
MITSUBISHI HVIGBT MODULES
CM400HB-90H
2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
INSULATED TYPE
CM400HB-90H
● IC...................................................................400A
HIGH POWER SWITCHING USE
● V
CES ....................................................... 4500V
● Insulated T ype
● 1-element in a pack
APPLICATION
Inverters, Converters, DC choppers, Induction heating, DC to DC converters.
OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm
130
3 - M4 NUTS
CM
57
C
10.65
48.8
±0.25
114
C
E
18
±0.25
57
C
E
G
10.35
61.5
4 - M8 NUTS
20
±0.25
40
140
124
E
6 - φ7MOUNTING HOLES
5.2
C
G
E
CIRCUIT DIAGRAM
15
40
CC
E
E
38
5
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
28
LABEL
29.5
Mar. 2003

MITSUBISHI HVIGBT MODULES
CM400HB-90H
HIGH POWER SWITCHING USE
2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
MAXIMUM RATINGS (Tj = 25°C)
Symbol Item Conditions UnitRatings
CES
V
VGES
IC
ICM
IE
IEM
PC
Tj
Tstg
Viso
Collector-emitter voltage
Gate-emitter voltage
Collector current
(Note 2)
Emitter current
(Note 2)
Maximum collector dissipation
(Note 3)
Junction temperature
Storage temperature
Isolation voltage
—
Mounting torque
—
Mass
GE = 0V
V
CE = 0V
V
DC, T
C = 85°C
Pulse (Note 1)
Pulse (Note 1)
C = 25°C, IGBT part
T
—
—
Charged part to base plate, rms, sinusoidal, AC 60Hz 1min.
Main terminals screw M8
Mounting screw M6
Auxiliary terminals screw M4
Typical value
–40 ~ +125
–40 ~ +125
6.67 ~ 13.00
2.84 ~ 6.00
0.88 ~ 2.00
INSULATED TYPE
4500
±20
400
800
400
800
4700
6000
N·m
N·m
N·m
1.5
V
V
A
A
A
A
W
°C
°C
V
kg
ELECTRICAL CHARACTERISTICS (Tj = 25°C)
Symbol
I
CES
V
GE(th)
IGES
VCE(sat)
Cies
Coes
Cres
QG
td (on)
tr
td (off)
tf
VEC
trr
Qrr
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
Note 1. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating.
Collector cutoff current
Gate-emitter
threshold voltage
Gate-leakage current
Collector-emitter
saturation voltage
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
(Note 2)
Emitter-collector voltage
(Note 2)
Reverse recovery time
(Note 2)
Reverse recovery charge
Thermal resistance
Contact thermal resistance
2. I
E, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode.
3. Junction temperature (T
4. Pulse width and repetition rate should be such as to cause negligible temperature rise.
Item Conditions
V
CE = VCES, VGE = 0V
I
C = 40mA, VCE = 10V
V
GE = VGES, VCE = 0V
j = 25°C
T
T
j = 125°C
V
CE = 10V
GE = 0V
V
CC = 2250V, IC = 400A, VGE = 15V
V
V
CC = 2250V, IC = 400A
V
GE1 = VGE2 = 15V
R
G = 22.5Ω
I
C = 400A, VGE = 15V (Note 4)
Resistive load switching operation
I
E = 400A, VGE = 0V
E = 400A,
I
die / dt = –800A / µs (Note 1)
Junction to case, IGBT part
Junction to case, FWDi part
Case to fin, conductive grease applied
j) should not increase beyond 125°C.
Min Typ Max
Limits
—
—
6.04.5
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
3.00
3.30
72
5.3
1.6
3.6
—
—
—
—
4.00
—
160
—
—
0.015
0.021
0.042
7.5
0.5
3.90
—
—
—
—
—
2.40
2.40
6.00
1.20
5.20
1.80
—
—
Unit
8
mA
V
µA
V
nF
nF
nF
µC
µs
µs
µs
µs
V
µs
µC
K/W
K/W
K/W
HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules)
Mar. 2003

2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
PERFORMANCE CURVES
OUTPUT CHARACTERISTICS
800
600
Tj=25°C
VGE=20V
)
A
(
(
TYPICAL
VGE=12V
)
VGE=10V
)
A
(
VGE=15V
VGE=14V
400
TRANSFER CHARACTERISTICS
7000
VCE=10V
6000
5000
4000
3000
MITSUBISHI HVIGBT MODULES
CM400HB-90H
HIGH POWER SWITCHING USE
INSULATED TYPE
(
TYPICAL
)
Tj = 25°C
Tj = 125°C
200
COLLECTOR CURRENT IC
0
2468
COLLECTOR-EMITTER VOLTAGE V
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
8
)
VGE=15V
V
(
6
CE(sat)
(
TYPICAL
4
2
COLLECTOR-EMITTER
SATURATION VOLTAGE V
0
200 400 600 800
0
COLLECTOR CURRENT IC (A
VGE=8V
)
Tj = 25°C
Tj = 125°C
2000
1000
COLLECTOR CURRENT IC
CE
100
(V)
0
GATE-EMITTER VOLTAGE VGE (V
200481216
)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
10
)
V
(
CE(sat)
Tj = 25°C
8
(
TYPICAL
)
6
IC=800A
4
COLLECTOR-EMITTER
2
SATURATION VOLTAGE V
0
020161284
)
GATE-EMITTER VOLTAGE VGE (V
IC=400A
IC=200A
)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
)
V
8
(
(
TYPICAL
)
6
4
2
0
EMITTER-COLLECTOR VOLTAGE VEC
0 200 400 600 800
EMITTER CURRENT IE (A
Tj = 25°C
Tj = 125°C
)
CAPACITANCE CHARACTERISTICS
3
10
)
7
5
nF
(
3
2
2
10
7
5
3
2
1
10
7
5
3
2
CAPACITANCE Cies, Coes, Cres
0
10
–1
2310
(
TYPICAL
)
VGE = 15V, Tj = 25°C
C
ies, Coes : f = 100kHz
Cres
: f = 1MHz
5710023 5710123 5710
COLLECTOR-EMITTER VOLTAGE VCE (V
Cies
Coes
Cres
2
)
Mar. 2003

2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules
MITSUBISHI HVIGBT MODULES
CM400HB-90H
HIGH POWER SWITCHING USE
INSULATED TYPE
SWITCHING TIME CHARACTERISTICS
5
VCC = 2250V, VGE = ±15V
3
R
G
= 22.5Ω, Tj = 125°C
2
)
µs
(
SWITCHING TIMES
10
10
10
1
7
5
3
2
0
7
5
3
2
–1
7
5
5
Inductive load
710
(
TYPICAL
2
23 5710
)
t
d(off)
t
d(on)
t
r
t
f
3
COLLECTOR CURRENT IC (A
HALF-BRIDGE
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
5.0
VCC = 2250V, VGE = ±15V,
R
G
)
J/P
(
= 22.5Ω, Tj = 125°C,
Inductive load
4.0
(
TYPICAL
)
3.0
2.0
1.0
SWITCHING ENERGY
0
0 200 400 800600
CURRENT (A
)
23 5
)
E
on
E
off
E
rec
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(
1
10
)
7
µs
(
5
rr
3
TYPICAL
VCC = 2250V, Tj = 125°C
Inductive load
IGBT drive conditions
GE
V
)
= ±15V, RG = 22.5Ω
2
0
10
t
rr
7
5
I
rr
3
2
REVERSE RECOVERY TIME t
–1
10
5
710
2
23 5710
3
EMITTER CURRENT IE (A
HALF-BRIDGE
SWITCHING ENERGY CHARACTERISTICS
(
TYPICAL
)
3.0
)
2.5
J/P
(
2.0
1.5
1.0
0.5
SWITCHING ENERGY
0
0 5 10 15 20 3025
GATE RESISTANCE (Ω
23 5
)
)
)
4
10
A
(
rr
7
5
3
2
3
10
7
5
3
2
2
10
REVERSE RECOVERY CURRENT I
GATE CHARGE CHARACTERISTICS
20
)
V
(
GE
VCC = 2250V
I
16
C
= 400A
(
TYPICAL
12
8
4
GATE-EMITTER VOLTAGE V
0
GATE CHARGE QG (nC
)
1
10
7
5
3
th(j – c)
2
0
10
7
5
3
2
–1
10
7
5
NORMALIZED TRANSIENT
3
THERMAL IMPEDANCE Z
2
–2
800060000 2000 4000
10
10
)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
Single Pulse
T
C
= 25°C
th(j – c)Q
R
R
–3
= 0.021K/W
th(j – c)R
= 0.042K/W
10
–2
23 57 23 57 23 57
TIME (s
–1
10
)
10
0
Mar. 2003