MITSUBISHI CM150RX-24S User Manual

CM150RX-24S
- 6th Generation NX series -
MITSUBISHI IGBT MODULES
CM150RX-24S
INSULATED TYPE
Collector current IC .............…............…
Collector-emitter voltage V
Maximum junction temperature T
Flat base Type
Copper base plate (non-plating)
Tin plating pin terminals
RoHS Directive compliant
sevenpack (3φ inverter+Brake)
APPLICATION
AC Motor Control, Motion/Servo Control, etc.
OUTLINE DRAWING & INTERNAL CONNECTION
UL Recognized under UL1557, File E323585
...........…
CES
jmax
150
1200
...
175
Dimension in mm
TERMINAL
A
V
°C
P(35)
N(36)
B(4 )
GB(6)
EsB(5)
INTERNAL CONNECTION
GUP(34)
EsUP(33)
GUN(30)
EsUN(29) EsVN(21) EsWN(13)
U(1)
GVP(26)
EsVP(25)
GVN(22)
GWP(18)
EsWP(17)
V(2)
GWN(14)
W(3)
NTC
TH1(11)
TH2(10 )
SECTION A
Tolerance otherwise specified
Division of Dimension Tolerance
0.5 to 3 ±0.2
over 3 to 6 ±0.3
over 6 to 30 ±0.5
over 30 to 120 ±0.8
over 120 to 400 ±1.2
The Tolerance of size between terminals is assumed to be ±0.4.
t=0.8
1
Apr. 2011
MITSUBISHI IGBT MODULES
CM150RX-24S
INSULATED TYPE
ABSOLUTE MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Symbol Item Conditions Rating Unit
V
Collector-emitter voltage G-E short-circuited 1200 V
CES
V
Gate-emitter voltage C-E short-circuited ±20 V
GES
IC DC, TC=120 °C
I
CRM
P
Total power dissipation TC=25 °C
tot
IE
I
ERM
(Note.1)
(Note.1)
Collector current
Emitter current
Pulse, Repetitive
TC=25 °C
Pulse, Repetitive
BRAKE PART IGBT/CLAMPDi
Symbol Item Conditions Rating Unit
V
Collector-emitter voltage G-E short-circuited 1200 V
CES
V
Gate-emitter voltage C-E short-circuited ±20 V
GES
IC DC, TC=122 °C
I
CRM
P
Total power dissipation TC=25 °C
tot
V
Repetitive peak reverse voltage G-E short-circuited 1200 V
RRM
I
F
I
FRM
Collector current
Forward current
Pulse, Repetitive
TC=25 °C
Pulse, Repetitive
MODULE
Symbol Item Conditions Rating Unit
T
Maximum junction temperature - 175
jmax
T
Maximum case temperature
Cmax
T
Operating junction temperature - -40 ~ +150
jop
T
Storage temperature - -40 ~ +125
stg
V
Isolation voltage Terminals to base plate, RMS, f=60 Hz, AC 1 min 2500 V
isol
(Note.2)
125
(Note.2)
150
(Note.3)
(Note.2, 4)
(Note.2, 4)
(Note.2, 4)
(Note.2, 4)
300
1150 W
150
(Note.3)
300
(Note.2)
75
(Note.3)
150
600 W
75
(Note.3)
150
A
A
A
A
°C
°C
ELECTRICAL CHARACTERISTICS (Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Symbol Item Conditions
I
Collector-emitter cut-off current VCE=V
CES
I
Gate-emitter leakage current VGE=V
GES
V
Gate-emitter threshold voltage IC=15 mA, VCE=10 V 5.4 6.0 6.6 V
GE(th)
I
V
CEsat
(Terminal)
V
CEsat
(Chip)
C
ies
C
oes
C
res
Collector-emitter saturation voltage
Collector-emitter saturation voltage
Input capacitance - - 15
Output capacitance - - 3.0
Reverse transfer capacitance
C
V
I
C
V
V
, G-E short-circuited - - 1 mA
CES
, C-E short-circuited - - 0.5 μA
GES
=150 A
GE
=150 A
GE
CE
(Note.5)
,
=15 V
(Note.5)
,
=15 V
=10 V, G-E short-circuited
Tj=25 °C - 1.80 2.25
Tj=125 °C - 2.00 -
=150 °C - 2.05 -
T
j
Tj=25 °C - 1.70 2.15
Tj=125 °C - 1.90 -
=150 °C - 1.95 -
T
j
Min. Typ. Max.
- - 0.25
QG Gate charge VCC=600 V, IC=150 A, VGE=15 V - 350 - nC
t
Turn-on delay time - - 800
d(on)
tr Rise time
t
Turn-off delay time - - 600
d(off)
tf Fall time
(Note.1)
VEC
(Terminal)
VEC
(Chip)
Emitter-collector voltage
(Note.1)
Emitter-collector voltage
=600 V, IC=150 A, VGE=±15 V,
V
CC
=0 , Inductive load
R
G
I
=150 A
E
G-E short-circuited
I
=150 A
E
G-E short-circuited
(Note.5)
(Note.5)
,
Tj=125 °C - 1.8 -
T
,
Tj=125 °C - 1.7 -
T
- - 200
- - 300
Tj=25 °C - 1.8 2.25
=150 °C - 1.8 -
j
Tj=25 °C - 1.7 2.15
=150 °C - 1.7 -
j
Limits
Unit
V
V
nF
ns
V
V
2
Apr. 2011
MITSUBISHI IGBT MODULES
CM150RX-24S
INSULATED TYPE
ELECTRICAL CHARACTERISTICS (cont.; Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Symbol Item Conditions
(Note.1)
t
rr
Qrr
Reverse recovery time VCC=600 V, IE=150 A, VGE=±15 V, - - 300 ns
(Note.1)
Reverse recovery charge RG=0 , Inductive load - 8.0 - μC
Min. Typ. Max.
Eon Turn-on switching energy per pulse VCC=600 V, IC=IE=150 A, - 24.2 -
E
Turn-off switching energy per pulse VGE=±15 V, RG=0 , Tj=150 °C, - 16.0 -
off
(Note.1)
Err
R
Reverse recovery energy per pulse Inductive load - 12.2 - mJ
Internal lead resistance
CC'+EE'
Main terminals-chip, per switch,
=25 °C
T
C
(Note.2)
- - 1.8 m
rg Internal gate resistance Per switch - 13 -
BRAKE PART IGBT/CLAMPDi
Symbol Item Conditions
I
Collector-emitter cut-off current VCE=V
CES
I
Gate-emitter leakage current VGE=V
GES
V
Gate-emitter threshold voltage IC=7.5 mA, VCE=10 V 5.4 6.0 6.6 V
GE(th)
I
V
CEsat
(Terminal)
V
CEsat
(Chip)
C
ies
C
oes
C
res
Collector-emitter saturation voltage
Collector-emitter saturation voltage
Input capacitance - - 7.5
Output capacitance - - 1.5
Reverse transfer capacitance
C
V
IC=75 A
V
V
, G-E short-circuited - - 1 mA
CES
, C-E short-circuited - - 0.5 μA
GES
(Note.5)
=75 A
=15 V
GE
=15 V
GE
=10 V, G-E short-circuited
CE
(Note.5)
,
,
Tj=25 °C - 1.80 2.25
Tj=125 °C - 2.00 -
=150 °C - 2.05 -
T
j
Tj=25 °C - 1.70 2.15
T
=125 °C - 1.90 -
j
Tj=150 °C - 1.95 -
T
=175 °C - - 2.80
j
QG Gate charge VCC=600 V, IC=75 A, VGE=15 V - 175 - nC
t
Turn-on delay time - - 300
d(on)
tr Rise time
t
Turn-off delay time - - 600
d(off)
tf Fall time
I
Repetitive peak reverse current VR=V
RRM
V
F
(Terminal)
V
F
(Chip)
t
rr
Qrr
Forward voltage
Forward voltage
(Note.1)
Reverse recovery time VCC=600 V, IE=75 A, VGE=±15 V, - - 300 ns
(Note.1)
Reverse recovery charge RG=8.2 , Inductive load - 4.0 - μC
=600 V, IC=75 A, VGE=±15 V,
V
CC
=8.2 , Inductive load
R
G
, G-E short-circuited - - 1 mA
RRM
I
=75 A
F
(Note.5)
,
G-E short-circuited
I
=75 A
F
(Note.5)
,
G-E short-circuited
Tj=25 °C - 1.8 2.25
Tj=125 °C - 1.8 -
=150 °C - 1.8 -
T
j
Tj=25 °C - 1.7 2.15
Tj=125 °C - 1.7 -
=150 °C - 1.7 -
T
j
Eon Turn-on switching energy per pulse VCC=600 V, IC=IF=75 A, - 7.3 -
E
Turn-off switching energy per pulse VGE=±15 V, RG=8.2 , Tj=150 °C, - 8.0 -
off
(Note.1)
Err
Reverse recovery energy per pulse Inductive load - 6.9 - mJ
rg Internal gate resistance - - 0 -
Min. Typ. Max.
- - 0.13
- - 200
- - 300
NTC THERMISTOR PART
Symbol Item Conditions
R25 Zero-power resistance TC=25 °C
ΔR/R Deviation of resistance TC=100 °C, R
B
B-constant Approximate by equation
(25/50)
P25 Power dissipation TC=25 °C
(Note.2)
4.85 5.00 5.15 k
=493 -7.3 - +7.8 %
100
(Note.2)
- - 10 mW
(Note.6)
- 3375 - K
Min. Typ. Max.
Limits
Limits
Unit
mJ
Unit
V
V
nF
ns
V
V
mJ
Limits
Unit
3
Apr. 2011
MITSUBISHI IGBT MODULES
CM150RX-24S
INSULATED TYPE
THERMAL RESISTANCE CHARACTERISTICS
Symbol Item Conditions
R
Junction to case, per Inverter IGBT - - 0.13
th(j-c)Q
R
Junction to case, per Inverter FWDi - - 0.23
th(j-c)D
R
th(j-c)Q
R
th(j-c)D
R
th(c-s)
Thermal resistance
Junction to case, Brake IGBT - - 0.25
Contact thermal resistance
(Note.2)
(Note.2)
Junction to case, Brake ClampDi - - 0.40
Case to heat sink, per 1 module, Thermal grease applied
(Note.7)
Min. Typ. Max.
- 15 - K/kW
Limits
Unit
K/W
K/W
MECHANICAL CHARACTERISTICS
Symbol Item Conditions
Mt Main terminals M 5 screw 2.5 3.0 3.5
Ms
ds Creepage distance
da Clearance
Mounting torque
Mounting to heat sink M 5 screw 2.5 3.0 3.5
Terminal to terminal 10.25 - -
Terminal to base plate 12.32 - -
Terminal to terminal 10.28 - -
Terminal to base plate 10.85 - -
Min. Typ. Max.
m Weight - - 370 - g
ec Flatness of base plate On the centerline X, Y
(Note.8)
±0 - +100 μm
Note.1: Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi). Note.2: Case temperature (T
) and heat sink temperature (Ts) are defined on the each surface of base plate and heat sink
C
just under the chips. Refer to the figure of chip location.
The heat sink thermal resistance should measure just under the chips. Note.3: Pulse width and repetition rate should be such that the device junction temperature (T Note.4: Junction temperature (T
) should not increase beyond T
j
jmax
rating.
j
Note.5: Pulse width and repetition rate should be such as to cause negligible temperature rise.
Note.6:
Refer to the figure of test circuit for V
R
25
/()
ln(B
)/(
5025
R
R
: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K]
25
R
: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K]
50
11
TT
502550
)
, VEC and ClampDi VF.
CEsat
Note.7: Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K). Note.8: The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.
Y
mounting side
-:Concave
mounting side
+:Convex
-:Concave X
Limits
) dose not exceed T
jmax
Unit
N·m
mm
mm
rating.
mounting side
+:Convex
Note.9: Japan Electronics and Information Technology Industries Association (JEITA) standards,
"EIAJ ED-4701/300: Environmental and endurance test methods for semiconductor devices (Stress test I)"
Note.10: Use the following screws when mounting the printed circuit board (PCB) on the stand offs.
"M2.6×10 or M2.6×12 self tapping screw" The length of the screw depends on the thickness of the PCB.
RECOMMENDED OPERATING CONDITIONS (Ta=25 °C)
Symbol Item Conditions
Min. Typ. Max.
VCC (DC) Supply voltage Applied across P-N terminals - 600 850 V
V
Gate (-emitter drive) voltage
GEon
RG External gate resistance Per switch
Applied across GB-EsB /
G*P-Es*P / G*N-Es*N terminals
Inverter part 0 - 30
13.5 15.0 16.5 V
Brake part 8.2 - 82
4
Limits
Unit
Apr. 2011
MITSUBISHI IGBT MODULES
CHIP LOCATION (Top view)
Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: FWDi, DiBr: ClampDi, Th: NTC thermistor.
TEST CIRCUIT AND WAVEFORMS
0 V
+V
-VGE
R
G
GE
VGE
-V
GE
Switching characteristics test circuit and waveforms trr, Qrr test waveform
iE
Load
VCE
+
i
C
vCE
I
CM
VCC
iC
CM150RX-24S
INSULATED TYPE
Dimension in mm, tolerance: ±1 mm
0 V
v
GE
90 %
0
iE
t
Q
=0.5×Irr×t
rr
t
rr
IE
V
i
CC
C
90 %
0 A
Irr
0 A
t
d(on)
t
r
t
d(off)
t
f
10%
t
i
i
C
V
CC
ICM
v
CE
E
0 A
IEM
v
EC
rr
0.5×I
t
rr
V
CC
t
0.1×I
0
CM
0.1×VCC t
ti
IGBT Turn-on switching energy IGBT Turn-off switching energy FWDi Reverse recovery energy
0.1×V
CC
t
i
0.02×I
CM
t0
t0 V
ti
Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)
5
Apr. 2011
MITSUBISHI IGBT MODULES
TEST CIRCUIT
VGE=15 V
circ uited
VGE=15 V
V
Short-
circui ted
Short-
GUP
EsUP
GUN
EsUN
34
33
30
35
1
CM150RX-24S
INSULATED TYPE
P
VGE=15 V
I
C
U
N
V
Short-
circui ted
GVP
EsVP
GVN
EsVN
Short-
circ uited
26
V
VGE=15 V
IC
25
22
P
V
N
35
2
P
VGE=15 V
I
C
circuited
V
V
Short-
circui ted
Short-
GWP
EsWP
GWN
EsWN
35
18
17
I
C
W
N
V
3
VGE=15 V
I
C
14
I
VGE=15 V
C
GB
P
B
V
I
C
Gate-emitter
short-circuited
Short-
circuited
V
Short-
circuited
Short-
circ uited
Short-
circ uited
29
GVP-EsVP GVN-EsVN, GWP-EsWP, GW N-EsWN, GB-EsB
36
UP / UN IGBT
34
33
30
29
GUP
EsUP
GUN
P
U
21
Gate-emitter
short-circuited
GUP-EsUP, GUN-EsUN, GWP-EsWP, GW N-EsWN, GB-EsB
VP / VN IGBT
36
Gate-emitter
short-circuited
V
test circuit
CEsat
35
IE
1
36
Short-
circuited
V
Short-
circuited
26
25
22
21
Short-
circ uited
GVP
V
IE
Short-
circ uited
EsVP
GVN
35
I
E
2
36
P
V
V
I
E
WP / WN IGBT
Short-
circuited
V
Short-
circuited
Short-
circuited
Short-
circuited
13
GUP-EsUP, GUN-EsUN, GVP-EsVP, GVN-EsVN, GB-EsB
18
17
14
13
36
35
3
36
P
GWP
EsW P
W
GWN
short-circuited
I
E
V
I
E
EsB
Gate-emitter
Short-
circuited
6
5
N
GUP-EsUP, GUN-EsUN, GVP-EsVP, GVN-EsVN, GWP-EsWP, GW N-EsWN
Brake IGBT
35
4
36
V
IF
Gate-emitter
short-circuited
EsUN
GVP-EsVP GVN-EsVN, GWP-EsWP, GW N-EsWN, GB-EsB
N
short-circuited
UP / UN FWDi VP / VN FWDi WP / WN FWDi
EsVN
Gate-emitter
N
GUP-EsUP, GUN-EsUN, GWP-EsWP, GW N-EsWN, GB-EsB
Gate-emitter short-circuited
EsWN
GUP-EsUP, GUN-EsUN, GVP-EsVP, GVN-EsVN, GB-EsB
N
Gate-emitter
short-circuited
GUP-EsUP, GUN-EsUN, GVP-EsVP, GVN-EsVN, GWP-EsWP, GW N-EsWN
Brake ClampDi
VEC / VF test circuit
6
Apr. 2011
MITSUBISHI IGBT MODULES
CM150RX-24S
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
300
250
(A)
C
200
150
100
COLLECTOR CURRENT I
50
Tj=25 °C
VGE=20 V
15 V
OUTPUT CHARACTERISTICS
(TYPICAL)
13.5 V
12 V
11 V
10 V
9 V
(Chip)
3.5
(V)
2.5
CEsat
1.5
COLLECTOR-EMITTER
SATURATION VOLTAGE V
0.5
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
VGE=15 V
3
Tj=125 °C
2
1
(Chip)
Tj=150 °C
Tj=25 °C
0
0246810
0
0 50 100 150 200 250 300
COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
10
8
Tj=25 °C
(V)
CEsat
6
4
COLLECTOR-EMITTER
2
SATURATION VOLTAGE V
(TYPICAL)
(Chip)
1000
IC=300 A
IC=150 A
(A)
E
IC=60 A
100
EMITTER CURRENT I
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
G-E short-circuited
Tj=125 °C
Tj=150 °C
Tj=25 °C
(Chip)
0
6 8 10 12 14 16 18 20
10
0123
GATE-EMITTER VOLTAGE VGE (V) EMITTER-COLLECTOR VOLTAGE VEC (V)
7
Apr. 2011
MITSUBISHI IGBT MODULES
VCC=600 V, VGE=±15 V, RG=0 , INDUCTIVE LOAD
1000
100
SWITCHING TIME (ns)
SWITCHING CHARACTERISTICS
HALF-BRIDGE
(TYPICAL)
--------------- : T
=150 °C, - - - - -: Tj=125 °C
j
t
d(off)
t
tf
tr
d(on)
CM150RX-24S
INSULATED TYPE
SWITCHING CHARACTERISTICS
VCC=600 V, IC=150 A, VGE=±15 V, INDUCTIVE LOAD
1000
100
--------------- : T
SWITCHING TIME (ns)
HALF-BRIDGE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
t
t
t
t
d(off)
d(on)
r
f
10
10 100 1000
10
1 10 100
COLLECTOR CURRENT IC (A) EXTERNAL GATE RESISTANCE RG ()
SWITCHING ENERGY (mJ)
100
SWITCHING CHARACTERISTICS
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
VCC=600 V, VGE=±15 V, RG=0 ,
INDUCTIVE LOAD, PER PULSE
--------------- : T
10
=150 °C, - - - - -: Tj=125 °C
j
Eon
E
off
Err
100
10
VCC=600 V, IC/IE=150 A, VGE=±15 V,
INDUCTIVE LOAD, PER PULSE
--------------- : T
SWITCHING ENERGY (mJ)
HALF-BRIDGE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
E
on
E
off
E
rr
REVERSE RECOVERY ENERGY (mJ)
1
10 100 1000
COLLECTOR CURRENT IC (A)
EMITTER CURRENT I
(A)
E
8
REVERSE RECOVERY ENERGY (mJ)
1
0.1 1 10 100
EXTERNAL GATE RESISTANCE R
()
G
Apr. 2011
MITSUBISHI IGBT MODULES
100
10
1
CAPACITANCE (nF)
0.1
CAPACITANCE CHARACTERISTICS
(TYPICAL)
G-E short-circuited, Tj=25 °C
CM150RX-24S
INSULATED TYPE
REVERSE RECOVERY CHARACTERISTICS
VCC=600 V, VGE=±15 V, RG=0 , INDUCTIVE LOAD
1000
C
ies
(A)
rr
C
oes
C
res
100
(ns), I
rr
t
FREE WHEELING DIODE
(TYPICAL)
--------------- : T
=150 °C, - - - - -: Tj=125 °C
j
trr
Irr
0.01
0.1 1 10 100
10
10 100 1000
COLLECTOR-EMITTER VOLTAGE VCE (V) EMITTER CURRENT IE (A)
TRANSIENT THERMAL IMPEDANCE
CHARACTERISTICS
(MAXIMUM)
Single pulse, TC=25°C
1
0.1
20
15
(V)
GE
10
5
GATE-EMITTER VOLTAGE V
GATE CHARGE CHARACTERISTICS
(TYPICAL)
VCC=600 V, IC=150 A, Tj=25 °C
th(j-c)
Z
0.01
0.001
NORMALIZED TRANSIENT THERMAL IMPEDANCE
0
0 100 200 300 400 500
0.00001 0. 0001 0.001 0.01 0.1 1 10
R
=0.13 K/W, R
th(j-c)Q
th(j-c)D
=0.23 K/W
GATE CHARGE QG (nC) TIME (S)
9
Apr. 2011
MITSUBISHI IGBT MODULES
BRAKE PART
3.5
(V)
2.5
CEsat
1.5
COLLECTOR-EMITTER
SATURATION VOLTAGE V
0.5
COLLECTOR-EMITTER SATURATION
VGE=15 V
3
2
1
VOLTAGE CHARACTERISTICS
(TYPICAL)
Tj=150 °C
Tj=125 °C
Tj=25 °C
(Chip)
1000
(V)
F
100
10
FORWARD VOLTAGE V
CM150RX-24S
CLAMP DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
G-E short-circuited
Tj=125 °C
Tj=150 °C
Tj=25 °C
INSULATED TYPE
(Chip)
0
0 50 100 150
1
0 0.5 1 1.5 2 2.5 3
COLLECTOR CURRENT IC (A) FORWARD CURRENT IF (A)
SWITCHING CHARACTERISTICS
HALF-BRIDGE
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=8.2 , INDUCTIVE LOAD
1000
100
--------------- : T
10
SWITCHING TIME (ns)
=150 °C, - - - - -: Tj=125 °C
j
t
d(off)
tf
t
d(on)
tr
SWITCHING CHARACTERISTICS
VCC=600 V, IC=75 A, VGE=±15 V, INDUCTIVE LOAD
1000
100
--------------- : T
SWITCHING TIME (ns)
HALF-BRIDGE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
tf
t
d(off)
t
d(on)
tr
1
1 10 100
10
1 10 100
COLLECTOR CURRENT IC (A) EXTERNAL GATE RESISTANCE RG ()
10
Apr. 2011
MITSUBISHI IGBT MODULES
CM150RX-24S
INSULATED TYPE
10
1
SWITCHING CHARACTERISTICS
VCC=600 V, VGE=±15 V, RG=8.2 ,
INDUCTIVE LOAD, PER PULSE
--------------- : T
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, IC/IF=75 A, VGE=±15 V,
INDUCTIVE LOAD, PER PULSE
=150 °C, - - - - -: Tj=125 °C
j
Err
E
off
Eon
100
10
--------------- : T
HALF-BRIDGE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
E
on
E
off
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
0.1 1 10 100
COLLECTOR CURRENT IC (A)
FORWARD CURRENT I
REVERSE RECOVERY CHARACTERISTICS
VCC=600 V, VGE=±15 V, RG=8.2 , INDUCTIVE LOAD
1000
(A)
rr
100
(ns), I
rr
t
--------------- : T
CLAMP DIODE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
F
Irr
trr
(A)
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
1
1 10 100
EXTERNAL GATE RESISTANCE R
TRANSIENT THERMAL IMPEDANCE
CHARACTERISTICS
(MAXIMUM)
1
0.1
Single pulse, TC=25°C
th(j-c)
Z
0.01
G
E
()
rr
0.001
10
1 10 100
NORMALIZED TRANSIENT THERMAL IMPEDANCE
0.00001 0. 0001 0.001 0.01 0.1 1 10
R
=0.25 K/W, R
th(j-c)Q
th(j-c)D
=0.40 K/W
FORWARD CURRENT IF (A) TIME (S)
11
Apr. 2011
MITSUBISHI IGBT MODULES
CM150RX-24S
INSULATED TYPE
Keep safety first in your circuit designs!
·Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
·These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
·Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
·All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com/Global/index.html).
·When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
·Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
·The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
·If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
·Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
12
Apr. 2011
Loading...