
MITSUBISHI HVIGBT MODULES
CM600HB-90H
2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
INSULATED TYPE
CM600HB-90H
● IC...................................................................600A
HIGH POWER SWITCHING USE
● V
CES ....................................................... 4500V
● Insulated T ype
● 1-element in a pack
APPLICATION
Inverters, Converters, DC choppers, Induction heating, DC to DC converters.
OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm
130
3 - M4 NUTS
CM
57
C
10.65
48.8
±0.25
114
C
E
18
±0.25
57
C
E
G
10.35
61.5
4 - M8 NUTS
20
±0.25
40
140
124
E
6 - φ7MOUNTING HOLES
5.2
C
G
E
CIRCUIT DIAGRAM
15
40
CC
E
E
38
5
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
28
LABEL
29.5
Mar. 2003

MITSUBISHI HVIGBT MODULES
CM600HB-90H
HIGH POWER SWITCHING USE
2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
MAXIMUM RATINGS (Tj = 25°C)
Symbol Item Conditions UnitRatings
CES
V
VGES
IC
ICM
IE
IEM
PC
Tj
Tstg
Viso
Collector-emitter voltage
Gate-emitter voltage
Collector current
(Note 2)
Emitter current
(Note 2)
Maximum collector dissipation
(Note 3)
Junction temperature
Storage temperature
Isolation voltage
—
Mounting torque
—
Mass
GE = 0V
V
CE = 0V
V
DC, T
C = 85°C
Pulse (Note 1)
Pulse (Note 1)
C = 25°C, IGBT part
T
—
—
Charged part to base plate, rms, sinusoidal, AC 60Hz 1min.
Main terminals screw M8
Mounting screw M6
Auxiliary terminals screw M4
Typical value
–40 ~ +125
–40 ~ +125
6.67 ~ 13.00
2.84 ~ 6.00
0.88 ~ 2.00
INSULATED TYPE
4500
±20
600
1200
600
1200
7400
6000
N·m
N·m
N·m
1.5
V
V
A
A
A
A
W
°C
°C
V
kg
ELECTRICAL CHARACTERISTICS (Tj = 25°C)
Symbol
I
CES
V
GE(th)
IGES
VCE(sat)
Cies
Coes
Cres
QG
td (on)
tr
td (off)
tf
VEC
trr
Qrr
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
Note 1. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating.
Collector cutoff current
Gate-emitter
threshold voltage
Gate-leakage current
Collector-emitter
saturation voltage
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
(Note 2)
Emitter-collector voltage
(Note 2)
Reverse recovery time
(Note 2)
Reverse recovery charge
Thermal resistance
Contact thermal resistance
2. I
E, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode.
3. Junction temperature (T
4. Pulse width and repetition rate should be such as to cause negligible temperature rise.
Item Conditions
V
CE = VCES, VGE = 0V
I
C = 60mA, VCE = 10V
V
GE = VGES, VCE = 0V
j = 25°C
T
T
j = 125°C
V
CE = 10V
GE = 0V
V
CC = 2250V, IC = 600A, VGE = 15V
V
V
CC = 2250V, IC = 600A
V
GE1 = VGE2 = 15V
R
G = 15Ω
I
C = 600A, VGE = 15V (Note 4)
Resistive load switching operation
I
E = 600A, VGE = 0V
E = 600A,
I
die / dt = –1200A / µs (Note 1)
Junction to case, IGBT part
Junction to case, FWDi part
Case to fin, conductive grease applied
j) should not increase beyond 125°C.
Min Typ Max
Limits
—
—
6.04.5
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
3.00
3.30
108
8.0
2.4
5.4
—
—
—
—
4.00
—
240
—
—
0.010
0.0135
0.027
7.5
0.5
3.90
—
—
—
—
—
2.40
2.40
6.00
1.20
5.20
1.80
—
—
12
Unit
mA
V
µA
V
nF
nF
nF
µC
µs
µs
µs
µs
V
µs
µC
K/W
K/W
K/W
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
Mar. 2003

2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
PERFORMANCE CURVES
TRANSFER CHARACTERISTICS
V
CE
= 10V
8000
6000
)
A
(
C
1200
1000
800
600
OUTPUT CHARACTERISTICS
Tj = 25°C
(
TYPICAL
VGE=12V
)
VGE=20V
VGE=15V
VGE=14V
VGE=10V
12000
)
A
(
10000
C
MITSUBISHI HVIGBT MODULES
CM600HB-90H
HIGH POWER SWITCHING USE
INSULATED TYPE
(
TYPICAL
)
Tj = 25°C
T
j
= 125°C
400
200
COLLECTOR CURRENT I
0
468
2
COLLECTOR-EMITTER VOLTAGE VCE (V
COLLECTOR-EMITTER SATURATION
)
V
(
CE(sat)
VOLTAGE CHARACTERISTICS
8
V
GE
6
= 15V
(
TYPICAL
4
2
COLLECTOR-EMITTER
SATURATION VOLTAGE V
0
0 200 400 600 800 1000 1200
COLLECTOR CURRENT IC (A
)
Tj = 25°C
T
VGE=8V
j
= 125°C
4000
2000
COLLECTOR CURRENT I
100
)
0
GATE-EMITTER VOLTAGE VGE (V
200481216
)
COLLECTOR-EMITTER SATURATION
)
V
(
CE(sat)
VOLTAGE CHARACTERISTICS
10
Tj = 25°C
8
(
TYPICAL
)
6
4
Ic=1200A
Ic=600A
COLLECTOR-EMITTER
2
SATURATION VOLTAGE V
0
020161284
)
GATE-EMITTER VOLTAGE VGE (V
Ic=240A
)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
)
V
8
(
EC
(
TYPICAL
)
6
4
2
0
EMITTER-COLLECTOR VOLTAGE V
0 200 400 600 800 1000 1200
EMITTER CURRENT IE (A
Tj = 25°C
T
j
= 125°C
)
CAPACITANCE CHARACTERISTICS
3
10
)
(
V
GE
7
5
nF
res
, C
oes
, C
ies
CAPACITANCE C
10
10
10
3
2
2
7
5
3
2
1
7
5
3
2
0
ies, Coes
C
C
res
–1
2310
(
TYPICAL
)
= 15V, Tj = 25°C
: f = 100kHz
: f = 1MHz
5710023 5710123 5710
COLLECTOR-EMITTER VOLTAGE VCE (V
C
ies
C
oes
C
res
2
)
Mar. 2003

2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
MITSUBISHI HVIGBT MODULES
CM600HB-90H
HIGH POWER SWITCHING USE
INSULATED TYPE
SWITCHING TIME CHARACTERISTICS
5
VCC = 2250V, VGE = ±15V
3
R
G
= 15Ω, Tj = 125°C
2
)
(
Inductive load
1
10
µs
7
5
3
2
0
10
7
5
3
SWITCHING TIMES
2
–1
10
7
5
710
5
(
TYPICAL
2
23 5710
)
t
d(off)
t
d(on)
t
r
t
f
3
COLLECTOR CURRENT IC (A
HALF-BRIDGE
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
5.0
VCC = 2250V, VGE = ±15V,
G
= 15Ω, Tj = 125°C,
J/P
R
Inductive load
4.0
)
(
(
TYPICAL
)
3.0
2.0
23 5
)
E
on
E
off
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(
5
)
(
VCC = 2250V, Tj = 25°C
µs
3
Inductive load
rr
IGBT drive conditions
2
GE
V
0
10
= ±15V, RG = 15Ω
TYPICAL
7
5
)
t
rr
I
rr
3
2
–1
10
7
REVERSE RECOVERY TIME t
5
5
710
2
23 5710
3
EMITTER CURRENT IE (A
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
(
TYPICAL
)
3.0
)
2.5
J/P
(
2.0
1.5
1.0
23 5
)
)
5
A
(
rr
3
2
3
10
7
5
3
2
2
10
7
REVERSE RECOVERY CURRENT I
5
1.0
SWITCHING ENERGY
0
0 200 400 600 1200800 1000
CURRENT (A
GATE CHARGE CHARACTERISTICS
20
)
V
(
GE
VCC = 2250V
I
16
C
= 600A
(
TYPICAL
12
8
4
GATE-EMITTER VOLTAGE V
0
2000 4000
GATE CHARGE QG (nC
0.5
E
rec
)
)
8000 1000060000
)
SWITCHING ENERGY
0
0 5 10 15 20 3025
GATE RESISTANCE (Ω
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
1
10
Single Pulse
7
5
T
C
= 25°C
3
th(j – c)Q
R
th(j – c)
2
R
0
10
7
5
3
2
–1
10
7
5
NORMALIZED TRANSIENT
3
THERMAL IMPEDANCE Z
2
–2
10
–3
10
= 0.0135K/W
th(j – c)R
= 0.027K/W
10
–2
23 57 23 57 23 57
TIME (s
)
10
–1
10
0
)
Mar. 2003