by the BRK instruction. An interrupt occurs if the corre­sponding interrupt request and enable bits are “1” and the inter­rupt disable flag is “0”. Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction cannot be disabled with any flag or bit. The I flag disables all interrupts except the BRK instruction interrupt. When several interrupts occur at the same time, the interrupts are received according to priority.
Table 8 Interrupt vector addresses and priority
Interrupt Source
Reset (Note 2) INT0
INT1
Serial I/O1 reception
Serial I/O1 transmission
Timer X Timer Y Timer 2
Timer 3 CNTR0
CNTR1
Timer 1 INT2
Serial I/O2
Key input (Key-on wake-up)
ADT
A-D conversion
Priority
1
2
3
4
5
6 7 8 9
10
11
12 13
14
15
16
Vector Addresses (Note 1)
LowHigh
FFFD16
FFFB16
FFF916
FFF716
FFF516
FFF316
FFF116
FFEF16 FFED16 FFEB16
FFE916
FFE716
FFE516
FFE316
FFE116
FFDF16
FFFC16
FFFA16
FFF816
FFF616
FFF416
FFF216
FFF016 FFEE16 FFEC16 FFEA16
FFE816
FFE616
FFE416
FFE216
FFE016
FFDE16
Interrupt Operation
By acceptance of an interrupt, the following operations are auto­matically performed:
1. The contents of the program counter and the processor status register are automatically pushed onto the stack.
2. The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
3. The interrupt jump destination address is read from the vector table into the program counter.
Interrupt Request
Generating Conditions At reset At detection of either rising or
falling edge of INT0 input At detection of either rising or
falling edge of INT1 input At completion of serial I/O1 data
reception At completion of serial I/O1
transmit shift or when transmis­sion buffer is empty
At timer X underflow At timer Y underflow At timer 2 underflow At timer 3 underflow At detection of either rising or
falling edge of CNTR0 input At detection of either rising or
falling edge of CNTR1 input At timer 1 underflow At detection of either rising or
falling edge of INT2 input At completion of serial I/O2 data
transmission or reception At falling of conjunction of input
level for port P2 (at input mode) At falling edge of ADT input
At completion of A-D conversion
Non-maskable External interrupt
(active edge selectable) External interrupt
(active edge selectable) Valid when serial I/O1 is selected
Valid when serial I/O1 is selected
External interrupt (active edge selectable)
External interrupt (active edge selectable)
External interrupt (active edge selectable)
Valid when serial I/O2 is selected
External interrupt (valid at falling)
Valid when ADT interrupt is selected External interrupt (valid at falling)
Valid when A-D interrupt is selected
Remarks
BRK instruction
Notes1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.
17
FFDD16
FFDC16
At BRK instruction execution
Non-maskable software interrupt
21
MITSUBISHI MICROCOMPUTERS
t t
t
b7b
I
I N T
i
(INTEDGE
A16)
I
I N T
i
I
INT
d
(IREQ
C16)
(ICON
E16)
I
C N T R
i
( I R E Q
D
)
I
CNTR
I
d
(ICON
F16)
lli
b
b
b
b
b
b
b7b
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Notes on interrupts
When setting the followings, the interrupt request bit may be set to
1”.
When setting external interrupt active edge
Related register: Interrupt edge selection register (address 3A16)
Timer X mode register (address 2716) Timer Y mode register (address 2816)
When switching interrupt sources of an interrupt vector address where two or more interrupt sources are allocated Related register: Interrupt source selection bit of A-D control
regsiter (bit 6 of address 3416)
Interrupt request bi
Interrupt enable bi
Interrupt disable flag (I)
BRK instruction
Fig. 16 Interrupt control
0
n t e r r u p t e d g e s e l e c t i o n r e g i s t e
: address 003
n t e r r u p t e d g e s e l e c t i o n b i
0
I N T1 i n t e r r u p t e d g e s e l e c t i o n b i t I N T
2
i n t e r r u p t e d g e s e l e c t i o n b i t
N o t u s e d ( r e t u r n “ 0 ” w h e n r e a d )
r
t
0 : Fa 1 : Rising edge ac ti ve
When not requiring for the interrupt occurrence synchronous with these setting, take the following sequence.
Set the corresponding interrupt enable bit to 0 (disabled).Set the interrupt edge select bit (polarity switch bit) or the inter-
rupt source select bit to “1”.
Set the corresponding interrupt request bit to “0 after 1 or more
instructions have been executed.
Set the corresponding interrupt enable bit to “1 (enabled).
Rese
ng edge active
I n t e r r u p t r e q u e s t
7
7
Fig. 17 Structure of interrupt-related registers
0
n t e r r u p t r e q u e s t r e g i s t e r
1 : address 003
n t e r r u p t r e q u e s t b i
0
I N T1 i n t e r r u p t r e q u e s t b i t S e r i a l I / O 1 r e c e i v e i n t e r r u p t r e q u e s t b i t S e r i a l I / O 1 t r a n s m i t i n t e r r u p t r e q u e s t b i t T i m e r X i n t e r r u p t r e q u e s t b i t T i m e r Y i n t e r r u p t r e q u e s t b i t T i m e r 2 i n t e r r u p t r e q u e s t b i t T i m e r 3 i n t e r r u p t r e q u e s t b i t
0
n t e r r u p t c o n t r o l r e g i s t e r
1 : address 003
0
interrupt enable bit
INT
1
interrupt enable bit Serial I/O1 receive interrupt enable bit Serial I/O1 transmit interrupt enable bit Timer X interrupt enable bit Timer Y inter rup t ena bl e bi t Timer 2 inter ru pt enable bit Timer 3 inter ru pt enable bit
1
t
1
7
0
nterrupt request register 2
2 : a d d r e s s 0 0 3
n t e r r u p t r e q u e s t b i
0
C N T R
1
i n t e r r u p t r e q u e s t b i t T i m e r 1 i n t e r r u p t r e q u e s t b i t I N T
2
i n t e r r u p t r e q u e s t b i t S e r i a l I / O 2 i n t e r r u p t r e q u e s t b i t K e y i n p u t i n t e r r u p t r e q u e s t b i t A D T / A D c o n v e r s i o n i n t e r r u p t r e q u e s t b i t N o t u s e d ( r e t u r n s “ 0 ” w h e n r e a d )
0 : No interrupt re quest issue 1 : Interrupt request issued
0
n t e r r u p t c o n t r o l r e g i s t e r
2 : address 003
0
interrupt enable bit
CNTR
1
interrupt enable bit Timer 1 interrupt enable bit INT
2
interrupt enable bit Serial I/O2 interrupt enable bit Key input interrupt enable bit ADT/AD conversion interrupt enable bit Not used (returns “0” when read) (Do not write “1” to this bit)
n t e r r u p t s d i s a b l e 0 :
1 : I n t e r r u p t s e n a b l e d
1 6
t
2
22
MITSUBISHI MICROCOMPUTERS
A
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Key Input Interrupt (Key-on Wake Up)
A Key-on wake up interrupt request is generated by applying “L” level voltage to any pin of port P2 that have been set to input mode. In other words, it is generated when AND of input level
P o r t P X x
“ L ” l e v e l o u t p u t
o u t p u P 2
o u t p u P 2
P2
7
6
5 output
P U L L r e g i s t e r
B i t 2 = “ 1
✽✽
t
✽✽
t
✽✽
P o r t P 2
7
d i r e c t i o n r e g i s t e r = “ 1 ”
Port P2 direction register = “1”
Port P2 direction register = “1”
Key input control register = “1”
7
P o r t P 2 l a t c h
K e y i n p u t c o n t r o l r e g i s t e r = “ 1 ”
6
6
Port P2 latch
K e y i n p u t c o n t r o l r e g i s t e r = “ 1 ”
5
5
Port P2 latch
goes from “1” to “0”. An example of using a key input interrupt is shown in Figure 18, where an interrupt request is generated by pressing one of the keys consisted as an active-low key matrix which inputs to ports P20–P23.
Key input interrupt request
P2
4 output
i n p u P 2
P2
i n p u P 2
i n p u P 2
3
2 input
1
0
✽✽
✽✽
t
✽✽
✽✽
t
✽✽
t
P o r t P 2 d i r e c t i o n r e g i s t e r = “ 1 ”
P o r t P 2 d i r e c t i o n r e g i s t e r = “ 0 ”
Port P22 direction register = “0”
P o r t P 2 d i r e c t i o n r e g i s t e r = “ 0 ”
P o r t P 2 d i r e c t i o n r e g i s t e r = “ 0 ”
K e y i n p u t c o n t r o l r e g i s t e r = “ 1 ”
4
4
Port P2 latch
K e y i n p u t c o n t r o l r e g i s t e r = “ 1 ”
3
P o r t P 2
3
l a t c h
K e y i n p u t c o n t r o l r e g i s t e r = “ 1 ”
2
Port P2 latch
K e y i n p u t c o n t r o l r e g i s t e r = “ 1 ”
1
P o r t P 2
1
l a t c h
0
K e y i n p u t c o n t r o l r e g i s t e r = “ 1 ”
P o r t P 20 l a t c h
Port P2 Input reading circuit
P - c h a n n e l t r a n s i s t o r f o r p u l l - u p ✽ ✽ C M O S o u t p u t b u f f e r
Fig. 18 Connection example when using key input control register, key input interrupt and port P2 block diagram
23
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMERS

The 7560 group has five timers: timer X, timer Y, timer 1, timer 2, and timer 3. Timer X and timer Y are 16-bit timers, and timer 1, timer 2, and timer 3 are 8-bit timers. All timers are down count timers. When the timer reaches “0016”, an underflow occurs at the next count pulse and the correspond­ing timer latch is reloaded into the timer and the count is contin­ued. When a timer underflows, the interrupt request bit corre­sponding to that timer is set to “1”.
R e a l t i m e p o r t
P 52/ R T P
P 53/ R T P
P54/CNTR
P 5
P 55/ C N T R
3
/φ/ T
P 4
0
1
f(X (f(X
0
Pulse width measurement mode
4
d i r e c t i o n r e g i s t e r
C N T R e d g e s w i t c h b i t
1
I N
) / 1 6
f ( X ( f ( X
C I N
) / 1 6 w h e n φ = X
O U T
P 4
3
d i r e c t i o n r e g i s t e r
c o n t r o l b i t “ 1 ”
“ 0 ”
R e a l t i m e p o r t c o n t r o l b i t “ 1 ”
“ 0 ”
IN
)/16
CIN
)/16 when φ = X
C N T R0 a c t i v e e d g e s w i t c h b i t
0
1
CNTR edge switch bit
P u l s e o u t p u t m o d e
1
a c t i v e
“ 0 ”
“ 1 ”
C I N
T i m e r 1 c o u n t s o u r c e s e l e c t i o n b i t
X
CIN
T
OUT
output
control bit
Q D
L a t c h
Q D
L a t c h
CIN
T i m e r X o p e r a t ­i n g m o d e b i t s
“ 0 0 ” , “ 0 1 ” , “ 1 1 ”
"10"
0
active
4
latch
P5
f ( X
I N
) / 1 6
( f ( X
C I N
) / 1 6 w h e n φ = X
" 0 0 " , " 0 1 " , " 1 1 "
Timer Y
"10"
operating mode bits
/ 2 )
0
“ 1 ”
T
O U T
o u t p u t a c t i v e e d g e s w i t c h b i t “ 0 ”
P 4
3
l a t c h
/2)
T i m e r 1 l a t c h ( 8 )
“ 0 ”
1
Timer 1 (8)
T
OUT
control bit
Q
“ 1 ”
Q
f ( X
I N
) / 1 6
( f ( X
C I N
w h e n φ = X
P 52 d a t a f o r r e a l t i m e p o r t
P5
3
data for
real time port
Real time port control bit “0”
“ 1 ”
T i m e r X s t o p c o n t r o l b i t
T i m e r X ( l o w ) l a t c h ( 8 )
Timer X (low) (8)
P u l s e o u t p u t m o d e
S
Q
T
Q
Rising edge detection
Falling edge detection
C I N
/ 2 )
Timer Y stop control bit
Timer Y (low) latch (8) T i m e r Y ( h i g h ) l a t c h ( 8 )
Timer Y (low) (8) Timer Y (high) (8)
T i m e r 2 c o u n t s o u r c e s e l e c t i o n b i t
“ 0 ”
1
f(X
IN
)/16
(f(X
CIN
output
S
T
“ 0 ”
) / 1 6
C I N
/ 2 )
1 T i m e r 3 c o u n t s o u r c e s e l e c t i o n b i t
Read and write operation on 16-bit timer must be performed for both high- and low-order bytes. When reading a 16-bit timer, read the high-order byte first. When writing to a 16-bit timer, write the low-order byte first. The 16-bit timer cannot perform the correct operation when reading during the write operation, or when writing during the read operation.
Data bus
Timer X mode register write signal
Timer X write control bit
Timer X (high) latch (8)
Pulse width HL continuous ly measurement mode
Period measurement mode
T i m e r 2 l a t c h ( 8 )
Timer 2 (8)
)/16 when φ = X
CIN
Timer 3 latch (8)
Timer 3 (8)
Timer X (high) (8)
/2)
T i m e r 2 w r i t e c o n t r o l b i t
T i m e r X i n t e r r u p t r e q u e s t
T i m e r Y i n t e r r u p t r e q u e s t
T i m e r 1 i n t e r r u p t r e q u e s t
Timer 2 interrupt request
T i m e r 3 i n t e r r u p t r e q u e s t
Fig. 19 Timer block diagram
24
Timer X
Ti
T i
b
b
Timer X is a 16-bit timer that can be selected in one of four modes and can be controlled the timer X write and the real time port by setting the timer X mode register.
(1) Timer mode
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).
(2) Pulse output mode
Each time the timer underflows, a signal output from the CNTR0 pin is inverted. Except for this, the operation in pulse output mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P54 direction register to output mode.
(3) Event counter mode
The timer counts signals input through the CNTR0 pin. Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corre­sponding port P54 direction register to input mode.
(4) Pulse width measurement mode
The count source is f(XIN)/16 (or f(XCIN)/16 in low-speed mode). If CNTR0 active edge switch bit is “0”, the timer counts while the in­put signal of CNTR0 pin is at “H”. If it is “1”, the timer counts while the input signal of CNTR0 pin is at “L”. When using a timer in this mode, set the corresponding port P54 direction register to input mode.
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
7
Fig. 20 Structure of timer X mode register
0
mer X mode register
(TXM : address 0027
m e r X w r i t e c o n t r o l b i
0 : W r i t e v a l u e i n l a t c h a n d c o u n t e r 1 : W r i t e v a l u e i n l a t c h o n l y
R e a l t i m e p o r t c o n t r o l b i t
0 : R e a l t i m e p o r t f u n c t i o n i n v a l i d 1 : R e a l t i m e p o r t f u n c t i o n v a l i d
2
d a t a f o r r e a l t i m e p o r t
P 5
3
d a t a f o r r e a l t i m e p o r t
P 5 T i m e r X o p e r a t i n g m o d e b i t s
b 5 b 4
00 : T i m e r m o d e 01 : P u l s e o u t p u t m o d e 10 : E v e n t c o u n t e r m o d e 11 : P u l s e w i d t h m e a s u r e m e n t m o d e
0
a c t i v e e d g e s w i t c h b i t
C N T R
0 : C o u n t a t r i s i n g e d g e i n e v e n t c o u n t e r m o d e
S t a r t f r o m “ H ” o u t p u t i n p u l s e o u t p u t m o d e M e a s u r e “ H ” p u l s e w i d t h i n p u l s e w i d t h m e a s u r e m e n t m o d e F a l l i n g e d g e a c t i v e f o r C N T R
1 : C o u n t a t f a l l i n g e d g e i n e v e n t c o u n t e r m o d e
S t a r t f r o m “ L ” o u t p u t i n p u l s e o u t p u t m o d e M e a s u r e “ L ” p u l s e w i d t h i n p u l s e w i d t h m e a s u r e m e n t m o d e R i s i n g e d g e a c t i v e f o r C N T R
T i m e r X s t o p c o n t r o l b i t
0 : C o u n t s t a r t 1 : C o u n t s t o p
16
)
t
0
i n t e r r u p t
0
i n t e r r u p t
Timer X Write Control
If the timer X write control bit is “0”, when the value is written in the address of timer X, the value is loaded in the timer X and the latch at the same time. If the timer X write control bit is “1”, when the value is written in the address of timer X, the value is loaded only in the latch. The value in the latch is loaded in timer X after timer X underflows. If the value is written in latch only, unexpected value may be set in the high-order counter when the writing in high-order latch and the underflow of timer X are performed at the same timing.
Real Time Port Control
While the real time port function is valid, data for the real time port are output from ports P52 and P53 each time the timer X underflows. (However, if the real time port control bit is changed from “0” to “1” after set of the real time port data, data are output independent of the timer X operation.) If the data for the real time port is changed while the real time port function is valid, the changed data are output at the next underflow of timer X. Before using this function, set the corresponding port direction registers to output mode.
Note on CNTR0 interrupt active edge selection
CNTR0 interrupt active edge depends on the CNTR0 active edge switch bit.
25
MITSUBISHI MICROCOMPUTERS
T i b
b
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Timer Y
Timer Y is a 16-bit timer that can be selected in one of four modes.
(1) Timer mode
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).
(2) Period measurement mode
CNTR1 interrupt request is generated at rising/falling edge of CNTR1 pin input signal. Simultaneously, the value in timer Y latch is reloaded in timer Y and timer Y continues counting down. Ex­cept for the above-mentioned, the operation in period measure­ment mode is the same as in timer mode. The timer value just before the reloading at rising/falling of CNTR1 pin input signal is retained until the timer Y is read once after the reload. The rising/falling timing of CNTR1 pin input signal is found by CNTR1 interrupt. When using a timer in this mode, set the corre­sponding port P55 direction register to input mode.
(3) Event counter mode
The timer counts signals input through the CNTR1 pin. Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corre­sponding port P55 direction register to input mode.
(4) Pulse width HL continuously measure-
ment mode
CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal. Except for this, the operation in pulse width HL continuously measurement mode is the same as in period measurement mode. When using a timer in this mode, set the corresponding port P55 direction register to input mode.
7
0
m e r Y m o d e r e g i s t e ( T Y M : a d d r e s s 0 0 2 8
Not used (return “0” when read) Timer Y opera ti ng mo de bits
b5 b4
0 0 : Timer mode 0 1 : Period measurement mode 1 0 : Event counter mode 1 1 : Pulse width HL continuously
measurement mode
1
active edge sw itch bi t
CNTR
0 : Count at rising edge in event counter mode
Measur e the fal l i ng edg e to f all in g edg e period in period measurement mode Falling edge activ e f or CNTR
1 : Count at falling edge in event counter mode
Measure the rising edge period in period measurement mode Rising edge active for CNTR
Time r Y st o p co ntrol bi t
0 : Count start 1 : Count stop
r
1 6
Fig. 21 Structure of timer Y mode register
)
1
interrupt
1
interrupt
Note on CNTR1 interrupt active edge selection
CNTR1 interrupt active edge depends on the CNTR1 active edge switch bit. However, in pulse width HL continuously measurement mode, CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal regardless of the setting of CNTR1 active edge switch bit.
26
Timer 1, Timer 2, Timer 3
T
i
T i
N
f(X
)
b
b
Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for each timer can be selected by timer 123 mode register. The timer latch value is not affected by a change of the count source. How­ever, because changing the count source may cause an inadvert­ent count down of the timer. Therefore, rewrite the value of timer whenever the count source is changed.
Timer 2 Write Control
If the timer 2 write control bit is “0”, when the value is written in the address of timer 2, the value is loaded in the timer 2 and the latch at the same time. If the timer 2 write control bit is “1”, when the value is written in the address of timer 2, the value is loaded only in the latch. The value in the latch is loaded in timer 2 after timer 2 underflows.
Timer 2 Output Control
When the timer 2 (TOUT) is output enabled, an inversion signal from pin TOUT is output each time timer 2 underflows. In this case, set the port P56 shared with the port TOUT to the out­put mode.
Note on Timer 1 to Timer 3
When the count source of timers 1 to 3 is changed, the timer counting value may be changed large because a thin pulse is gen­erated in count input of timer. If timer 1 output is selected as the count source of timer 2 or timer 3, when timer 1 is written, the counting value of timer 2 or timer 3 may be changed large be­cause a thin pulse is generated in timer 1 output. Therefore, set the value of timer in the order of timer 1, timer 2 and timer 3 after the count source selection of timer 1 to 3.
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
7
ote: Internal clock φ is
Fig. 22 Structure of timer 123 mode register
0
m e r 1 2 3 m o d e r e g i s t e ( T 1 2 3 M : a d d r e s s 0 0 2 9
v e e d g e s w i t c h b i
O U T
o u t p u t a c t 0 : S t a r t a t “ H ” o u t p u t 1 : S t a r t a t “ L ” o u t p u t
O U T
/φ o u t p u t c o n t r o l b i t
T
0 : T
O U T
/φ o u t p u t d i s a b l e d
O U T
/φ o u t p u t e n a b l e d
1 : T
T i m e r 2 w r i t e c o n t r o l b i t
0 : W r i t e d a t a i n l a t c h a n d c o u n t e r 1 : W r i t e d a t a i n l a t c h o n l y
T i m e r 2 c o u n t s o u r c e s e l e c t i o n b i t
0 : T i m e r 1 o u t p u t
I N
) / 1 6
1 : f ( X
C I N
) / 1 6 i n l o w - s p e e d m o d e )
( o r f ( X
T i m e r 3 c o u n t s o u r c e s e l e c t i o n b i t
0 : T i m e r 1 o u t p u t
I N
) / 1 6
1 : f ( X
C I N
) / 1 6 i n l o w - s p e e d m o d e )
( o r f ( X
T i m e r 1 c o u n t s o u r c e s e l e c t i o n b i t
I N
) / 1 6
0 : f ( X
C I N
) / 1 6 i n l o w - s p e e d m o d e )
( o r f ( X
C I N
)
1 : f ( X
N o t u s e d ( r e t u r n “ 0 ” w h e n r e a d )
CIN
/2 in the low-speed mode.
r
1 6
)
t
27
MITSUBISHI MICROCOMPUTERS
P
S
P
S
P
RXD
P
TXD
X
F/F
Add
R
(RBF)
R
)
S h i f
k
S
A d d
C
BRG
D
A d d
Shif
k
T
hif
hif
(TSC)
T
(TBE)
T
)
T
Add
D
A d d
A
R
S
D
D0D1D2D3D4D5D
RBF
TBE
T B E
T
hif
k
S
TXD
S
RXD
Wri
O
N
T h
D
D0D1D2D3D4D5D
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
SERIAL I/O Serial I/O1
Serial I/O1 can be used as either clock synchronous or asynchro­nous (UART) serial I/O. A dedicated timer (baud rate generator) is also provided for baud rate generation.
a t a b u
s
Receiv e buffer regi s ter
4
/
4
6
/
C L K 1
4
I N
count source selection bit
R e c e i v e s h i f t r e g i s t e r
1 / 4
47/
RDY1
45/
Falling - edge detector
Transmit buffer register (TB)
ress 0018
t c l o c
e r i a l I / O 1 s y n c h r o n i z a t i o c l o c k s e l e c t i o n b i t
F r e q u e n c y d i v i s i o n r a t i o 1 / ( n + 1 )
Baud rate generato r
r e s s 0 0 1
t cloc
Transmit shift register
r e s s 0 0 1
a t a b u
s
(1) Clock Synchronous Serial I/O Mode
Clock synchronous serial I/O mode can be selected by setting the mode selection bit of the serial I/O1 control register to “1”. For clock synchronous serial I/O1, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB (address 001816).
ransmit s
r a n s m i t i n t e r r u p t r e q u e s t ( T I
r e s s 0 0 1
t register s
ress 0019
1 6
t completion flag
16
16
Clock control circuit
1 6
C l o c k c o n t r o l c i r c u i t
8
1 6
S e r i a l I / O 1 c o n t r o l r e g i s t e r
eceive buffer full flag
e c e i v e i n t e r r u p t r e q u e s t ( R I
n
1/4
ransmit interrupt source selection bit
ransmit buffer empty flag
Serial I/O1 status register
Fig. 23 Block diagram of clock synchronous serial I/O1
ransfer s (1/2 to 1/2048 of the internal clock, or an external clock)
e c e i v e e n a b l e s i g n a l
te signal to receive/transmit
buffer register (address 0018
t cloc
e r i a l o u t p u t
e r i a l i n p u t
R D Y 1
16
)
= 0
=
1
T S C = 0
o t e
e t r a n s m i t i n t e r r u p t ( T I ) c a n b e g e n e r a t e d e i t h e r w h e n t h e t r a n s m i t b u f f e r r e g i s t e r h a s e m p t i e d ( T B E = 1 ) o r a f t e r t h e t r a n s m i t
s
1 :
s h i f t o p e r a t i o n h a s e n d e d ( T S C = 1 ) , b y s e t t i n g t h e t r a n s m i t i n t e r r u p t s o u r c e s e l e c t i o n b i t ( T I C ) o f t h e s e r i a l I / O 1 c o n t r o l r e g i s t e r .
2 : I f d a t a i s w r i t t e n t o t h e t r a n s m i t b u f f e r r e g i s t e r w h e n T S C = 0 , t h e t r a n s m i t c l o c k i s g e n e r a t e d c o n t i n u o u s l y a n d s e r i a l d a t a i s
o u t p u t c o n t i n u o u s l y f r o m t h e T
3 : T h e r e c e i v e i n t e r r u p t ( R I ) i s s e t w h e n t h e r e c e i v e b u f f e r f u l l f l a g ( R B F ) b e c o m e s “ 1 ” .
X
D p i n .
Fig. 24 Operation of clock synchronous serial I/O1 function
6
6
7
7
TSC = 1
v e r r u n e r r o r ( O E ) d e t e c t i o n
= 1
28
MITSUBISHI MICROCOMPUTERS
X
O E
P E
F E
D
R
A d d
R
R
)
R
)
Baud
F
)
Add
C
D
T
A d d
T
)
T
(TBE)
T
(TI)
A d d
S T d
SP d
UART
Add
B
Ch
A d d
A
B R G
t
T
bit
S
C l
C h
Serial I/O
P
S
S
r
P
RXD
P
TXD
TSC R B F
T B E
T B E
RBF
R B F
S T
D0D
SP
D
0
D
S T
S P
TBE
S T
D0D
SP
D0D
ST
S P
T
l
bi
E
N
S
D
S
D
R
l
T
k
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(2) Asynchronous Serial I/O (UART) Mode
Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode selection bit of the serial I/O1 control register to “0”. Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical. The transmit and receive shift registers each have a buffer regis-
a t a b u
s
r e s s 0 0 1
a r a c t e r l e n g t h s e l e c t i o n b i
4
4
e t e c t o
/
r
7 b i t s 8 bits
e r i a l I / O 1 s y n c h r o n i z a t i o n c l o c k s e l e c t i o n b i
6
/
C L K 1
4
c o u n t s o u r c e s e l e c t i o n b i
IN
1/4
5
/
4
aracter length selection bit
1 6
8
e c e i v e b u f f e r r e g i s t e
t
e c e i v e s h i f t r e g i s t e
etector
requency division ratio 1/(n+1
rate generator
ress 001
ST/SP/PA generator
r a n s m i t s h i f t r e g i s t e
Transmi t buffer regis ter
r e s s 0 0 1
ata bus
r
r
1 control register
o c k c o n t r o l c i r c u i
t
16
1/16
r
ter, but the two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer, and receive data is read from the receive buffer. The transmit buffer can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.
r e s s 0 0 1
e c e i v e b u f f e r f u l l f l a g ( R B F e c e i v e i n t e r r u p t r e q u e s t ( R I
1 / 1 6
t
ransmit interrupt source selection
e r i a l I / O 1 s t a t u s r e g i s t e
1 6
8
1 6
control register
ress 001
r a n s m i t s h i f t r e g i s t e r s h i f t c o m p l e t i o n f l a g ( T S C
ransmit interrupt request
ransmit buffer empty flag
r e s s 0 0 1
16
1 6
9
Fig. 25 Block diagram of UART serial I/O1
r a n s m i t o r r e c e i v e c l o c
r a n s m i t b u f f e r w r i t e s i g n a
=
0
=0
TBE=1
e r i a l o u t p u t T x
e c e i v e b u f f e r r e a d s i g n a
e r i a l i n p u t R x
r r o r f l a g d e t e c t i o n o c c u r s a t t h e s a m e t i m e t h a t t h e R B F f l a g b e c o m e s “ 1 ” ( a t 1 s t s t o p b i t , d u r i n g r e c e p t i o n )
o t e s
1 : 2 : T h e t r a n s m i t i n t e r r u p t ( T I ) c a n b e g e n e r a t e d t o o c c u r w h e n e i t h e r t h e T B E o r T S C f l a g b e c o m e s “ 1 ” , d e p e n d i n g o n t h e s e t t i n g o f t h e t r a n s m i t i n t e r r u p t
s o u r c e s e l e c t i o n b i t ( T I C ) o f t h e s e r i a l I / O 1 c o n t r o l r e g i s t e r .
3 : T h e r e c e i v e i n t e r r u p t ( R I ) i s s e t w h e n t h e R B F f l a g b e c o m e s “ 1 ” .
Fig. 26 Operation of UART serial I/O1 function
=
0
1
1 start 7 or 8 data bits 1 or 0 parity bit 1 or 2 stop bit (s)
1
=1
1
t
=1
G e n e r a t e d a t 2 n d b i t i n 2 - s t o p - b i t m o d e
=
0
1
.
T S C = 1
=
1
29
[Transmit Buffer/Receive Buffer Register (TB/ RB)] 0018
The transmit buffer register and the receive buffer register are lo­cated at the same address. The transmit buffer register is write­only and the receive buffer register is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer regis­ter is “0”.
16
[Serial I/O1 Status Register (SIO1STS)]
16
0019
The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O1 function and various errors. Three of the flags (bits 4 to 6) are valid only in UART mode. The receive buffer full flag (bit 1) is cleared to “0” when the receive buffer is read. If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer reg­ister, and the receive buffer full flag is set. A write to the serial I/O1 status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing “0” to the serial I/O1 enable bit SIOE (bit 7 of the Serial I/O1 Control Register) also clears all the status flags, including the error flags. All bits of the serial I/O1 status register are initialized to “0” at re­set, but if the transmit enable bit (bit 4) of the serial I/O1 control register has been set to “1”, the transmit shift register shift comple­tion flag (bit 2) and the transmit buffer empty flag (bit 0) become 1.
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
[Serial I/O1 Control Register (SIO1CON)]
16
001A
The serial I/O1 control register contains eight control bits for the serial I/O1 function.
[UART Control Register (UARTCON)] 001B16
The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the P45/TXD pin.
[Baud Rate Generator (BRG)] 001C16
The baud rate generator determines the baud rate for serial trans­fer. The baud rate generator divides the frequency of the count source by 1/(n + 1), where n is the value written to the baud rate genera­tor.
Notes on serial I/O
When setting the transmit enable bit to “1”, the serial I/O1 transmit interrupt request bit is automatically set to “1”. When not requiring the interrupt occurrence synchronous with the transmission enalbed, take the following sequence.
Set the serial I/O1 transmit interrupt enable bit to 0 (disabled).Set the transmit enable bit to 1”.Set the serial I/O1 transmit interrupt request bit to 0 after 1 or
more instructions have been executed.
Set the serial I/O1 transmit interrupt enable bit to “1 (enabled).
30
MITSUBISHI MICROCOMPUTERS
B R G
)
Serial I/O
T
)
S
U A R T
C h
)
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b 7b
e r i a l I / O 1 s t a t u s r e g i s t e
0
( S I O 1 S T S : a d d r e s s 0 0 1 9
r a n s m i t b u f f e r e m p t y f l a g ( T B E 0 : B u f f e r f u l l
1 : B u f f e r e m p t y R e c e i v e b u f f e r f u l l f l a g ( R B F )
0 : B u f f e r e m p t y 1 : B u f f e r f u l l
T r a n s m i t s h i f t r e g i s t e r s h i f t c o m p l e t i o n f l a g ( T S C ) 0 : T r a n s m i t s h i f t i n p r o g r e s s 1 : T r a n s m i t s h i f t c o m p l e t e d
O v e r r u n e r r o r f l a g ( O E ) 0 : N o e r r o r 1 : O v e r r u n e r r o r
P a r i t y e r r o r f l a g ( P E ) 0 : N o e r r o r 1 : P a r i t y e r r o r
F r a m i n g e r r o r f l a g ( F E ) 0 : N o e r r o r 1 : F r a m i n g e r r o r
S u m m i n g e r r o r f l a g ( S E ) 0 : ( O E ) U ( P E ) U ( F E ) = 0 1 : ( O E ) U ( P E ) U ( F E ) = 1
N o t u s e d ( r e t u r n s “ 1 ” w h e n r e a d )
b 7b
c o n t r o l r e g i s t e r
0
( U A R T C O N : a d d r e s s 0 0 1 B
a r a c t e r l e n g t h s e l e c t i o n b i t ( C H A S 0 : 8 b i t s
1 : 7 b i t s P a r i t y e n a b l e b i t ( P A R E )
0 : P a r i t y c h e c k i n g d i s a b l e d 1 : P a r i t y c h e c k i n g e n a b l e d
P a r i t y s e l e c t i o n b i t ( P A R S ) 0 : E v e n p a r i t y 1 : O d d p a r i t y
S t o p b i t l e n g t h s e l e c t i o n b i t ( S T P S ) 0 : 1 s t o p b i t 1 : 2 s t o p b i t s
5
P 4 0 : C M O S o u t p u t ( i n o u t p u t m o d e ) 1 : N - c h a n n e l o p e n - d r a i n o u t p u t ( i n o u t p u t m o d e )
N o t u s e d ( r e t u r n “ 1 ” w h e n r e a d )
r
1 6
)
1 6
)
/ TXD P - c h a n n e l o u t p u t d i s a b l e b i t ( P O F F )
b 7b
0
(SIO1CON : address 001A
c o u n t s o u r c e s e l e c t i o n b i t ( C S S 0 : f ( X
1 : f ( X S e r i a l I / O 1 s y n c h r o n i z a t i o n c l o c k s e l e c t i o n b i t ( S C S )
0 : B R G o u t p u t d i v i d e d b y 4 w h e n c l o c k s y n c h r o n o u s s e r i a l I / O i s s e l e c t e d . B R G o u t p u t d i v i d e d b y 1 6 w h e n U A R T i s s e l e c t e d . 1 : E x t e r n a l c l o c k i n p u t w h e n c l o c k s y n c h r o n o u s s e r i a l I / O i s s e l e c t e d . E x t e r n a l c l o c k i n p u t d i v i d e d b y 1 6 w h e n U A R T i s s e l e c t e d .
R D Y 1
S 0 : P 4 1 : P 4
T r a n s m i t i n t e r r u p t s o u r c e s e l e c t i o n b i t ( T I C ) 0 : I n t e r r u p t w h e n t r a n s m i t b u f f e r h a s e m p t i e d 1 : I n t e r r u p t w h e n t r a n s m i t s h i f t o p e r a t i o n i s c o m p l e t e d
T r a n s m i t e n a b l e b i t ( T E ) 0 : T r a n s m i t d i s a b l e d 1 : T r a n s m i t e n a b l e d
R e c e i v e e n a b l e b i t ( R E ) 0 : R e c e i v e d i s a b l e d 1 : R e c e i v e e n a b l e d
S e r i a l I / O 1 m o d e s e l e c t i o n b i t ( S I O M ) 0 : A s y n c h r o n o u s s e r i a l I / O ( U A R T ) 1 : C l o c k s y n c h r o n o u s s e r i a l I / O
S e r i a l I / O 1 e n a b l e b i t ( S I O E ) 0 : S e r i a l I / O 1 d i s a b l e d ( p i n s P 4 1 : S e r i a l I / O 1 e n a b l e d ( p i n s P 4
1 control register
I N
)
I N
) / 4
o u t p u t e n a b l e b i t ( S R D Y )
7
p i n o p e r a t e s a s o r d i n a r y I / O p i n
7
p i n o p e r a t e s a s S
4
– P 47 o p e r a t e a s o r d i n a r y I / O p i n s )
4
– P 47 o p e r a t e a s s e r i a l I / O p i n s )
16
)
R D Y 1
o u t p u t p i n
Fig. 27 Structure of serial I/O1 control registers
31
Serial I/O2
Serial I/O2 control register (SIO2CON : address 001D
16
)
b7
Internal synchronous clock select bits 0 0 0: f(XIN)/8
0 0 1: f(X
IN
)/16
0 1 0: f(X
IN
)/32
0 1 1: f(X
IN
)/64 1 0 0: 1 0 1: 1 1 0: f(X
IN
)/128 1 1 1: f(X
IN
)/256 Serial I/O2 port selection bit
0: I/O port 1: S
OUT2,SCLK21/SCLK22
signal output
P6
1/SOUT2
P-channel output disable bit 0: CMOS output (in output mode) 1: N-channel open-drain output (in output mode)
Transfer direction selection bit 0: LSB first 1: MSB first
Synchronous clock selection bit 0: External clock 1: Internal clock
Synchronous clock output pin selection bit 0: S
CLK21
1: S
CLK22
b0
b2 b1 b0
Do not set
The serial I/O2 function can be used only for clock synchronous serial I/O. For clock synchronous serial I/O2, the transmitter and the receiver must use the same clock. When the internal clock is used, transfer is started by a write signal to the serial I/O2 register. When an internal clock is selected as the synchronous clock of the serial I/O2, either P62 or P63 can be selected as an output pin of the synchronous clock. In this case, the pin that is not selected as an output pin of the synchronous clock functions as a port.
[Serial I/O2 Control Register (SIO2CON)] 001D16
The serial I/O2 control register contains 8 bits which control vari­ous serial I/O2 functions.
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
X
IN
P63 latch
(Note)
P63/S
CLK22
P62/S
CLK21
P61/S
OUT2
P60/S
IN2
Note: It is selected by the synchronous clock selection bit, the synchronous
clock output pin selection bit, and the serial I/O port selection bit.
(Note)
Serial I/O2 port selection bit
Fig. 29 Block diagram of serial I/O2 function
P62 latch
0
1
1
latch
P6
0
1
Synchronous clock
selection bit
Synchronous circuit
CLK2
S
External clock
Fig. 28 Structure of serial I/O2 control register
1/8 1/16 1/32 1/64
Divider
1/128 1/256
1
0
Internal synchronous clock select bits
Data bus
Serial I/O counter 2 (3)
Serial I/O shift register 2 (8)
Serial I/O2 interrupt request
32
Transfer clock (Note 1)
Serial I/O2 register
write signal
Serial I/O2 output S
OUT2
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(Note 2)
D
D
0
D
2
1
D
3
D
4
D
5
D
6
D
7
Serial I/O2 input S
Notes
1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial 2: When the internal clock is selected as the transfer clock, the S
When the external clock is selected as the transfer clock, a content of the serial I/O shift register is continued to shift
IN2
I/O2 control register.
during inputting a transfer clock. The S
Fig. 30 Timing of serial I/O2 function
Serial I/O2 interrupt request bit set
OUT2
pin goes to high impedance after transfer completion.
OUT2
pin does not go to high impedance after transfer completion.
33
MITSUBISHI MICROCOMPUTERS
D
C
P W M
PWM
P W M
P W M
T
PWM ci
X
PWM
P
P W M
PWM
P
P
P
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PULSE WIDTH MODULATION (PWM)

The 7560 group has a PWM function with an 8-bit resolution, based on a signal that is the clock input XIN or that clock input di­vided by 2.
Data Setting
The PWM output pin also functions as ports P50 and P51. Set the PWM period by the PWM prescaler, and set the period during which the output pulse is an “H” by the PWM register. If PWM count source is f(XIN) and the value in the PWM prescaler is n and the value in the PWM register is m (where n = 0 to 255 and m = 0 to 255) : PWM period = 255 (n+1)/f(XIN)
= 31.875 (n+1) µs (when f(XIN) = 8 MHz)
Output pulse “H” period = PWM period m/255
= 0.125 (n+1) m µs (when f(XIN) = 8 MHz)
PWM Operation
When at least either bit 1 (PWM0 function enable bit) or bit 2 (PWM1 function enable bit) of the PWM control register is set to 1, operation starts by initializing the PWM output circuit, and pulses are output starting at an “H”. When one PWM output is en­abled and that the other PWM output is enabled, PWM output which is enabled to output later starts pulse output from halfway. When the PWM register or PWM prescaler is updated during PWM output, the pulses will change in the cycle after the one in which the change was made.
31.875 m (n+1)
PWM output
m: Contents of PWM register n : Contents of PWM prescaler T : PWM cycle (when f(X
Fig. 31 Timing of PWM cycle
255
T = [31.875 (n+1)] µs
IN
) = 8 MHz)
µs
ata bus
p r e s c a l e r p r e - l a t c h
p r e s c a l e r l a t c h
o u n t s o u r c e s e l e c t i o n b i t
1 / 2
0
1
IN
p r e s c a l e
Fig. 32 Block diagram of PWM function
ransfer con trol circuit
r
register pre-latch
r e g i s t e r l a t c h
rcuit
o r t P l a c t h
ort P5
lacth
enable bit
1
5
0
0
function
enable bit
1
function
o r t P
ort P5
1
5
0
34
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
PWM control register (PWMCON : address 002B16)
Count source selection bit
0: f(XIN) 1: f(XIN)/2
PWM0 function enable bit
0: PWM0 disabled 1: PWM
1
function enable bit
PWM
0: PWM1 disabled 1: PWM1 enabled
Not used (return 0 when read)
Fig. 33 Structure of PWM control register
A
PWM (internal)
stop
0
enabled
T
C
B
B
T
C
T2
=
T2
T
stop
PWM
0
output
PWM1 output
PWM register write signal
PWM prescaler write signal
PWM0 function enable bit
1
function
PWM enable bit
Port
Port
(Changes from A to B during H period)
(Changes from T to T2 during PWM period)
When the contents of the PWM register or PWM prescaler have changed, the PWM output will change from the next period after the change.
Port
Port
Fig. 34 PWM output timing when PWM register or PWM prescaler is changed
35
MITSUBISHI MICROCOMPUTERS
A
A D
A
V
A D
b
b
I
N
)
C
A-D
it
ADT/A-D i
A V
S
V
P
S
A N
D
s
A
b
b
A-D Resi
r
P
A N
P
A N
P
A N
P
A N
P
S
AN
P
S
AN
P
S
A N
P
A D T
A
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

A-D CONVERTER

The functional blocks of the A-D converter are described below.
[A-D Conversion Register (AD)] 003516
The A-D conversion register is a read-only register that contains the result of an A-D conversion. When reading this register during an A-D conversion, the previous conversion result is read.
[A-D Control Register (ADCON)] 003416
The A-D control register controls the A-D conversion process. Bits 0 to 2 of this register select specific analog input pins. Bit 3 signals the completion of an A-D conversion. The value of this bit remains at “0” during an A-D conversion, then changes to “1” when the A­D conversion is completed. Writing “0” to this bit starts the A-D conversion. Bit 4 controls the transistor which breaks the through current of the resistor ladder. When bit 5, which is the AD external trigger valid bit, is set to “1”, this bit enables A-D conversion even by a falling edge of an ADT input. Set ports which share with ADT pins to input when using an A-D external trigger.
Comparison Voltage Generator
The comparison voltage generator divides the voltage between AVSS and VREF by 256, and outputs the divided voltages.
Channel Selector
The channel selector selects one of the input ports P67/AN7–P60/ AN0.
Comparator and Control Circuit
The comparator and control circuit compare an analog input volt­age with the comparison voltage and store the result in the A-D conversion register. When an A-D conversion is completed, the control circuit sets the AD conversion completion bit and the AD interrupt request bit to “1”. Note that the comparator is constructed linked to a capacitor, so set f(XIN) to at least 500kHz during A-D conversion. Use the clock divided from the main clock X φ.
7
- D c o n t r o l r e g i s t e
0
( A D C O N : a d d r e s s 0 0 3 4
n a l o g i n p u t p i n s e l e c t i o n b i t 0 0 0 : P 60/ A N
0 0 1 : P 61/ A N 0 1 0 : P 62/ A N 0 1 1 : P 63/ A N 1 0 0 : P 64/ A N 1 0 1 : P 65/ A N 1 1 0 : P 66/ A N 1 1 1 : P 67/ A N
c o n v e r s i o n c o m p l e t i o n b i 0 : C o n v e r s i o n i n p r o g r e s s
1 : C o n v e r s i o n c o m p l e t e d
REF
input switch bit 0 : OFF 1 : ON
e x t e r n a l t r i g g e r v a l i d b i 0 : A - D e x t e r n a l t r i g g e r i n v a l i d
1 : A - D e x t e r n a l t r i g g e r v a l i d
n t e r r u p t s o u r c e s e l e c t i o n b i 0 : I n t e r r u p t r e q u e s t a t A - D
c o n v e r s i o n c o m p l e t e d 1 : I n t e r r u p t r e q u e s t a t A D T i n p u t f a l l i n g
o t u s e d ( r e t u r n s “ 0 ” w h e n r e a d
IN as the internal clock
r
1 6
)
s
0 1 2 3 4 5 6 7
t
t
t
a t a b u
- D c o n t r o l r e g i s t e
/ D
7
/
I N 2
O U T2
2
/
0
/
1
/
2
/
3
4
/
4
6
5
/
5
6
6
/
6
6
7
/
7
6
5
0
/
6
1
/
6
62/
CLK21
63/
CLK22
Fig. 36 A-D converter block diagram
36
Fig. 35 Structure of A-D control register
7
r
3
control circu
r
C
h a n n e l s e l e c t o
o m p a r a t o
r
conversion
register
stor ladde
S
0
nterrupt request
8
REF

D-A Converter

The 7560 group has an on-chip D-A converter with 8-bit resolution and 2 channels (DAi (i=1, 2)). After the DA selection bit is set to “0”, the D-A converter is performed by setting the value in the D-A conversion register. The result of D-A con­verter is output from DAi pin. When using the D-A converter, the corresponding port direction register bit (P56/DA1, P5 7/DA2) should be set to “0” (input status) and the pull-up resistor should be in the OFF state. The output analog voltage V is determined by the value n (base
10) in the D-A conversion register as follows:
V=VREF n/256 (n=0 to 255) Where VREF is the reference voltage.
1 selection bit or DA2
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
D-A control register (DACON : address 0036
DA1 output enable bit 0 : Disabled 1 : Enabled
2
output enable bit
DA 0 : Disabled 1 : Enabled
Not used (return 0 when read) (Do not write 1 to these bits.)
16
)
At reset, the D-A conversion registers are cleared to 0016, the DAi output enable bits are cleared to “0”, and DAi pin goes to high impedance state. The DA output is not buffered, so connect an external buffer when driving a low-impedance load.
Note on applied voltage to VREF pin
When the P56/DA1 pin and P57/DA2 pin are used as I/O ports, be sure to apply Vcc level to VREF pin. When these pins are used as D-A conversion output pins, the Vcc level is recommended for the applied voltage to VREF pin. When the voltage below Vcc level is applied, the D-A conversion accuracy may be worse.
Fig. 37 Structure of D-A control register
Data bus
D - A 1 c o n v e r s i o n r e g i s t e r ( D A 1 : a d d r e s s 0 0 3 2 D - A 2 c o n v e r s i o n r e g i s t e r ( D A 2 : a d d r e s s 0 0 3 3
D-A i conversion register (8)
D A i o u t p u t e n a b l e b i t
R-2R resistor ladder
Fig. 38 Block diagram of D-A converter
1 6
)
1 6
)
P5
6
P57/DA
/DA
1 2
37
MITSUBISHI MICROCOMPUTERS
S
S b7b
L C D
D
N
b
b
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

LCD DRIVE CONTROL CIRCUIT

The 7560 group has the built-in Liquid Crystal Display (LCD) drive control circuit consisting of the following.
LCD display RAM
Segment output enable register
LCD mode register
Voltage multiplier
Selector
Timing controller
Common driver
Segment driver
Bias control circuit
A maximum of 40 segment output pins and 4 common output pins can be used. Up to 160 pixels can be controlled for LCD display. When the LCD
7
o t e : L C D C K i s a c l o c k f o r a L C D t i m i n g c o n t r o l l e r
0
egment output enable register
(SEG : address 0038
e g m e n t o u t p u t e n a b l e b i t 0 : O u t p u t p o r t s P 3
1 : S e g m e n t o u t p u t S E G S e g m e n t o u t p u t e n a b l e b i t 1 0 : O u t p u t p o r t s P 3 1 : S e g m e n t o u t p u t S E G S e g m e n t o u t p u t e n a b l e b i t 2 0 : I / O p o r t s P 0 1 : S e g m e n t o u t p u t S E G S e g m e n t o u t p u t e n a b l e b i t 3 0 : I / O p o r t s P 0 1 : S e g m e n t o u t p u t S E G S e g m e n t o u t p u t e n a b l e b i t 4 0 : I / O p o r t P 1 1 : S e g m e n t o u t p u t S E G S e g m e n t o u t p u t e n a b l e b i t 5 0 : I / O p o r t s P 1 1 : S e g m e n t o u t p u t S E G L C D o u t p u t e n a b l e b i t 0 : D i s a b l e d 1 : E n a b l e d N o t u s e d ( r e t u r n “ 0 ” w h e n r e a d ) ( D o n o t w r i t e “ 1 ” t o t h i s b i t )
0
m o d e r e g i s t e ( L M : a d d r e s s 0 0 3 9
enable bit is set to “1” after data is set in the LCD mode register, the segment output enable register and the LCD display RAM, the LCD drive control circuit starts reading the display data automati­cally, performs the bias control and the duty ratio control, and dis­plays the data on the LCD panel.
Table 9. Maximum number of display pixels at each duty ratio
Duty ratio Maximum number of display pixel
2
3
4
16
)
0
6
0
– P 0
6
, P 0
7
0
1
– P 1
r
1 6
C I N
) / 3 2
I N
) / 8 1 9 2 ( f ( X
)
.
u t y r a t i o s e l e c t i o n b i t 0 0 : N o t u s e d
0 1 : 2 d u t y ( u s e C O M 1 0 : 3 d u t y ( u s e C O M 1 1 : 4 d u t y ( u s e C O M B i a s c o n t r o l b i t 0 : 1 / 3 b i a s 1 : 1 / 2 b i a s L C D e n a b l e b i t 0 : L C D O F F 1 : L C D O N V o l t a g e m u l t i p l i e r c o n t r o l b i t 0 : V o l t a g e m u l t i p l i e r d i s a b l e 1 : V o l t a g e m u l t i p l i e r e n a b l e L C D c i r c u i t d i v i d e r d i v i s i o n r a t i o s e l e c t i o n b i t s 0 0 : C l o c k i n p u t 0 1 : 2 d i v i s i o n o f C l o c k i n p u t 1 0 : 4 d i v i s i o n o f C l o c k i n p u t 1 1 : 8 d i v i s i o n o f C l o c k i n p u t L C D C K c o u n t s o u r c e s e l e c t i o n b i t ( N o t e ) 0 : f ( X 1 : f ( X
80 dots or 8 segment LCD 10 digits 120 dots or 8 segment LCD 15 digits 160 dots or 8 segment LCD 20 digits
0
– P 3
5
1 8
– S E G
2 3
, P 3
7
2 4
, S E G
2 5
5
2 6
– S E G
3 1
3 2
, S E G
3 3
3 4
5
3 5
– S E G
3 9
s
0
, C O M1)
0
– C O M2)
0
– C O M3)
C I N
) / 8 1 9 2 i n l o w - s p e e d m o d e )
Fig. 39 Structure of segment output enable register and LCD mode register
38
Fig. 40 Block diagram of LCD controller/driver
D a t a b u s
A d d r e s s 0 0 4 0
1 6
A d d r e s s 0 0 4 1
1 6
A d d r e s s 0 0 5 3
1 6
L C D d i s p l a y R A M
V o l t a g e m u l t i p l i e r c o n t r o l b i t
B i a s c o n t r o l b i t
L C D e n a b l e b i t
D u t y r a t i o s e l e c t i o n b i t s
L C D c i r c u i t d i v i d e r d i v i s i o n r a t i o s e l e c t i o n b i t s
2
2
L C D C K c o u n t s o u r c e s e l e c t i o n b i t
L C D d i v i d e r
“ 0 ”
1
f ( X
C I N
) / 3 2
f ( X
I N
) / 8 1 9 2
C I N
) / 8 1 9 2 i n l o w -
( f ( X s p e e d m o d e )
S e l e c t o rS e l e c t o rS e l e c t o r
L e v e l
L e v e l
s h i f t
d r i v e r
1
L e v e l
s h i f t
S e g m e n t
d r i v e r
S E G
s h i f t
S e g m e n t
d r i v e r
S E G
0
S e g m e n t
S E G
2
S e l e c t o r
L e v e l
s h i f t
S e g m e n t
d r i v e r
S E G
S e l e c t o r
S e l e c t o r
L e v e l
s h i f t
L e v e l
s h i f t
B i a s c o n t r o l
T i m i n g c o n t r o l l e r
L e v e l
L e v e l
L e v e l
S h i f t
S h i f t
V
C C
S h i f t
L e v e l
S h i f t
L C D C K
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
S e g m e n t
d r i v e r
S e g m e n t
d r i v e r
L C D o u t p u t e n a b l e b i t
C o m m o n
d r i v e r
C o m m o n
d r i v e r
C o m m o n
d r i v e r
C o m m o n
d r i v e r
MITSUBISHI MICROCOMPUTERS
7560 Group
V
3
P 30/ S E G
P 14/ S E G
3 8
P 15/ S E G
1 8
3 9
S SVL 1VL 2VL 3
C1C
2
C O M
0
C O M1C O M
C O M
3
2
39
MITSUBISHI MICROCOMPUTERS
V
V
C2C
V
b i
V
V
C
C
V
b i
O
O
R
R
R
R
C
l
V
V
C2C
V
b i
O
O
R
R
R4=R
C
l
PX
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Voltage Multiplier (3 Times)
The voltage multiplier performs threefold boosting. This circuit in­puts a reference voltage for boosting from LCD power input pin
L1. (However, when using a 1/2 bias, connect VL1 and VL2 and
V apply voltage by external resistor division.) Set each bit of the segment output enable register and the LCD mode register in the following order for operating the voltage mul­tiplier.
1. Set the segment output enable bits (bits 0 to 5) of the seg­ment output enable register to “0” or 1.
2. Set the duty ratio selection bits (bits 0 and 1), the bias con­trol bit (bit 2), the LCD circuit divider division ratio selection bits (bits 5 and 6), and the LCDCK count source selection bit (bit 7) of the LCD mode register to “0” or 1.
3. Set the LCD output enable bit (bit 6) of the segment output enable register to 1.
4. Set the voltage multiplier control bit (bit 4) of the LCD mode register to 1.
When voltage is input to the V multiplier, voltage that is twice as large as VL1 occurs at the VL2 pin, and voltage that is three times as large as VL1 occurs at the VL3 pin. When using the voltage multiplier, apply 1.3 V Voltage 2.1 V to the VL1 pin. When not using the voltage multiplier,apply proper voltage to the LCD power input pins (VL1–VL3). Then set the LCD output enable bit to 1. When the LCD output enable bit is set to 0, the VCC voltage is applied to the VL3 pin inside of this microcomputer. The voltage multiplier control bit (bit 4 of the LCD mode register) controls the voltage multiplier.
L1 pin during operating the voltage
Bias Control and Applied Voltage to LCD Power Input Pins
To the LCD power input pins (VL1–VL3), apply the voltage shown in Table 10 according to the bias value. Select a bias value by the bias control bit (bit 2 of the LCD mode register).
Table 10. Bias control and applied voltage to VL1–VL3
Bias value
VL3=VLCD
1/3 bias
VL2=2/3 VLCD VL1=1/3 VLCD VL3=VLCD
1/2 bias
VL2=VL1=1/2 VLCD
Note : VLCD is the maximum value of supplied voltage for the
LCD panel.
Voltage value
L 3
L 2
1
L 1
a 1 / 3
s
w h e n u s i n g t h e v o l t a g e m u l t i p l i e r
o n t r a s t c o n t r o
L 3
L 2
p e
2
p e
1
L 1
a 1 / 3
s
w h e n n o t u s i n g t h e v o l t a g e m u l t i p l i e r
1
n
2
n
3
1 = R 2 = R
3
a 1 / 2
L 3
L 2
p e
p e
1
L 1
x
s
o n t r a s t c o n t r o
4
n
n
5
5
Fig. 41 Example of circuit at each bias
40
MITSUBISHI MICROCOMPUTERS
B i t
Add
S E G
C O M3C O M0C O M2C O M1C O M0C O M3C O M2C O M
S E G
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Common Pin and Duty Ratio Control
The common pins (COM0–COM3) to be used are determined by duty ratio. Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the LCD mode register). When releasing from reset, the VCC (VL3) voltage is output from the common pins.
Table 11. Duty ratio control and common pins used
Duty
Duty ratio selection bits
ratio
Bit 1 2 3
4
0 1
1
Bit 0
1 0
1
Common pins used
COM0, COM1 (Note 1) COM0–COM2 (Note 2) COM0–COM3
Notes 1: COM2 and COM3 are open.
2: COM3 is open.
Segment Signal Output Pin
Segment signal output pins are classified into the segment-only pins (SEG0–SEG 17), the segment/output port pins (SEG18– SEG25), and the segment/I/O port pins (SEG26–SEG39). Segment signals are output according to the bit data of the LCD RAM corresponding to the duty ratio. After reset release, a VCC (=VL3) voltage is output to the segment-only pins and the seg­ment/output port pins are the high impedance condition and pulled up to VCC (=VL3) voltage. Also, the segment/I/O port pins(SEG26–SEG39) are set to input ports, and VCC (=VL3) is applied to them by pull-up resistor.
LCD Display RAM
Address 004016 to 005316 is the designated RAM for the LCD dis­play. When “1” are written to these addresses, the corresponding segments of the LCD display panel are turned on.
LCD Drive Timing
The LCDCK timing frequency (LCD drive timing) is generated in­ternally and the frame frequency can be determined with the fol­lowing equation;
(frequency of count source for LCDCK) f(LCDCK)= (divider division ratio for LCD)
f(LCDCK) Frame frequency= duty ratio
Fig. 42 LCD display RAM map
ress
0 0 4 01 0 0 4 11 0 0 4 21 0 0 4 31 0 0 4 41 0 0 4 51 0 0 4 61 0 0 4 71
0 0 4 81 0 0 4 91 0 0 4 A1 0 0 4 B1 0 0 4 C1 0 0 4 D1 0 0 4 E1 0 0 4 F1
0 0 5 01
0 0 5 11
0 0 5 21
0 0 5 31
76543210
6 6 6 6 6 6 6 6 6
6
6 6 6 6 6
6 6 6 6 6
S E G3 S E G5 S E G7
S E G9 S E G1 S E G1 S E G1 S E G1 S E G1 S E G2 S E G2 S E G2 S E G2 S E G2 S E G3 S E G3 S E G3 S E G3 S E G3
1
1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
S E G2 S E G4 S E G6
S E G8 S E G1 S E G1 S E G1 S E G1 S E G1 S E G2 S E G2 S E G2 S E G2 S E G2 S E G3 S E G3 S E G3 S E G3 S E G3
1
0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
41
I n t e r n a l l o g i c L C D C K t i m i n g
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
1 / 4 d u t y
C O M
C O M
C O M
C O M
S E G
1 / 3 d u t y
COM
C O M
Voltage level
V
L 3
V
L 2
= V
0
1
2
3
0
L 1
V
S S
V
L 3
V
SS
OFF ON OFF ON
COM
3
COM2COM1COM
0
1
COM
0
3
COM2COM
1
COM
0
V
L 3
V
L 2
= V
L 1
V
SS
C O M
2
S E G
0
O F FO N O NOFFO NO
COM0C O M2C O M
1 / 2 d u t y
C O M
0
C O M
1
SEG
0
OFFON OFFON OFFON OFFON
COM1C O M0C O M
Fig. 43 LCD drive waveform (1/2 bias)
V
L3
V
SS
F
F
COM
COM
0
C O M2C O M1COM0COM
0
C O M1C O M0COM1COM
2
V
L 3
V
L 2
= V
L 1
V
S S
V
L 3
V
S S
0
1
1
42
I n t e r n a l l o g i c
L C D C K t i m i n g
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
1 / 4 d u t y
C O M0
C O M1
C O M2
C O M3
S E G0
1/3 duty
COM
C O M1
V o l t a g e l e v e l
VL
3
VL
2
VL
1
VS
S
VL
3
VS
S
O F FO
COM3
0
COM2 COM1 COM0
N O F FON
COM3
COM2 COM1 COM0
VL VL2 VL VS
3 1
S
COM2
SEG0
1 / 2 d u t y
C O M0
COM1
S E G0
OFFO N O NO
COM0
C O M2 C O M1 C O M0
OFFON OFFON OFFON OFFON
C O M1 C O M0
C O M1 C O M0
F
F ON O F F
COM2 COM1 COM0 COM2
COM1 C O M0 C O M1 C O M0
VL VS
VL VL VL VSS
VL VS
3
S
3 2 1
3
S
Fig. 44 LCD drive waveform (1/3 bias)
43
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Watchdog Timer

The watchdog timer gives a mean of returning to the reset status when a program cannot run on a normal loop (for example, be­cause of a software runaway). The watchdog timer consists of an 8-bit watchdog timer L and a 6­bit watchdog timer H. At reset or writing to the watchdog timer control register (address 003716), the watchdog timer is set to 3FFF16. When any data is not written to the watchdog timer con­trol register (address 003716) after reset, the watchdog timer is in stop state. The watchdog timer starts to count down from 3FFF16 by writing an optional value into the watchdog timer control regis­ter (address 003716) and an internal reset occurs at an underflow. Accordingly, programming is usually performed so that writing to the watchdog timer control register (address 003716) may be started before an underflow. The watchdog timer does not function when an optional value has not been written to the watchdog timer control register (address 003716). When address 003716 is read, the following values are read:
FF16” is set when
1
0
STP instruction
watchdog timer is
written to.
1/16
Undefined instruction
Watchdog timer
L (8)
Reset
X
CIN
Internal system clock selection bit (Note)
X
IN
STP instruction disable bit
RESET
Note: This is the bit 7 of CPU mode register and is used to switch the middle-/high-speed mode and low-speed mode.
Fig. 45 Block diagram of watchdog timer
value of high-order 6-bit counter
value of STP instruction disable bit
value of count source selection bit.
When bit 6 of the watchdog timer control register (address 003716) is set to 0, the STP instruction is valid. The STP instruction is disabled by rewriting this bit to 1. At this time, if the STP instruc­tion is executed, it is processed as an undefined instruction, so that a reset occurs inside. This bit cannot be rewritten to “0” by programming. This bit is “0” immediately after reset. The count source of the watchdog timer becomes the system clock φ divided by 8. The detection time in this case is set to 8.19 s at f(XCIN) = 32 kHz and 32.768 ms at f(XIN) = 8 MHz. However, count source of high-order 6-bit timer can be connected to a signal divided system clock by 8 directly by writing the bit 7 of the watchdog timer control register (address 003716) to 1. The detection time in this case is set to 32 ms at f(XCIN) = 32 kHz and 128 µs at f(XIN) = 8 MHz. There is no difference in the detection time between the middle-speed mode and the high-speed mode.
Data bus
Watchdog timer H count source selection bit
0
1
Watchdog timer
H (6)
Reset circuit
Reset release time wait
3F16” is set when watchdog timer is written to.
Internal reset
b 7 b 0
Fig. 46 Structure of watchdog timer control register
f ( X
I N
)
I n t e r n a l r e s e t s i g n a l
W a t c h d o g t i m e r d e t e c t i o n
Fig. 47 Timing of reset output
44
1 6
W a t c h d o g t i m e r r e g i s t e r ( a d d r e s s 0 0 3 7 W D T C O N
W a t c h d o g t i m e r H ( f o r r e a d - o u t o f h i g h - o r d e r 6 b i t )
“ 3 F F F
1 6
i s s e t t o t h e w a t c h d o g t i m e r b y w r i t i n g v a l u e s t o t h i s a d d r e s s .
S T P i n s t r u c t i o n d i s a b l e b i t 0 : S T P i n s t r u c t i o n e n a b l e d 1 : S T P i n s t r u c t i o n d i s a b l e d
Watchdog timer H count source selecion bit
0 : Watchdog timer L underfl ow 1 : f(X
IN
1
m s
)/16 or f(X
( f ( X
I N
) = 8 M HZ)
CIN
)/16
)

TOUT/φ CLOCK OUTPUT FUNCTION

The internal system clock φ or timer 2 divided by 2 (TOUT output) can be output from port P43 by setting the TOUT/φ output control bit (bit 1) of the timer 123 mode register and the TOUT/φ output control register. Set bit 3 of the port P4 direction register to “1” when outputting the clock.
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7 b0
b7 b0
T
OUT
/φ output control register
(CKOUT : address 002A
T
OUT
/φ output control bit 0 : φ clock output 1 : T
OUT
Not used (return 0 when read)
Timer 123 mode register (T123M : address 0029
output
T
OUT
output active edge switch bit 0 : Start at H output 1 : Start at L output
T
OUT
/φ output control bit 0 : T
OUT
/φ output disabled
1 : T
OUT
Timer 2 write control bit
Timer 2 count source selection bit
Timer 3 count source selection bit
Timer 1 count source selection bit
/φ output enabled
0 : Write data in latch and timer 1 : Write data in latch only
0 : Timer 1 output 1 : f(X
IN
)/16
(or f(X
CIN
0 : Timer 1 output 1 : f(X
IN
)/16
(or f(X
CIN
0 : f(X
IN
)/16
(or f(X
CIN
1 : f(X
CIN
16
)
16
)
)/16 in low-speed mode✽)
)/16 in low-speed mode✽)
)/16 in low-speed mode✽)
)
Not used (return 0 when read)
Fig. 48 Structure of TOUT/
✽ : Internal clock φ is f(X
φφ
φ output-related register
φφ
CIN
)/2 in the low-speed mode.
45
MITSUBISHI MICROCOMPUTERS
P o w e r s o u r c e v o l t a g e d e t e c t i o n c i r c u i t
N o t e : R e s e t r e l e a s e v o l t a g e V
C C
= V
C C
( m i n . )
A D
FFFC
F F F D
A DH,???
?
X
b
N
X
d
f(XIN)
f(φ)
R R E S E T
I
A d d
D
S Y N C
φ
X
A D
AD
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

To reset the microcomputer, RESET pin should be held at an “L” level for 2 µs or more. Then the RESET pin is returned to an “H” level (the power source voltage should be between VCC(min.) and
5.5 V, and the quartz-crystal oscillator should be stable), reset is released. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and ad­dress FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.2 VCC for VCC of VCC (min.).
P o w e r s o u r c e
R E S E T
v o l t a g e
V
C C
0V
R e s e t i n p u t v o l t a g e
0V
V
R E S E T
CC
Fig. 49 Example of reset circuit
P o w e r o n
(N o t e)
0 . 2 V
C C
IN
n t e r n a l r e s e
r e s
a t
t
s
a
Fig. 50 Reset Sequence
: a
o u t 8 2 0 0
I N
c l o c k c y c l e s
e s e t a d d r e s s f r o m v e c t o r t a b l e
L
otes 1 :
IN an
2 : A question mark (?) indicates an undefi ned status that depends on the previous status.
φ are in the relationship :
H
= 8
L
46
MITSUBISHI MICROCOMPUTERS
N
Regi
Add
B
D
F
A
B
D
A
B
A
B
C
D
E
F
(PS)
(PCH)
( P CL)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
FF
FF
FF
F
FF
FF (44)
FF
F
FF
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
P o r t P 0 d i r e c t i o n r e g i s t e r P o r t P 1 d i r e c t i o n r e g i s t e r P o r t P 2 d i r e c t i o n r e g i s t e r P o r t P 3 o u t p u t c o n t r o l r e g i s t e r P o r t P 4 d i r e c t i o n r e g i s t e r P o r t P 5 d i r e c t i o n r e g i s t e r P o r t P 6 d i r e c t i o n r e g i s t e r P o r t P 7 d i r e c t i o n r e g i s t e r
Key input control register
P U L L r e g i s t e r A P U L L r e g i s t e r B S e r i a l I / O 1 s t a t u s r e g i s t e r S e r i a l I / O 1 c o n t r o l r e g i s t e r U A R T c o n t r o l r e g i s t e r Serial I/O2 control register Timer X (low) Timer X (high) T i m e r Y ( l o w ) T i m e r Y ( h i g h ) Timer 1 Timer 2 T i m e r 3 Timer X mode register T i m e r Y m o d e r e g i s t e r Timer 123 mode register T
O U T
/φ o u t p u t c o n t r o l r e g i s t e r P W M c o n t r o l r e g i s t e r D - A 1 c o n v e r s i o n r e g i s t e r D-A2 conversion register A-D contro l r egister D-A control register Watchdog timer control register S e g m e n t o u t p u t e n a b l e r e g i s t e r L C D m o d e r e g i s t e r I n t e r r u p t e d g e s e l e c t i o n r e g i s t e r CPU mode register Interrupt request register 1 Interrupt request register 2 Interrupt control register 1 I n t e r r u p t c o n t r o l r e g i s t e r 2 P r o c e s s o r s t a t u s r e g i s t e r P r o g r a m c o u n t e r
Watchdog timer (high- or der) Watchdog timer (low-order)
ress
0 0 0 1 0 0 0 31 0 0 0 51 0 0 0 71
000916 0 0 0 0 0 0
0 0 0
0 0 1 51
0 0 1 61
001716
001916 0 0 1 001
0 0 1
002016 0 0 2 11 0 0 2 21 002316 002416 0 0 2 51 0 0 2 61 002716 0 0 2 81 002916
002 0 0 2
0 0 3 21 0 0 3 31 003416 003616 0 0 3 71 0 0 3 81 0 0 3 91
003
003
003
003 003 0 0 3
1 6
6
6
6
1 6
1 6
1 6
6
6
1 6
16
1 6
6
6
6
6
6
16
1 6
6
6
6
6
6
16
16
16
16
16
1 6
ster contents
0016 0016 0016 0016 0016 0016 0016 0016 0016 3
16
0016
100000 00
0016
111000 00
0016
16
16
16
16
16
0116
16
0016 0016 0016 0 01
6
0016 0016 0016
00010000
0016
001111 11
00
16
0016 0016
100
10 0016 0016 0016 0016
1✕✕✕✕
Contents of address FFFD
C o n t e n t s o f a d d r e s s F F F C1
3
16
16
000
16
6
o t e : T h e c o n t e n t s o f a l l o t h e r r e g i s t e r s a n d R A M a r e u n d e f i n e d a f t e r
r e s e t , s o t h e y m u s t b e i n i t i a l i z e d b y s o f t w a r e . : U n d e f i n e d
Fig. 51 Internal state of microcomputer immediately after reset
47
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

The 7560 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No exter­nal resistor is needed between X resistor exists on-chip. However, an external feed-back resistor is needed between X To supply a clock signal externally, input it to the XIN pin and make the XOUT pin open. The sub-clock XCIN-XCOUT oscillation circuit cannot directly input clocks that are externally generated. Accord­ingly, be sure to cause an external resonator to oscillate. Immediately after poweron, only the XIN oscillation circuit starts oscillating, and XCIN and XCOUT pins go to high-impedance state.
CIN and XCOUT.
IN and XOUT since a feed-back
Frequency Control (1) Middle-speed mode
The internal clock φ is the frequency of XIN divided by 8. After reset, this mode is selected.
(2)High-speed mode
The internal clock φ is half the frequency of XIN.
(3) Low-speed mode
The internal clock φ is half the frequency of XCIN.
A low-power consumption operation can be realized by stopping
the main clock XIN in this mode. To stop the main clock, set bit 5 of the CPU mode register to “1”. When the main clock XIN is restarted, set enough time for oscil­lation to stabilize by programming.
Note: If you switch the mode between middle/high-speed and low-
speed, stabilize both XIN and XCIN oscillations. The suffi­cient time is required for the sub-clock to stabilize, espe­cially immediately after power-on and at returning from stop mode. When switching the mode between middle/high­speed and low-speed, set the frequency in the condition that f(XIN) > 3f(XCIN).
Oscillation Control (1) Stop mode
If the STP instruction is executed, the internal clock φ stops at an
H level, and XIN and XCIN oscillators stop. Timer 1 is set toFF16 and timer 2 is set to 0116”.
Either X source, and the output of timer 1 is connected to timer 2. The bits of the timer 123 mode register except bit 4 are cleared to 0. Set the timer 1 and timer 2 interrupt enable bits to disabled (0) before executing the STP instruction. Oscillator restarts at reset or when an external interrupt is re­ceived, but the internal clock φ is not supplied to the CPU until timer 2 underflows. This allows time for the clock circuit oscillation to stabilize when a ceramic resonator is used.
IN or XCIN divided by 16 is input to timer 1 as count
(2) Wait mode
If the WIT instruction is executed, the internal clock φ stops at an H level. The states of XIN and XCIN are the same as the state be- fore the executing the WIT instruction. The internal clock restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.
X
C I N
C O U T
X
R f
R d
C
C I N
Fig. 52 Ceramic resonator circuit
C
C O U T
X
I N
X
O U T
C
C
I N
O U T
48
N
XI
E x t e r n a l o s c i l l a t i o n c i r c u i t
T
CC
V
I
CC
N
C I N XC O U T
X
R f
R d
O U
CC
VSS
Fig. 53 External clock input circuit
XO U T
O p e n
MITSUBISHI MICROCOMPUTERS
W I T STP i
Timi SRQ
STP i
SRQ
Mai
SRQ
T i
Ti
X
X
X
X
I
t
R
T i
Ti L
M i d d l
I
Middl
High
N
X
i
M
I
I
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
CIN
C O U T
I N
O U T
e - / H i g h - s p e e d m o d
n clock stop bit
n t e r n a l s y s t e m c l o c k s e l e c t i o n b i
o w - s p e e d m o d
“ 0 ”
1
( N o t e )
e
1 / 2
1/4
e
-speed mode
or Low-speed mode
1
0
t
1 / 2
a i n c l o c k d i v i s i o n r a t i o s e l e c t i o n b i
e-speed mode
m e r 1 c o u n s o u r c e s e l e c t i o n
b i t
“ 1 ”
“ 0 ”
t
mer 1
mer 2 count source selection bit
“ 0 ”
“ 1 ”
t
ng φ
(Inter na l clock )
m e r
2
nstruction
e s e
n t e r r u p t d i s a b l e f l a g
n t e r r u p t r e q u e s
o t e : W h e n u s i n g t h e l o w - s p e e d m o d e , s e t t h e
t c h b i t t o “ 1 ”
t
Fig. 54 Clock generating circuit block diagram
i n s t r u c t i o n
C
s w
nstruction
.
49
MITSUBISHI MICROCOMPUTERS
N
S
)
CM
CPU b7b
R
t
CM
d)
M i d d l
C M
(
)
High
C M
(
)
L
CM
d)
L
C M
(
)
L
CM
d)
L C M
CM
CM
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
e s e
e - s p e e d m o d e (φ = 1 M H z )
7
= 0 (8 MHz selecte
CM6 = 1 (Middle-speed)
5
= 0 (XIN oscillating)
CM
” “
0
7
M
C
1
ow-speed mode
(φ =16 kHz)
3 2 k H z s e l e c t e d
7
= 1
C M6 = 1 ( M i d d l e - s p e e d )
5
= 0 ( X
I N
7
= 1
0
5
M C
1
o s c i l l a t i n g )
“ “
C M
o w - s p e e d m o d e (φ = 1 6 k H z )
3 2 k H z s e l e c t e d C M6 = 1 ( M i d d l e - s p e e d )
5
= 1 ( X
I N
C M
s t o p p e d )
6
“0”“1”
-speed mode
(φ = 4 MHz)
8 M H z s e l e c t e d
7
= 0
C M6 = 0 ( H i g h - s p e e d )
5
= 0 ( X
I N
C M
6
“0”“1”
ow-speed mode
(φ =16 kHz)
CM6 = 0 (High-speed) CM
C
0
M
0
5
M
C
1
0
6
M
C
1
5
C
1
M
6
1
0
o w - s p e e d m o d e
6
“ 0 ”“ 1 ”
(φ = 1 6 k H z )
CM6 = 0 (High-speed) CM
o s c i l l a t i n g )
” “
0
7
M
C
1
7
= 1 (32 kHz selecte
5
= 0 (XIN oscillating)
“ “
0
5
M
C
1
7
= 1 (32 kHz selecte
5
= 1 (XIN stopped)
4
mode register
(CPUM : address 003B
4
: Xc switch bit
0: Oscillation stop
CIN
, X
1: X
CM5 : Main clock (XIN–X
COUT
OUT
0: Oscillating 1: Stopped
6
: Main clock division ratio selection bit
CM
CM
IN
0: f(X 1: f(X
0: X
)/2 (high-speed mode)
IN
)/8 (middle-speed mode )
7
: Internal system clock selection bit
IN–XOUT
selected (middle-/high -spee d m ode) 1: X
CIN–XCOUT
selected
) stop bit
16
)
(low-speed mode)
o t e
w i t c h t h e m o d e b y t h e a r r o w s s h o w n b e t w e e n t h e m o d e b l o c k s . ( D o n o t s w i t c h b e t w e e n t h e m o d e d i r e c t l y w i t h o u t a n a r r o w .
s
1 : 2 : T h e a l l m o d e s c a n b e s w i t c h e d t o t h e s t o p m o d e o r t h e w a i t m o d e a n d r e t u r n e d t o t h e s o u r c e m o d e w h e n t h e s t o p m o d e o r t h e w a i t
m o d e i s e n d e d .
3 : T i m e r a n d L C D o p e r a t e i n t h e w a i t m o d e . 4: W h e n t h e s t o p m o d e i s e n d e d , a d e l a y t i m e c a n b e s e t b y t i m e r 1 a n d t i m e r 2 i n m i d d l e - / h i g h - s p e e d m o d e . 5 : W h e n t h e s t o p m o d e i s e n d e d , a d e l a y t i m e i n l o w - s p e e d m o d e c a n b e s e t a s w e l l . 6 : W a i t u n t i l o s c i l l a t i o n s t a b i l i z e s a f t e r o s c i l l a t i n g t h e m a i n c l o c k X
s p e e d m o d e . 7 : T h e e x a m p l e a s s u m e s t h a t 8 M H z i s b e i n g a p p l i e d t o t h e X
I N
b e f o r e t h e s w i t c h i n g f r o m t h e l o w - s p e e d m o d e t o m i d d l e - / h i g h -
I N
p i n a n d 3 2 k H z t o t h e X
C I N
p i n . φ i n d i c a t e s t h e i n t e r n a l c l o c k .
Fig. 55 State transitions of system clock
50
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
NOTES ON PROGRAMMING Processor Status Register
The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is “1”. Af­ter a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupt

The contents of the interrupt request bits do not change immedi­ately after they have been written. After writing to an interrupt re­quest register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to 1, then execute an ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

Timers

If a value n (between 0 and 255) is written to a timer latch, the fre­quency division ratio is 1/(n + 1).

Multiplication and Division Instructions

The index mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction. The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. The following cannot be used:
The data transfer instruction (LDA, etc.)
The operation instruction when the index X mode flag (T) is 1
The addressing mode which uses the value of a direction regis-
ter as an index
The bit-test instruction (BBC or BBS, etc.) to a direction register
The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a
direction register Use instructions such as LDM and STA, etc., to set the port direc­tion registers.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an ex­ternal clock and it is to output the SRDY signal, set the transmit en­able bit, the receive enable bit, and the S 1. Serial I/O1 continues to output the final bit from the T transmission is completed. In serial I/O2, the SOUT2 pin goes to high impedance state after transmission is completed.
RDY output enable bit to
XD pin after

A-D Converter

The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low. Make sure that f(XIN) is at least 500kHz during an A-D conversion. Do not execute the STP or WIT instruction during an A-D conver­sion.

Instruction Execution Time

The instruction execution time is obtained by multiplying the fre­quency of the internal clock φ by the number of cycles needed to execute an instruction. The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock φ is half of the XIN frequency.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM produc­tion:
1.Mask ROM Order Confirmation Form
2.Mark Specification Form
3.Data to be written to ROM, in EPROM form (three identical cop­ies) or one floppy disk.
For the mask ROM confirmation and the mark specifications, re-
fer to the Mitsubishi MCU Technical Information Homepage (http://www.infomicom.mesc.co.jp/indexe.htm).
51
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS
Table 12 Absolute maximum ratings
Symbol Parameter Conditions Ratings Unit VCC VI
VI VI VI VI VI VI VO
VO
VO VO
VO VO Pd Topr Tstg
Power source voltage Input voltage P00–P07, P10–P17, P20–P27,
P40–P47, P50–P57, P60–P67 Input voltage P70–P77 Input voltage VL1 Input voltage VL2 Input voltage VL3 Input voltage C1, C2 Input voltage RESET, XIN Output voltage C1, C2
Output voltage P00–P07, P10–P15, P30–P37 Output voltage P16, P17, P20–P27, P40–P47,
P50–P57, P60–P67, P71–P77 Output voltage VL3 Output voltage VL2, SEG0–SEG17 Output voltage XOUT Power dissipation
Operating temperature Storage temperature
All voltages are based on VSS. Output transistors are cut off.
At output port At segment output
Ta = 25°C
–0.3 to 6.5 V
–0.3 to VCC +0.3 –0.3 to VCC +0.3
–0.3 to VL2
VL1 to VL3
VL2 to 6.5
–0.3 to 6.5
–0.3 to VCC +0.3
–0.3 to 6.5
–0.3 to VCC
–0.3 to VL3
–0.3 to VCC +0.3
–0.3 to 6.5
–0.3 to VL3
–0.3 to VCC +0.3
300
–20 to 85
–40 to 125
V V
V V V V V V V V
V
V V V
mW
°C °C

RECOMMENDED OPERATING CONDITIONS

Table 13 Recommended operating conditions (1) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)
4.0
2.2
2.2
2.0
Limits
Typ. Max.
5.0
5.0
5.0 0
0
Symbol Parameter
High-speed mode f(XIN) = 8 MHz
VCC
VSS VREF AVSS VIA
Power source voltage
Power source voltage A-D, D-A conversion reference voltage Analog power source voltage Analog input voltage AN0–AN7
Middle-speed mode f(XIN) = 8 MHz Low-speed mode
Min.
AVSS
5.5
5.5
5.5
VCC
VCC
Unit
V
V V V V
52
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 14 Recommended operating conditions (2) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
VIH
VIH VIH
VIH VIL
VIL VIL
VIL
Table 15 Recommended operating conditions (3) (VCC = 2.2 to 2.5 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
VIH
VIH VIH
VIH VIL
VIL VIL
VIL
“H” input voltage P00–P07, P10–P17, P40, P43, P45, P47, P50–P5 3,
“H” input voltage P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,
“H” input voltage “H” input voltage “L” input voltage P00–P07, P10–P17, P40, P43, P45, P47, P50–P5 3,
“L” input voltage P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,
“L” input voltage “L” input voltage
“H” input voltage P00–P07, P10–P17, P40, P43, P45, P47, P50–P5 3,
“H” input voltage P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,
“H” input voltage “H” input voltage “L” input voltage P00–P07, P10–P17, P40, P43, P45, P47, P50–P5 3,
“L” input voltage P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,
“L” input voltage “L” input voltage
P56, P61, P64–P67, P71–P77
P62, P63, P70 RESET XIN
P56, P61, P64–P67, P71–P77
P62, P63, P70 RESET XIN
P56, P61, P64–P67, P71–P77
P62, P63, P70 RESET XIN
P56, P61, P64–P67, P71–P77
P62, P63, P70 RESET XIN
Min.
0.7 VCC
0.8 VCC
0.8 VCC
0.8 VCC
Min.
0.8 VCC
0.95 VCC
0.95 VCC
0.95 VCC
Limits
Typ. Max.
0
0
0 0
Limits
Typ. Max.
0
0
0 0
VCC
VCC VCC
VCC
0.3 VCC
0.2 VCC
0.2 VCC
0.2 VCC
VCC
VCC VCC
VCC
0.2 VCC
0.05 VCC
0.05 VCC
0.05 VCC
Unit
V
V V
V V
V V
V
Unit
V
V V
V V
V V
V
53
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 16 Recommended operating conditions (4) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
ΣIOH(peak) ΣIOH(peak) ΣIOL(peak) ΣIOL(peak) ΣIOL(peak) ΣIOH(avg) ΣIOH(avg) ΣIOL(avg) ΣIOL(avg) ΣIOL(avg)
IOH(peak) IOH(peak) IOL(peak) IOL(peak) IOL(peak)
IOH(avg) IOH(avg) IOL(avg)
IOL(avg) IOL(avg)
Notes1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured
2: The peak output current is the peak current flowing in each port. 3: The average output current is an average value measured over 100 ms.
“H” total peak output current “H” total peak output current “L” total peak output current “L” total peak output current “L” total peak output current “H” total average output current “H” total average output current “L” total average output current “L” total average output current “L” total average output current “H” peak output current “H” peak output current P16, P17, P20–P27, P41–P47, P50–P57, P60–P67
“L” peak output current “L” peak output current P16, P17, P20–P27, P41–P47, P50–P57, P60–P67
“L” peak output current “H” average output current “H” average output current “L” average output current
“L” average output current P16, P17, P20–P27, P41–P47, P50–P57, P60–P67
“L” average output current
over 100 ms. The total peak current is the peak value of all the currents.
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P41–P47, P50–P57, P60–P67 (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P41–P47, P50–P57, P60–P67 (Note 1) P40, P71–P77 (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P41–P47, P50–P57, P60–P67 (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P41–P47, P50–P57, P60–P67 (Note 1) P40, P71–P77 (Note 1) P00–P07, P10–P15, P30–P37 (Note 2)
(Note 2) P00–P07, P10–P15, P30–P37 (Note 2)
(Note 2)
P40, P71–P77 (Note 2) P00–P07, P10–P15, P30–P37 (Note 3) P16, P17, P20–P27, P41–P47, P50–P57, P60–P67 P00–P07, P10–P15, P30–P37 (Note 3)
(Note 3)
P40, P71–P77 (Note 3)
Min.
Limits
Typ. Max.
–20 –20
–10 –10
–1.0 –5.0
5.0 10
20
–0.5 –2.5
2.5
5.0 10
20 20 80
10 10 40
Unit
mA mA mA mA mA mA mA mA mA mA mA
mA mA
mA mA
mA mA mA
mA mA
54
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 17 Recommended operating conditions (5) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
f(CNTR0) f(CNTR1)
f(XIN)
f(XCIN)
Notes1: When the oscillation frequency has a duty cycle of 50%.
2: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(X
Input frequency for timers X and Y (duty cycle 50%)
Main clock input oscillation frequency
(Note 1)
Sub-clock input oscillation frequency (Notes 1, 2)
(4.0 V ≤ VCC 5.5 V) (VCC 4.0 V) High-speed mode
(4.0 V VCC 5.5 V) High-speed mode
(2.2 V ≤ VCC 4.0 V) Middle-speed mode
Test conditions
Min.
Limits
Typ. Max.
32.768
4.0
(10✕VCC
–4)/9
8.0
(20✕VCC
–8)/9
8.0 50
CIN) < f(XIN)/3.
Unit MHz MHz
MHz
MHz MHz
kHz
55
MITSUBISHI MICROCOMPUTERS
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 18 Electrical characteristics (1) (VCC =4.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
VOH
VOH
VOL
VOL
VOL
VT+ – VT– VT+ – VT–
VT+ – VT– IIH
IIH IIH
IIL
IIL IIL IIL
ILOAD
ILEAK
“H” output voltage
P00–P07, P10–P15, P30–P37
“H” output voltage
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67 (Note 1)
“L” output voltage
P00–P07, P10–P15, P30–P37
“L” output voltage
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67
“L” output voltage
P40, P71–P77
Hysteresis
INT0–INT2, ADT , CNTR0, CNTR1, P20–P27 Hysteresis SCLK, RXD, SIN2 Hysteresis RESET
“H” input current
P00–P07, P10–P17, P20–P27, P40–P47,
P50–P57, P60–P67, P70–P77 “H” input current RESET “H” input current XIN
“L” input current
P00–P07,P10–P17, P20–P27,P41–P47,
P50–P57, P60–P67
“L” input current P40, P70–P77 “L” input current RESET “L” input current XIN
Output load current
P30–P37
Output leak current
P30–P37
IOH = –1 mA IOH = –0.25 mA
VCC = 2.2 V IOH = –5 mA IOH = –1.5 mA IOH = –1.25 mA
VCC = 2.2 V IOL = 5 mA IOL = 1.5 mA IOL = 1.25 mA
VCC = 2.2 V IOL = 10 mA IOL = 3.0 mA IOL = 2.5 mA
VCC = 2.2 V IOL = 10 mA IOL = 5 mA
VCC = 2.2 V
VI = VCC
VI = VCC VI = VCC
VI = VSS Pull-ups “off”
VCC = 5 V, VI = VSS Pull-ups “on”
VCC = 2.2 V, VI = VSS Pull-ups “on”
VI = VSS VI = VSS
VCC = 5.0 V, VO = VCC, Pullup ON Output transistors “off”
VCC = 2.2 V,VO = VCC, Pullup ON Output transistors “off”
VO = VCC, Pullup OFF Output transistors “off”
VO = VSS, Pullup OFF Output transistors “off”
Test conditions
Min.
VCC–0.8 VCC–2.0
VCC–0.5 VCC–0.8
–60.0
–5.0
–60.0
–5.0
7560 Group
Limits
Typ.
0.5
0.5
0.5
4.0
–120.0
–20.0
–4.0
–120.0
–20.0
Max.
2.0
0.5
2.0
0.5
0.5
0.3
5.0
5.0
–5.0
–240.0
–40.0
–5.0 –5.0
–240.0
–40.0
5.0
–5.0
Unit
VVCC–2.0 V V
V V
V V
V0.8 V
V V0.8
V
V
V V
V
µA
µA µA
µA
µA
µA µA
µA µA
µA
µA
µA
µA
56
MITSUBISHI MICROCOMPUTERS
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 19 Electrical characteristics (2) (VCC =2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
VRAM
ICC Power source current
VL1 IL1
Note: When the voltage multiplier control bit of the LCD mode register (bit 4 at address 003916) is “1”.
RAM retention voltage
Power source voltage Power source current
(VL1) (Note)
At clock stop mode
• High-speed mode, VCC = 5 V
IN) = 8 MHz
f(X f(X
CIN) = 32.768 kHz
Output transistors “off” A-D converter in operating
• High-speed mode, VCC = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors “off” A-D converter stop
• Low-speed mode, VCC = 5 V, Ta 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off”
• Low-speed mode, VCC = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off”
• Low-speed mode, VCC = 3 V, Ta 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off”
• Low-speed mode, VCC = 3 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off”
All oscillation stopped (in STP state) Output transistors “off”
When using voltage multiplier VL1 = 1.8 V
Test conditions
Ta = 25 °C Ta = 85 °C
Min.
2.0
1.3
7560 Group
Limits
Typ. Max.
5.5
8.0
2.5
45
23
18
8
0.1
1.8
4.0
4.0
1.0
2.1
15
67
46
36
16
10
Unit
V
mA
mA
µA
µA
µA
µA
µA
V
µA
57
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 20 A-D converter characteristics (VCC = 2.7 to 5.5 V , VSS = AVSS = 0 V, Ta = –20 to 85°C, f(XIN) = 500 kHz to 8 MHz, in middle/high-speed mode unless otherwise noted)
12 50
1
Limits
Typ. Max.
12.5
(Note)
35
150
Limits
Typ. Max.
2.5
100 200
5.0
1.0
2.0
3
3.2
±2
8
Unit Bits
8
LSB
µsf(XIN) = 8 MHzConversion time k
µA
µA
Unit Bits
% %
µs
k
4
mA
Symbol Parameter
tCONV RLADDER
IVREF
Note: When an internal trigger is used in middle-speed mode, it is 14 µs.
Table 21 D-A converter characteristics (VCC = 2.7 to 5.5 V, VCC = VREF, VSS = AVSS = 0 V, Ta = –20 to 85°C, in middle/high-speed mode unless otherwise noted)
Symbol Parameter
tsu RO IVREF
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through
the A-D resistance ladder.
Resolution Absolute accuracy
(excluding quantization error)
Ladder resistor Reference power source input current Analog port input currentIIA
Resolution Absolute accuracy Setting time
Output resistor Reference power source input current
VCC = VREF = 5 V
VREF = 5 V
VCC = VREF = 5 V VCC = VREF = 2.7 V
(Note)
Test conditions
Test conditions
Min.
Min.
58
MITSUBISHI MICROCOMPUTERS
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 22 Timing requirements 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twL(CNTR) twH(INT) twL(INT) tc(SCLK1) twH(SCLK1) twL(SCLK1) t
su(RXD–S
th(SCLK1–RXD) tc(SCLK2) twH(SCLK2) twL(SCLK2) t
su(S
IN2–SCLK2
th(SCLK2–SIN2)
Note: When bit 6 of address 001A16 is “1”.
Divide this value by four when bit 6 of address 001A
Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT2 input “H” pulse width INT0 to INT2 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input “H” pulse width (Note) Serial I/O1 clock input “L” pulse width (Note) Serial I/O1 input set up time
CLK1
)
Serial I/O1 input hold time Serial I/O2 clock input cycle time (Note) Serial I/O2 clock input “H” pulse width (Note) Serial I/O2 clock input “L” pulse width (Note) Serial I/O2 input set up time
)
Serial I/O2 input hold time
16 is “0”.
Min.
2
125
45
40 250 105 105
80
80 800 370 370 220 100
1000
400 400 200 200
7560 Group
Limits
Typ. Max.
Unit
µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Table 23 Timing requirements 2 (VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twL(CNTR) twH(INT) twL(INT) tc(SCLK1) twH(SCLK1) twL(SCLK1) t
su(RXD–S
th(SCLK1–RXD) tc(SCLK2) twH(SCLK2) twL(SCLK2) t
su(S
IN2–SCLK2
th(SCLK2–SIN2)
Note: When bit 6 of address 001A16 is “1”.
Divide this value by four when bit 6 of address 001A
Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT2 input “H” pulse width INT0 to INT2 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O1 clock input “H” pulse width (Note)
Serial I/O1 clock input “L” pulse width (Note)
CLK1
)
Serial I/O1 input set up time Serial I/O1 input hold time Serial I/O2 clock input cycle time (Note) Serial I/O2 clock input “H” pulse width (Note) Serial I/O2 clock input “L” pulse width (Note)
)
Serial I/O2 input set up time Serial I/O2 input hold time
16 is “0”.
Min.
900/(VCC+0.4)
tc(CNTR)/2–20 tc(CNTR)/2–20
2000
2000
Limits
2
125
45 40
230 230
950 950 400 200
950 950 400 300
Typ. Max.
Unit
µs ns ns ns ns ns ns ns ns ns ns
ns ns ns ns ns ns ns ns
59
MITSUBISHI MICROCOMPUTERS
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Table 24 Switching characteristics 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
twH(SCLK1) twL(SCLK1) td(SCLK1–TXD) tv(SCLK1–TXD) tr(SCLK1) tf(SCLK1) twH(SCLK2) twL(SCLK2) t
d(S
CLK2–SOUT2
t
v(S
CLK2–SOUT2
tf(SCLK2) tr(CMOS) tf(CMOS)
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: X
Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time
)
Serial I/O2 output valid time
)
Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2)
OUT and XCOUT pins are excluded.
Min. tC (SCLK1)/2–30 tC (SCLK1)/2–30
–30
tC (SCLK2)/2–160 tC (SCLK2)/2–160
0
Limits
Typ.
10 10
7560 Group
Max.
140
30 30
0.2 tC (SCLK2)
40 30 30
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns
Table 25 Switching characteristics 2 (VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)
Symbol Parameter
twH(SCLK1)
twL(SCLK1)
td(SCLK1–TXD) tv(SCLK1–TXD) tr(SCLK1) tf(SCLK1) twH(SCLK2) twL(SCLK2) t
d(S
CLK2–SOUT2
t
v(S
CLK2–SOUT2
tf(SCLK2) tr(CMOS) tf(CMOS)
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: X
Serial I/O1 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O1 output delay time (Note 1) Serial I/O1 output valid time (Note 1) Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output “H” pulse width Serial I/O2 clock output “L” pulse width Serial I/O2 output delay time
)
Serial I/O2 output valid time
)
Serial I/O2 clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2)
OUT and XCOUT pins are excluded.
Min. tC (SCLK1)/2–50 tC (SCLK1)/2–50
–30
tC (S
CLK2
tC (S
CLK2
0
Limits
Typ.
)/2–240 )/2–240
20 20
Max.
350
50 50
0.2 tC (SCLK2)
50 50 50
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns
60
M
easurement output pin
F
C M O S
t
N
W h
P
P
d
N
)
k
F
M
1 0 0 p
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
easurement output pin
MITSUBISHI MICROCOMPUTERS
7560 Group
1
1 0 0 p
o u t p u
Fig. 56 Circuit for measuring output switching characteristics
o t e :
e n P
b i t 4 o f t h e U A R T c o n t r o l
r e g i s t e r ( a d d r e s s 0 0 1 B d r a i n o u t p u t m o d e ) .
- c h a n n e l o p e n - d r a i n o u t p u t ( N o t e
1
7
,
0
7
a n
7
4
1 6
) i s “ 1 ” ( N - c h a n n e l o p e n -
61
C N T R0, C N T R1
I N T
0 –
I N T
2
0.8V
0 . 8 V
t
WH(CNTR)
CC
t
WH(INT)
C C
t
C(CNTR)
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
t
WL(CNTR)
0 . 2 V
C C
t
WL(INT)
0.2V
CC
RESET
X
IN
S
C L K 1
S
C L K 2
t
W ( R E S E T )
0 . 8 V
CLK1
C C
), tWH(S
CLK2
)
0 . 2 V
C C
t
C(XIN)
t
CC
)
t
WH(S
C C
C L K 1 -RX
C L K 2 -SI N
WL(XIN)
D ) ,
2 )
t
WH(X
IN)
0.8V
CC
t
C(S
CLK1
t
f
0 . 2 V
t
WL(S
C C
CLK1
), tWL(S
t
su(RXD-S
t
su(S
CLK2
)
CLK1
IN2-SCLK2
), )
), tC(S
t
r
0.2V
CLK2
0 . 8 V
t h
( S
t
h
( S
RXD
I N 2
S
TXD
O U T 2
S
Fig. 57 Timing diagram
62
t
d(S
CLK1-TX
D),td(S
0.8V
0.2V
CLK2-SOUT2
CC CC
)
t
v(S
CLK1-TX
t
v(S
CLK2-SOUT2
D),
)
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PACKAGE OUTLINE

100P6Q-A
EIAJ Package Code
LQFP100-P-1414-0.50
100
1
25
b
MMP
JEDEC Code
H
D
D
e
x
M
Plastic 100pin 1414mm body LQFP
76
75
51
5026
0.63
E
E
H
F
y
Weight(g)
Lead Material
Cu Alloy
A
2
A
1
A
Detail F
M
D
e
E
2
b
l
2
M
Recommended Mount Pad
Symbol
L
1
A3
c
L
Lp
Dimension in Millimeters
Min Nom Max
A
0
A
1
––
2
A
b
c D E e
D
H
E
H
L
L
1
––
Lp 0.45
A3
b
M M
x
y
2
I
2
0.9
D E
0.1
1.4
0.5
1.0
0.6
0.25
0.225
14.4
14.4
1.7
0.2
0.280.180.13
0.1750.1250.105
14.114.013.9
14.114.013.9 –
16.216.015.8
16.216.015.8
0.70.50.3
0.75 –
0.08
0.1
10°0°
– –– –– –
100P6S-A
EIAJ Package Code
QFP100-P-1420-0.65 1.58
MMP
H
D
JEDEC Code
D
100
1
30
31
81
80
E
E
H
51
50
F
e
b
x
M
y
Weight(g)
Lead Material
Alloy 42
A
2
A
1
A
Detail F
Plastic 100pin 1420mm body QFP
D
M
e
E
2
b
I
2
Recommended Mount Pad
Symbol
Dimension in Millimeters
Min Nom Max
A A A
1
0
––
2
0.1
2.8 b c
D E
e
H
L
1
D
E
H
0.65
L
1.4
L
––
1
x ––0.13
c
y
– –
b
L
2
I
2
1.3
M
D
M
E
0.35
14.6
20.6
M
3.05
0.2
0.40.30.25
0.20.150.13
14.214.013.8
20.220.019.8
17.116.816.5
23.122.822.5
0.80.60.4
0.1
10°0°
– –– –– –
63
MITSUBISHI MICROCOMPUTERS
7560 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
HEAD OFFICE: 2-2-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
Keep safety first in your circuit designs!
• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
• These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
• Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
• All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).
• When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
• Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
• The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
• If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
• Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 2001 MITSUBISHI ELECTRIC CORP. Specifications subject to change without notice.

REVISION HISTORY 7560 GROUP DATA SHEET

Rev. Date Description
Page Summary
1.0 03/28/01
1.1 06/08/01
First Edition Table 13 VREF Min. VCC+0.3 VCC52
(1/1)
Loading...