MITSUBISHI CM400HX-24 User Manual

CM400HX-24A
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
¡IC ...................................................................400A
CES ......................................................... 1200V
¡V ¡Single
¡Flatbase Type / Insulated Package /
Copper (non-plating) base plate
¡RoHS Directive compliant
APPLICATION
General purpose Inverters, Servo Amplifiers, Power supply, etc.
OUTLINE DRAWING & CIRCUIT DIAGRAM
152 137
121.7
±0.5
110
99
94.5
LABEL
72.14
68.33
4-M6 NUTS
24
±0.5
62
39
57.5
23
22
212019181716151413121110987654321
4-φ5.5 MOUNTING HOLES
(102.25)
95
50
(5.4)
+1
-0.5
12.5 17
(SCREWING DEPTH)
Toleranceotherwisespecified
(24)
(23)
E
E
Division of Dimension
0.5 to 3
over 3 to 6
over 6 to 30
over 30 to 120
over 120 to 400
22
(14) (14)
(13.5) (13.5)
46
45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
6.5
(21.14)
C
C
47
48
A
0
15
(7.75)
18.8
NTC
TH1
TH2
(1)
(2)G1(15)E1(16)C(22)
CIRCUIT DIAGRAM
17
12
66
12
17
4.2
3.5
(47)
(48)
0.8
13
17
(20.5)
7
(3)
Dimensions in mm
1.15
0.65
(7.4)
TERMINAL t = 0.8
1.5
12.5
SECTION A
Pin positions
with tolerance
Tolerance
±0.2
±0.3
±0.5
±0.8
±1.2
1.2
φ4.3
(3.81)
φ2.5 φ2.1
φ0.5
Jan. 2009
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
ABSOLUTE MAXIMUM RATINGS (T
j
= 25°C, unless otherwise specified)
INVERTER PART
Symbol Parameter Conditions Rating Unit
CES
V V
GES
I
C
I
CRM
P
C
I
E (Note.3)
I
ERM(Note.3)
T
j
T
stg
V
iso
Note. 8: The base plate flatness measurement points are in the following figure.
Collector-emitter voltage Gate-emitter voltage
Collector current
Maximum collector dissipation Emitter current (Free wheeling diode forward current) Junction temperature Storage temperature Isolation voltage
Base plate flatness
Torque strength
Torque strength
Weight
Y
+
X
Heatsinkside
G-E Short C-E Short DC, T
C
= 88°C
Pulse T
C
= 25°C
T
C
= 25°C
Pulse
Terminals to base plate, f = 60Hz, AC 1 minute On the centerline X, Y Main terminals M6 screw Mounting M5 screw (Typical)
+:convex –:concave
(Note. 1) (Note. 4)
(Note. 1, 5)
(Note. 1) (Note. 4)
(Note. 8)
1200
±20 400 800
2450
400
800 –40 ~ +150 –40 ~ +125
2500
±0 ~ +100
3.5 ~ 4.5
2.5 ~ 3.5 330
V
A
W
A
°C
Vrms
μm
N·m
g
+
Heatsinkside
Jan. 2009
2
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise specified) INVERTER PART
Symbol Parameter Conditions
I
CES
V
GE(th)
I
GES
V
CE(sat)
C
ies
C
oes
C
res
Q
G
t
d(on)
t
r
t
d(off)
t
f
t
rr (Note.3)
Q
rr (Note.3)
V
EC(Note.3)
R
lead
R
th(j-c)Q
R
th(j-c)R
R
th(c-f)
R
Gint
R
G
Collector cutoff current Gate-emitter threshold voltage Gate leakage current
Collector-emitter saturation voltage
Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge
Emitter-collector voltage
Module lead resistance Thermal resistance (Junction to case)
(Note. 1) Contact thermal resistance (Case to heat sink)
(Note. 1)
Internal gate resistance
External gate resistance
V
CE
= V
CES
, VGE = 0V
I
C
= 40mA, VCE = 10V
±V
GE
= V
GES
, VCE = 0V
I
C
= 400A, VGE = 15V
C
= 400A, VGE = 15V
I
V
CE
= 10V
V
GE
= 0V
CC
= 600V, IC = 400A, VGE = 15V
V V
CC
= 600V, IC = 400A
V
GE
= ±15V, RG = 0.75Ω
Inductive load
E
= 400A)
(I
E
= 400A, VGE = 0V
I
E
= 400A, VGE = 0V
I Main terminals-chip per IGBT per free wheeling diode
Thermal grease applied
T
C
= 25°C
T
C
= 125°C
(Note. 6)
(Note. 6)
T
j
= 25°C
T
j
= 125°C
Chip
j
= 25°C
T T
j
= 125°C
Chip
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
Limits
Min. Typ. Max.
(Note. 6)
(Note. 2)
6 — — — — — — — — — — — — — — — — — — — —
2.1
4.2
0.75
7
2.0
2.2
1.9 — — —
2000
— — — — —
13
2.6
2.16
2.5
0.6 — —
0.015
3 6
0.5
2.6 — — 66
6.0
1.3 —
660 190 700 600 250
3.4 — — —
0.033
0.048
3.9
7.8
7.8
Unit
mA
1 8
V
μA
V
nF
nC
ns
μC
V
mΩ
K/W
Ω
NTC THERMISTOR PART
Symbol Parameter Conditions
R ΔR/R B
(25/50)
P
25
Note.1: Case temperature (TC), heat sink temperature (Tf) measured point is just under the chips. (Refer to the figure of the chip location.)
Zero power resistance Deviation of resistance B constant Power dissipation
2: Typical value is measured by using thermally conductive grease of λ = 0.9W/(m·K). 3: I
E, IERM, VEC, trr and Qrr represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
4: Pulse width and repetition rate should be such that the device junction temperature (T 5: Junction temperature (T 6: Pulse width and repetition rate should be such as to cause negligible temperature rise. (Refer to the figure of the test circuit for V
7:
B
(25/50)
R25: resistance at absolute temperature T
50
: resistance at absolute temperature T
R
25
R
= In( )/( )
R
50
j) should not increase beyond 150°C.
1
1
T
T
25
50
T
C
= 25°C
T
C
= 100°C, R
100
= 493Ω
Approximate by equation T
C
= 25°C
CE(sat) and VEC)
25
[K]; T
25
= 25 [°C]+273.15 = 298.15 [K]
50
[K]; T
50
= 50 [°C]+273.15 = 323.15 [K]
(Note. 7)
j) dose not exceed Tjmax rating.
Min. Typ. Max.
4.85 –7.3
Limits
5.00 —
3375
5.15 +7.8
— 10
Unit
kΩ
%
K
mW
Jan. 2009
3
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
Chip Location (Top view) Dimensions in mm (tolerance: ±1mm)
(152)
(121.7)
(110)
46
45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
0
(62)
(50)
47
48
0
73.6
Tr
Tr
Th
74.3
Di
Di
87.9
212019181716151413121110987654321
24
23
22
LABEL SIDE
Each mark points the center position of each chip. Tr: IGBT, Di: FWDi, Th: NTC thermistor
C
VGE = 0V
IC
V
E
V
C(Cs)
VGE = 15V
G
E(Es)
C(Cs)
G
E(Es)
21.8
35.2
45.0
C
IE
E
0V
VCE(sat) test circuit VEC test circuit
I
10%
E
0A
Irr
t
rr, Qrr
test waveform
trr
t
1/2 Irr
Qrr = 1/2 Irr trr
VGE
0V
V
GE
+
V
GE
R
G
V
V
GE
GE
Load
VCE
IE
I
VCC+
IC
C
0A
td(on) td(off)
tr
90%
0%
90%
tf
Switching time test circuit and waveforms
Jan. 2009
4
PERFORMANCE CURVES
OUTPUT CHARACTERISTICS
800
V
GE
20V
700
(A)
C
600
500
400
300
200
100
COLLECTOR CURRENT I
0
(TYPICAL) Inverter part
=
15
Tj = 25°C
13
12
11
10
9
100 246813579
MITSUBISHI IGBT MODULES
HIGH POWER SWITCHING USE
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
4
(V)
3.5
CE(sat)
3
2.5
2
1.5
1
COLLECTOR-EMITTER
0.5
SATURATION VOLTAGE V
0
(TYPICAL) Inverter part
V
GE
= 15V
0
100 200 300 400 500 600 700 800
CM400HX-24A
Tj = 25°C T
j
= 125°C
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL) Inverter part
10
Tj = 25°C
(V)
8
CE(sat)
6
4
COLLECTOR-EMITTER
2
SATURATION VOLTAGE V
0
GATE-EMITTER VOLTAGE VGE (V)
CAPACITANCE CHARACTERISTICS
3
10
7 5
3 2
2
10
7 5
3 2
1
10
7 5
3 2
0
CAPACITANCE (nF)
10
7 5
3 2
–1
10
10
(TYPICAL) Inverter part
V
GE
= 0V
–1
2
0
10
357 2
357 2
10
1
IC = 800A
IC = 400A
IC = 160A
C
ies
C
oes
C
res
357
206 8 10 12 14 16 18
10
COLLECTOR CURRENT I
C
(A)
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL) Inverter part
3
10
7
5
(A)
E
3
2
2
10
7
5
3
EMITTER CURRENT I
2
1
10
040.5 1 1.5 2 2.5 3 3.5
EMITTER-COLLECTOR VOLTAGE V
Tj = 25°C T
j
= 125°C
EC
(V)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
3
10
7
t
2
1
0
10
1
d(on)
23 57
10
2
5
3 2
10
7 5
3 2
10
7 5
SWITCHING TIME (ns)
3 2
2
10
t
d(off)
t
f
t
r
Conditions: V
CC
= 600V
V
GE
= ±15V
R
G
= 0.75Ω
T
j
= 125°C
Inductive load
23 57
10
3
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR CURRENT I
C
(A)
Jan. 2009
5
MITSUBISHI IGBT MODULES
CM400HX-24A
HIGH POWER SWITCHING USE
SWITCHING CHARACTERISTICS
HALF-BRIDGE
(TYPICAL) Inverter part
4
10
Conditions:
7
V
CC
= 600V
5
V
GE
= ±15V
I
C
= 400A
3
T
j
= 125°C
2
Inductive load
3
10
7
5
3
SWITCHING TIME (ns)
2
2
10
10
–1
57
10
0
GATE RESISTANCE R
HALF-BRIDGE
SWITCHING CHARACTERISTICS
3
10
7 5
3 2
2
10
7 5
3 2
1
10
7 5
3
SWITCHING LOSS (mJ/pulse)
2
0
10
10
(TYPICAL) Inverter part
E
on
E
off
E
Conditions: V
CC
= 600V
V
GE
= ±15V
I
C
, IE = 400A
T
j
= 125°C
rr
Inductive load
–1
57
10
0
SWITCHING CHARACTERISTICS
HALF-BRIDGE
(TYPICAL) Inverter part
2
10
7
5
3
t
d(on)
t
d(off)
t
r
t
f
1
23 5723
10
G
(Ω)
2
E
1
10
7
5
3
2
SWITCHING LOSS (mJ/pulse) l
0
10
10
off
E
on
E
rr
1
57
10
2
COLLECTOR CURRENT I
EMITTER CURRENT I
Conditions: V
CC
= 600V
V
GE
= ±15V
R
G
= 0.75Ω
T
j
= 125°C
Inductive load
23 5723
C
(A)
E
(A)
10
3
REVERSE RECOVERY CHARACTERISTICS
OF FREE WHEELING DIODE
3
10
7 5
3 2
2
10
7
(ns)
5
rr
3 2
(A), t
rr
1
10
7 5
3 2
0
1
23 5723
10
10
10
(TYPICAL) Inverter part
1
57
10
2
t
rr
I
rr
Conditions: V
CC
= 600V
V
GE
= ±15V
R
G
= 0.75Ω
T
j
= 25°C
Inductive load
23 5723
10
3
GATE RESISTANCE R
GATE CHARGE CHARACTERISTICS
(TYPICAL) Inverter part
20
IC = 400A
(V)
GE
VCC = 400V
15
10
5
GATE-EMITTER VOLTAGE V
0
0 500 1000 1500 2000 2500 3000
GATE CHARGE QG (nC)
G
(Ω)
VCC = 600V
0
10
7 5
3
th(j–c)
2
–1
10
7 5
3 2
–2
10
7 5
NORMALIZED TRANSIENT
3
THERMAL IMPEDANCE Z
2
–3
10
10
6
EMITTER CURRENT I
E
(A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
Single pulse, T
C
= 25°C
Inverter IGBT part : Per unit base = R Inverter FWDi part : Per unit base = R
–5
–4
10
23 57
10
–3
23 57
23 57
10
–2
23 57
th(j–c) th(j–c)
10
–1
23 57
= 0.051K/W = 0.093K/W
TIME (s)
10
0
23 57
1
10
Jan. 2009
Loading...