
CM900DU-24NF
MITSUBISHI IGBT MODULES
CM900DU-24NF
HIGH POWER SWITCHING USE
●
IC ...................................................................900A
●
VCES ......................................................... 1200V
●
Insulated Type
●
2-elements in a pack
APPLICATION
UPS & General purpose inverters, etc
OUTLINE DRAWING & CIRCUIT DIAGRAM
A,B HOUSING Type
(J. S. T. Mfg. Co. Ltd)
A : VHR-2N
B : VHR-5N
Tc measured point
(The side of Cu
base plate)
8-f6.5
MOUNTING HOLES
9-M6 NUTS 12
15.7
A
E2G2C2
B
PPS
18
150
137.5
±0.25
42
1414
C2E1
E2
42 42
Dimensions in mm
Tc measured point
(The side of Cu
12
2
base plate)
C1E1G1
11 1921
±0.25
38
±0.25
±0.25
74
166
129.5
34.6
+1.0
–0.5
4
42.5
10.5
C1
14 1414141414
15.7
±0.25
38
5.5
±0.25
74
1.9
±0.2
34.6
+1.0
–0.5
LABEL
25.1
C2
C2E1 E2 C1
C1
G1 E1 G2E2
CIRCUIT DIAGRAM
Mar. 2003

MITSUBISHI IGBT MODULES
CM900DU-24NF
HIGH POWER SWITCHING USE
MAXIMUM RATINGS
Symbol Parameter
CES
V
VGES
IC
ICM
IE (
IEM (
PC (
Tj
Tstg
Viso
Collector-emitter voltage
Gate-emitter voltage
Collector current
Note 1
)
Emitter current
Note 1
)
Maximum collector dissipation
Note 3
)
Junction temperature
Storage temperature
Isolation voltage
—
Torque strength
Weight
—
ELECTRICAL CHARACTERISTICS
(Tj = 25°C)
Conditions UnitRatings
G-E Short
C-E Short
C = 25°C
T
Pulse (Note 2)
C = 25°C
T
Pulse (Note 2)
C = 25°C
T
Main terminal to base plate, AC 1 min.
Main Terminal M6
Mounting holes M6
Typical value
(Tj = 25°C)
Symbol Parameter Test conditions
ICES
VGE(th)
IGES
VCE(sat)
R(lead)
Cies
Coes
Cres
QG
td(on)
tr
td(off)
tf
trr (
Qrr (
VEC(
Rth(j-c)Q
th(j-c)R
R
R
th(c-f)
Rth(j-c’)Q
R
th(j-c’)R
G
R
Note 1. IE, VEC, trr, Qrr, die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. (FWDi).
1 : Tc measured point is indicated in OUTLINE DRAWING.
*
2 : Typical value is measured by using Shin-etsu Silicone “G-746”.
*
3 : If you use this value, Rth(f-a) should be measured just under the chips.
*
Collector cutoff current
Gate-emitter threshold voltage
Gate leakage current
Collector-emitter saturation voltage
Module lead resistance
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Note 1
)
Reverse recovery time
Note 1
)
Reverse recovery charge
Note 1
)
Emitter-collector voltage
Thermal resistance
*1
Contact thermal resistance
Thermal resistance
External gate resistance
2. Pulse width and repetition rate should be such that the device junction temp. (T
3. Junction temperature (T
j) should not increase beyond 150°C.
VCE = VCES, VGE = 0V
I
C = 90mA, VCE = 10V
V
GE = VCES, VCE = 0V
j = 25°C
T
T
j = 125°C
IC = 900A, VGE = 15V
Ic = 900A, terminal-chip
CE = 10V
V
V
GE = 0V
CC = 600V, IC = 900A, VGE = 15V
V
CC = 600V, IC = 900A
V
V
GE1 = VGE2 = 15V
G = 0.35Ω, Inductive load switching operation
R
I
E = 900A
E = 900A, VGE = 0V
I
IGBT part (1/2 module)
FWDi part (1/2 module)
*2
Case to fin, Thermal compound applied
(1/2 module)
Tc measured point is just under the chips (IGBT part)
Tc measured point is just under the chips (FWDi part)
j) does not exceed Tjmax rating.
—
6
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0.35
1200
±20
900
1800
900
1800
2550
–40 ~ +150
–40 ~ +125
2500
3.5 ~ 4.5
3.5 ~ 4.5
1400
Limits
Typ.Min. Max.
—
7
—
1.8
2.0
0.143
—
—
—
4800
—
—
—
—
—
50
—
—
—
0.016
—
—
—
1
8
0.5
2.5
—
—
140
16
3
—
600
200
800
300
500
—
3.4
0.049
0.078
—
0.021
0.034
2.2
V
V
A
A
W
°C
°C
V
N • m
N • m
g
Unit
mA
V
µA
V
mΩ
nF
nC
ns
ns
µC
V
°C/W
*3
*3
Ω
Mar. 2003

PERFORMANCE CURVES
MITSUBISHI IGBT MODULES
CM900DU-24NF
HIGH POWER SWITCHING USE
OUTPUT CHARACTERISTICS
(TYPICAL)
V
GE
15V
13V
(A)
C
1800
1600
1400
1200
1000
800
600
400
200
COLLECTOR CURRENT I
0
0
246810
COLLECTOR-EMITTER VOLTAGE V
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
= 15V
(V)
5
V
GE
4
CE (sat)
3
2
1
COLLECTOR-EMITTER
SATURATION VOLTAGE V
0
0
= 20V
Tj = 25°C
Tj = 25°C
j
= 125°C
T
12001000800400 600200 180016001400
8V
12V
11V
10V
9V
CE
(V)
TRANSFER CHARACTERISTICS
1800
V
CE
1600
= 10V
1400
1200
1000
800
600
400
COLLECTOR CURRENT (A)
200
0
048121620
GATE-EMITTER VOLTAGE V
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
10
(V)
8
CE (sat)
6
4
2
COLLECTOR-EMITTER
SATURATION VOLTAGE V
0
(TYPICAL)
(TYPICAL)
Tj = 25°C
j
= 125°C
T
GE
(V)
Tj = 25°C
IC = 900A
IC = 1800A
IC = 360A
206 8 12 1610 14 18
COLLECTOR CURRENT IC (A)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
4
10
7
5
(A)
3
E
2
3
10
7
5
3
2
EMITTER CURRENT I
2
10
01234
(TYPICAL)
Tj = 25°C
j
= 125°C
T
EMITTER-COLLECTOR VOLTAGE V
EC
(V)
GATE-EMITTER VOLTAGE V
CAPACITANCE–V
CHARACTERISTICS
3
10
7
5
3
(nF)
2
res
2
10
7
, C
5
oes
3
2
, C
ies
1
10
7
5
3
2
0
10
7
5
3
V
GE
2
CAPACITANCE C
–1
10
–1
10
2
(TYPICAL)
= 0V
0
10
357 2
357 2
COLLECTOR-EMITTER VOLTAGE V
10
CE
1
GE
(V)
C
ies
C
oes
C
res
357
CE
10
(V)
2
Mar. 2003

MITSUBISHI IGBT MODULES
CM900DU-24NF
HIGH POWER SWITCHING USE
SWITCHING CHARACTERISTICS
HALF-BRIDGE
= 600V
= ±15V
23
(TYPICAL)
t
d(off)
t
d(on)
57
3
10
7
5
3
2
2
10
7
Conditions:
5
V
CC
GE
V
3
SWITCHING TIMES (ns)
R
2
T
Inductive load
1
10
1
10
G
= 0.35Ω
j
= 125°C
COLLECTOR CURRENT IC (A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part & FWDi part)
–3
10
1
10
7
IGBT part:
5
Per unit base = R
3
FWDi part:
(°C/W)
2
Per unit base = R
0
10
th (j–c)
7
5
3
2
–1
10
7
5
3
2
–2
10
7
NORMALIZED TRANSIENT
5
Single Pulse
3
2
10
T
–3
THERMAL IMPEDANCE Z
–2
23 57 23 57 23 57 23 57
10
C
= 25°C
t
f
t
r
2
10
–1
10
th(j–c)
th(j–c)
–5
23 57 23 57
10
TMIE (s)
23 57
0
10
= 0.049°C/W
= 0.078°C/W
–4
10
10
10
10
10
10
10
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
3
10
(A)
rr
7
(ns)
rr
5
3
2
2
10
7
5
3
2
REVERSE RECOVERY TIME t
1
10
3
REVERSE RECOVERY CURRENT l
1
10
23 57
(TYPICAL)
I
rr
t
rr
Conditions:
CC
V
GE
V
R
j
T
Inductive load
2
10
23 57
EMITTER CURRENT I
= 600V
= ±15V
G
= 1Ω
= 25°C
E
(A)
10
3
GATE CHARGE
CHARACTERISTICS
1
3
2
–1
7
5
3
2
–2
7
5
3
2
–3
–3
20
IC = 900A
(V)
GE
16
12
8
4
GATE-EMITTER VOLTAGE V
0
0
1000 2000 3000 4000 5000 6000 7000
(TYPICAL)
VCC = 400V
GATE CHARGE Q
VCC = 600V
G
(nC)
3
10
7
5
3
2
2
10
7
5
3
(mJ/pulse)
2
SW
1
10
E
7
5
3
2
0
10
10
IC-E
SW
(TYPICAL)
Conditions:
CC
= 600V
V
V
GE
= ±15V
j
= 125°C
T
R
G
= 0.35Ω
Inductive load
E
sw(off)
E
sw(on)
1
210
357 2 10
2
C
(A)
I
357
RG-E
SW
3
10
7
5
3
2
E
sw(off)
2
10
7
E
sw(on)
5
3
(mJ/pulse)
2
SW
1
10
E
7
5
3
2
0
3
10
0120.5 1.5 2.5
(TYPICAL)
G
(Ω)
R
Conditions:
V
CC
= 600V
GE
= ±15V
V
j
= 125°C
T
I
C
= 900A
Inductive load
Mar. 2003