Mitsubishi Electric Corporation Semiconductor Group CM300DU-12F Datasheet

CM300DU-12F
MITSUBISHI IGBT MODULES
CM300DU-12F
HIGH POWER SWITCHING USE
¡IC...................................................................300A
CES ............................................................600V
¡V ¡Insulated Type ¡2-elements in a pack
APPLICATION
General purpose inverters & Servo controls, etc
OUTLINE DRAWING & CIRCUIT DIAGRAM
Tc measured point
G2 E2
E1 G1
C1
4
2.8
14 14 14
CM
C2E1
25 2.521.525
3-M6 NUTS
4-φ6. 5 MOUNTING HOLES
18 7 18 7 18
93
108
±0.25
E2
Dimensions in mm
RTC
6156
±0.25
48
62
C2E1
E2
RTC
G2E2
C1
CIRCUIT DIAGRAM
0.5 0.5
0.5
0.5
+1.0
29
–0.5
LABEL
7.5
8.5
22
4
Aug. 1999
MAXIMUM RATINGS (Tj = 25°C)
MITSUBISHI IGBT MODULES
CM300DU-12F
HIGH POWER SWITCHING USE
Symbol Parameter
CES
V VGES IC ICM IE ( IEM ( PC ( Tj Tstg Viso
Collector-emitter voltage Gate-emitter voltage
Collector current
Note 1
)
Emitter current
Note 1
)
Maximum collector dissipation
Note 3
)
Junction temperature Storage temperature Isolation voltage
Torque strength
Weight
ELECTRICAL CHARACTERISTICS
Symbol
ICES V
GE(th)
IGES VCE(sat)
Cies Coes Cres QG td(on) tr td(off) tf trr ( Qrr ( VEC( Rth(j-c)Q
th(j-c)R
R
th(c-f)
R Rth(j-c’)Q
G
R
Note 1. IE, VEC, trr, Qrr, die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. (FWDi).
1 : Tc measured point is indicated in OUTLINE DRAWING.
*
2 : Typical value is measured by using Shin-etsu Silicone “G-746”.
*
3 : If you use this value, Rth(f-a) should be measured just under the chips.
*
Collector cutoff current Gate-emitter threshold voltage
Gate leakage current Collector-emitter saturation voltage
Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time
Note 1
)
Reverse recovery charge
Note 1
)
Emitter-collector voltage
Note 1
)
Thermal resistance Contact thermal resistance
Thermal resistance External gate resistance
2. Pulse width and repetition rate should be such that the device junction temp. (T
3. Junction temperature (T
4. Pulse width and repetition rate should be such as to cause negligible temperature rise.
Parameter
*1
j) should not increase beyond 150°C.
G-E Short C-E Short
C = 25°C
T Pulse (Note 2)
C = 25°C
T Pulse (Note 2)
C = 25°C
T
Main terminal to base plate, AC 1 min. Main Terminal M6 Mounting holes M6 Typical value
(Tj = 25°C)
VCE = VCES, VGE = 0V
C = 30mA, VCE = 10V
I V
GE = VCES, VCE = 0V j = 25°C
T
j = 125°C
T V
CE = 10V GE = 0V
V
CC = 300V, IC = 300A, VGE = 15V
V
V
CC = 300V, IC = 300A GE1 = VGE2 = 15V
V
G = 2.1Ω, Inductive load switching operation
R
E = 300A
I
I
E = 300A, VGE = 0V
IGBT part (1/2 module) FWDi part (1/2 module) Case to fin, Thermal compoundapplied Tc measured point is just under the chips
Conditions UnitRatings
Test conditions
Min. Max.
57
I
C = 300A, VGE = 15V
— — — — — — — — — — — — — — —
*2
(1/2 module)
— —
2.1
j) does not exceed Tjmax rating.
600 ±20 300 600 300 600
780 –40 ~ +150 –40 ~ +125
2500
3.5 ~ 4.5
3.5 ~ 4.5 400
Limits
T yp.
1
V V
A
A
W
°C °C
V N • m N • m
g
Unit
mA
6V
1.6
1.6 — — —
1860
— — — — —
5.2 — — —
0.04 — —
40
2.2 — 81
5.4
3.0 —
250 120 500 250 150
2.6
0.16
0.24 —
0.10 21
µA
V
nF
nC
ns
ns
µC
V
°C/W
3
Aug. 1999
PERFORMANCE CURVES
OUTPUT CHARACTERISTICS
600
Tj=25°C
(A)
500
C
400
(TYPICAL)
VGE=20V
9.5
15
MITSUBISHI IGBT MODULES
CM300DU-12F
HIGH POWER SWITCHING USE
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
3
V
11 10
CE (sat) (V)
9
GE
2.5
2
(TYPICAL)
= 15V
300
200
100
COLLECTOR CURRENT I
0
0
0.5 1.5 2.5 3.51234
8
7.5
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
5
Tj = 25°C
4
CE (sat) (V)
3
2
COLLECTOR-EMITTER
1
SATURATION VOLTAGE V
0
8.5
IC = 600A I
C
= 300A
C
= 120A
I
16 18 206 8 10 12 14
1.5
1
COLLECTOR-EMITTER
0.5
SATURATION VOLTAGE V
0
COLLECTOR CURRENT IC (A)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
3
10
7
Tj = 25°C
5
(A)
E
3 2
2
10
7 5
3
EMITTER CURRENT I
2
1
10
0 0.5 1 1.5 2 2.5 3 3.5 4
(TYPICAL)
Tj = 25°C
j
= 125°C
T
6000 200 400
GATE-EMITTER VOLTAGE V
CAPACITANCE–V
CE
CHARACTERISTICS
(TYPICAL)
2
10
7 5
3 2
1
10
7 5
3 2
0
CAPACITANCE Cies, Coes, Cres (nF)
10
10
7 5
3 2
–1
–1
10
V
GE
= 0V
2
357 2
10
0
C
res
1
10
357 2
COLLECTOR-EMITTER VOLTAGE VCE (V)
GE (V)
C
ies
C
357
oes
10
EMITTER-COLLECTOR VOLTAGE VEC (V)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
3
10
7 5
3 2
2
10
7 5
3 2
1
10
7 5
SWITCHING TIMES (ns)
3 2
0
2
10
10
0
23 57
10
t
d(off)
t
d(on)
t
f
t
r
1
23 57
Conditions: VCC = 300V
GE
= ±15V
V
G
= 2.1
R
j
= 125°C
T
2
10
23 57
10
3
COLLECTOR CURRENT IC (A)
Aug. 1999
MITSUBISHI IGBT MODULES
CM300DU-12F
HIGH POWER SWITCHING USE
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
3
10
(A)
rr
7
(ns)
rr
5 3
2
2
10
7 5
3 2
REVERSE RECOVERY TIME t
1
10
REVERSE RECOVERY CURRENT l
10
1
23 57
10
2
23 57
EMITTER CURRENT I
GATE CHARGE
CHARACTERISTICS
(TYPICAL)
20
(V)
GE
18 16 14
IC = 300A
VCC = 200V
12 10
8 6 4 2
GATE-EMITTER VOLTAGE V
0
0 500 1000 1500 2000 2500
t
rr
I
rr
Conditions:
CC = 300V
V V
GE = ±15V
R
G = 2.1
T
j = 25°C
E
(A)
VCC = 300V
10
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part & FWDi part)
10
10
10
10
10
1
3 2
–1
7 5
3 2
–2
7 5
3 2
–3
–3
–3
10
1
10
7
IGBT part:
5
Per unit base = R
3
FWDi part:
(°C/W)
2
Per unit base = R
0
10
th (j–c)
7 5
3 2
–1
10
7 5
3 2
–2
10
7
NORMALIZED TRANSIENT
5
Single Pulse
3 2
10
T
–3
3
THERMAL IMPEDANCE Z
–2
23 57 23 57 23 57 23 57
10
C
= 25°C
–1
10
th(j–c) th(j–c)
–5
10
0
10
= 0.16°C/W = 0.24°C/W
–4
23 57 23 57
10
TMIE (s)
GATE CHARGE QG (nC)
Aug. 1999
Loading...