HEAVY-DUTY DIAMOND CORING EQUIPMENT
EXTRA ROBUSTE OUTILLAGE DE CAROTTAGE AU DIAMANT
EQUIPO DE PERFORACION CON PUNTAS DE DIAMANTE PARA TRABAJOS PESADOS
TO REDUCE THE RISK OF INJURY, USER MUST READ AND UNDERSTAND OPERATOR'S MANUAL.
AFIN DE RÉDUIRE LE RISQUE DE BLESSURES, L'UTILISATEUR DOIT LIRE ET BIEN COMPRENDRE LE
MANUEL DE L'UTILISATEUR.
PARA REDUCIR EL RIESGO DE LESIONES, EL USUARIO DEBE LEER Y ENTENDER EL MANUAL DEL
OPERADOR.
GENERAL SAFETY RULES — FOR ALL POWER TOOLS
WARNING!
Failure to follow all instructions listed below may result in electric shock, fire and/or serious injury. The term "power tool" in
all of the warnings listed below refers to your mains-operated (corded) power tool or battery-opearted (cordless) power tool.
SAVE THESE INSTRUCTIONS
READ ALL INSTRUCTIONS
WORK AREA SAFETY
1. Keep work area clean and well lit. Cluttered or dark areas invite
accidents.
2. Do not operate power tools in explosive atmospheres, such
as in the presence of flammable liquids, gases, or dust.
Power tools create sparks which may ignite the dust or fumes.
3. Keep children and bystanders away while operating a powertool. Distractions can cause you to lose control.
ELECTRICAL SAFETY
4. Power tool plugs must match the outlet. Never modify the
plug in any way. Do not use any adapter plugs with earthed
(grounded) power tools. Unmodified plugs and matching outlets
will reduce risk of electric shock.
5. Avoid body contact with earthed or grounded surfaces suchas pipes, radiators, ranges and refrigerators. There is an
increased risk of electric shock if your body is earthed or grounded.
6. Do not expose power tools to rain or wet conditions. Water
entering a power tool will increase the risk of electric shock.
7. Do not abuse the cord. Never use the cord for carrying,
pulling, or unplugging the power tool. Keep cord away from
heat, oil, sharp edges, or moving parts. Damaged or entangled
cords increase the risk of electric shock.
8. When operating a power tool outdoors, use an extensioncord suitable for outdoor use. Use of a cord suitable for outdoor
use reduces the risk of electric shock.
PERSONAL SAFETY
16. Do not force the power tool. Use the correct power tool for
your application. The correct power tool will do the job better and
safer at the rate for which it was designed.
17. Do not use the power tool if the switch does not turn it onand off. Any power tool that cannot be controlled with the switch is
dangerous and must be repaired.
18. Disconnect the plug from the power source and/or the bat-
tery pack from the power tool before making any adjustments, changing accessories, or storing power tools. Such
preventive safety measures reduce the risk of starting the tool accidentally.
19. Store idle power tools out of the reach of children and do
not allow persons unfamiliar with the power tools or these
instructions to operate power tools. Power tools are danger-
ous in the hands of untrained users.
20. Maintain power tools. Check for misalignment or binding of
moving parts, breakage of parts and any other condition
that may affect the power tool's operation. If damaged, have
the power tool repaired before use. Many accidents are caused
by poorly maintained power tools.
21. Keep cutting tools sharp and clean. Properly maintained cutting
tools with sharp cutting edges are less likely to bind and are easier
to control.
22. Use the power tool, accessories and tool bits etc., in accor-
dance with these instructions and in the manner intended
for the particular type of power tool, taking into account the
working conditions and the work to be performed. Use of
the power tool for operations different from those intended could
result in a hazardous situation.
POWER TOOL USE AND CARE
SERVICE
9. Stay alert, watch what you are doing and use common sense
when operating a power tool. Do not use a power tool while
you are tired or under the influence of drugs, alcohol or
medication. A moment of inattention while operating power tools
may result in serious personal injury.
10. Use safety equipment. Always wear eye protection. Safety
equipment such as dust mask, non-skid safety shoes, hard hat, or
hearing protection used for appropriate conditions will reduce personal injuries.
11. Avoid accidental starting. Ensure the switch is in the off-position before plugging in. Carrying tools with your finger on
the switch or plugging in power tools that have the switch on invites
accidents.
12. Remove any adjusting key or wrench before turning thepower tool on. A wrench or a key left attached to a rotating part of
the power tool may result in personal injury.
13. Do not overreach. Keep proper footing and balance at alltimes. This enables better control of the power tool in unexpected
situations.
14. Dress properly. Do not wear loose clothing or jewellery.
Keep your hair, clothing and gloves away from moving parts.
Loose clothes, jewellery, or long hair can be caught in moving parts.
15. If devices are provided for the connection of dust extrac-
tion and collection facilities, ensure these are connected
and properly used. Use of these devices can reduce dust-re-
lated hazards.
page 2
23. Have your power tool serviced by a qualified repair person
using only identical replacement parts. This will ensure that
the safety of the power tool is maintained.
SPECIFIC SAFETY RULES
1. Hold power tools by insulated gripping surfaces when performing an operation where the cutting tool may contact hidden
wiring or its own cord. Contact with a "live" wire will make exposed metal parts of the tool "live" and shock the operator.
2. Wear ear protectors with impact drills. Exposure to noise can cause hearing loss.
3. Use auxiliary handles supplied with the tool. Loss of control can cause personal injury.
4. Maintain tools carefully. Keep handles dry, clean and free from oil and grease. Keep cutting edges sharp and clean. Follow instructions for
lubricating and changing accessories. Periodically inspect tool cords and extension cords for damage. Have damaged parts repaired or replaced
by a MILWAUKEE service facility.
5. Maintain labels and nameplates. These carry important information. If unreadable or missing, contact a MILWAUKEE service facility for a free
replacement.
6. WARNING! Some dust created by power sanding, sawing, grinding, drilling, and other construction activities contains chemicals known to cause
cancer, birth defects or other reproductive harm. Some examples of these chemicals are:
•lead from lead-based paint
•crystalline silica from bricks and cement and other masonry products, and
•arsenic and chromium from chemically-treated lumber.
Your risk from these exposures varies, depending on how often you do this type of work. To reduce your exposure to these chemicals: work in
a well ventilated area, and work with approved safety equipment, such as those dust masks that are specifically designed to filter out
microscopic particles.
7. Always use anchor bolts to secure the base on cracked, uneven, porous or vertical surfaces.
8. Diamond coring equipment requires the use of water. Since the use of electrical equipment in wet areas is hazardous, the equipment must
be grounded (see "Grounding"). Wear insulated footwear and gloves for extra protection against shock hazards.
9. Provide proper protection for people and property below the coring area when coring through floors.
10. A meter box must always be used with Diamond Coring Equipment so that amperage can be monitored. See "Accessories".
page 3
Specifications
Symbology
Catalog
No.
4004
4005
4079
4090
4092-20
4094
4096
4097-20
Amps
20
20
20
15
15
20
20
15
Volts
120
120
120
120
120
120
120
120
Motor
Protection
Clutch
Clutch
Shear Pin
Shear Pin
Clutch
Shear Pin
Clutch
Clutch
Speed
(RPM)
Low - 300
High - 600
Low - 600
High - 1200
Low - 300
High - 600
Low - 375
High - 750
Low - 375
High - 750
Low - 450
High - 900
Low - 450
High - 900
Low - 500
High - 1000
Suggested
Diameters in
Medium Aggregate
Low - 7" - 14"
High - 4" - 7"
Low - 4" - 7"
High - 3/4" - 4"
Low - 7" - 14"
High - 4" - 7"
Low - 5" - 8"
High - 2-1/2" - 5"
Low - 5" - 8"
High - 2-1/2" - 5"
Low - 6" - 10"
High - 2" - 6"
Low - 6" - 10"
High - 2" - 6"
Low - 3" - 5"
High - 1-1/4" - 3"
Underwriters Laboratories, Inc.
Canadian Standards Association
Volts Alternating Current
No Load Revolutions per Minute (RPM)
Amperes
1. Twist-lock plug
2. Cord
3. Gear/shiftlever
4. Water shut-off valve
5. Threaded spindle
1
Clutch model
FUNCTIONAL DESCRIPTION
1. Twist-lock plug
2. Cord
2
3
4
5
3. Gear shift lever
4. Water shut-off valve
5. Spindle sleeve
6. Retaining ring
7. Shear pin
Shear pin model
1
7
2
3
4
5
6
page 4
GROUNDINGEXTENSION CORDS
WARNING!
Improperly connecting the grounding wire can
result in the risk of electric shock. Check with a
qualified electrician if you are in doubt as to
whether the outlet is properly grounded. Do not
modify the plug provided with the tool. Never
remove the grounding prong from the plug. Do
not use the tool if the cord or plug is damaged. If
damaged, have it repaired by a MILWAUKEE
service facility before use. If the plug will not fit
the outlet, have a proper outlet installed by a
qualified electrician.
MILWAUKEE Dymodrills are provided with a 20 amp locking plug (NEMA
L5-20). MILWAUKEE meter boxes may be provided with either a 20 amp
locking or a 30 amp (NEMA L5-30) locking plug depending on the model .
Grounded Tools:
Tools with Three Prong Plugs
Tools marked “Grounding Required”
have a three wire cord and three
prong grounding plug. The plug must
be connected to a properly grounded
outlet (See Figures A and B). If the
tool should electrically malfunction or
break down, grounding provides a
low resistance path to carry electricity away from the user, reducing
the risk of electric shock.
The grounding prong in the plug is
connected through the green wire
inside the cord to the grounding system in the tool. The green wire in the
cord must be the only wire connected
to the tool's grounding system and
must never be attached to an electrically “live” terminal.
Your tool must be plugged into an appropriate outlet, properly installed and
grounded in accordance with all
codes and ordinances. The plug and
outlet should look like those in Figures A and B.
Fig. A
Fig. B
Grounded tools require a three wire extension cord. Double insulated
tools can use either a two or three wire extension cord. As the distance
from the supply outlet increases, you must use a heavier gauge extension cord. Using extension cords with inadequately sized wire causes a
serious drop in voltage, resulting in loss of power and possible tool
damage. Refer to the table shown to determine the required minimum
wire size.
The smaller the gauge number of the wire, the greater the capacity of the
cord. For example, a 14 gauge cord can carry a higher current than a 16
gauge cord. When using more than one extension cord to make up the
total length, be sure each cord contains at least the minimum wire size
required. If you are using one extension cord for more than one tool, add
the nameplate amperes and use the sum to determine the required minimum wire size.
Guidelines for Using Extension Cords
•If you are using an extension cord outdoors, be sure it is marked
with the suffix “W-A” (“W” in Canada) to indicate that it is acceptable
for outdoor use.
•Be sure your extension cord is properly wired and in good electrical
condition. Always replace a damaged extension cord or have it
repaired by a qualified person before using it.
•Protect your extension cords from sharp objects, excessive heat
and damp or wet areas.
Recommended Minimum Wire Gauge
Nameplate
Amperes
8.1 - 12
12.1 - 15
15.1 - 20
* Based on limiting the line voltage drop to five
volts at 150% of the rated amperes.
for Extension Cords*
25'
0 - 5
5.1 - 8
16
16
14
12
10
Extension Cord Length
100'
14
12
10
10
150'
12
10
--
--
--
--
50'
16
16
14
12
10
75'
16
14
12
10
10
200'
12
--
--
--
--
READ AND SAVE ALL INSTRUCTIONS
FOR FUTURE USE.
Double Insulated Tools:
Tools with Two Prong Plugs
Tools marked “Double Insulated” do
not require grounding. They have a
special double insulation system
which satisfies OSHA requirements
and complies with the applicable
standards of Underwriters Laboratories, Inc., the Canadian Standard
Association and the National Electrical Code. Double Insulated tools may
be used in either of the 120 volt outlets shown in Figures C and D.
To reduce the risk of injury, always use a Ground
Fault Circuit Interrupter (GFCI) with diamond coring equipment to reduce the risk of shock hazards.
Always position the GFCI as close as possible to
the power source.
Fig. C
WARNING!
Fig. D
page 5
TOOL ASSEMBLY
WARNING!
To reduce the risk of injury, always unplug tool
before attaching or removing accessories or making adjustments. Use only specifically recommended accessories. Others may be hazardous.
Assembling Dymorigs & Vac-U-Rig® Stands
For Cat. No. 4125 & 4130 only (Fig. 1).
Fig. 1
Hex bolt
Socket set
screws (2)
1. Set the base on the ground. Loosen the hex bolt and nut (wrench
not supplied). Raise the column upright.
2. To core vertically or horizontally, insert the large column bolt
(provided in separate accessory bag) through the bottom of column
and into the base. Tighten hex bolt and nut (wrench not supplied).
To angle core, tilt the column to the desired angle and tighten the
hex bolt and nut. Save the column bolt for future use when vertical
or horizontal coring.
3. Tighten the two (2) black socket set screws located on the base
with the supplied wrench.
4. Screw the four (4) handle spokes (provided in separate accessory
bag) into the hub on the cradle assembly.
For Cat. No. 4115 & 4120 only (Fig. 2).
Column bolts
Handle
spoke
Cradle
assembly
Column
Base
Leveling
screws (4)
Moving the Handle to the Other Side
For Cat. Nos. 4125 & 4130 only (Fig. 3).
Fig. 3
Socket
screws (4)
Cradle
1. Tighten the cradle lock.
2. Loosen the socket head screw and remove the meter box.
3. Remove four (4) socket head screws holding the spoked handle
housing.
4. Turn the assembly around 180°.
5. Replace the four (4) socket head screws and tighten securely.
6. Attach meter box to opposite side (see "Mounting the Meter Box").
For Cat. Nos. 4115 & 4120 only (Fig. 4).
Fig. 4
Bubble
level
Cradle
lock
Socket screw
and washer
Socket
screw
Ammeter
gauge
Meter
box
Socket
screw
Ammeter
gauge
Fig. 2
Base
1. Set the base on the ground.
2. Remove two (2) bolts and two (2) lockwashers from accessory
bag.
3. Place the column in the slot of the base.
4. Insert two (2) bolts and two (2) lockwashers and tighten securely.
page 6
Cradle
assembly
Handle
spoke
Column
Leveling
screws (4)
Column
bolts (2)
Lock washers
Meter
box
Cradle
1. Loosen the cradle lock.
2. Raise the cradle to the maximum height.
3. Lift the cradle an additional 1/2" by hand.
4. Tighten the cradle lock.
5. Loosen the socket head screw and remove the meter box.
6. Remove the meter box stud from the cradle.
7. Remove the screw and washer from the end of the pinion shaft.
8. Remove the handle and pinion shaft assembly.
9. Turn the assembly around 180° and insert into cradle.
10. Replace the screw and washer and tighten securely.
11. Replace the meter stud on the side opposite the handle.
12. Attach meter box to opposite side (see “Mounting the Meter Box”).
13. Loosen the cradle lock and lower the cradle until the pinion engages
the rack.
14. Tighten the cradle lock.
Mounting the Meter Box
For All Catalog Nos. (Fig. 3 & 4).
A meter box is standard equipment with the Vac-U-Rig®, but it must be
purchased separately for other Dymorigs (see "Accessories"). Attach
the meter box to the cradle on the side opposite of the handle.
1. Slip the collar on the meter box over the stud on the cradle.
2. Position the meter box as desired and tighten the 1/4"-20 threaded
socket head screw.
NOTE: For horizontal (wall) coring, the ammeter gauge must face
upward in view of the operator. Otherwise, water flow from the
water shut-off valve might drip into the outlets on the meter box.
Mounting the Dymodrill Motor to the Stand
For All Cat. Nos. (Fig. 5 & 6).
Dymorigs include a mounting bracket which mounts Dymodrill motors to
the stand. An optional spacer assembly is available (see "Accessories"), which can be used when coring with any bits; but it must be
used with any bit over 10" (outside diameter).
1. To mount the motor, loosen the cradle lock. Raise the cradle on the
column using the spoked handle to allow room for installing the bit
later. Tighten the cradle lock.
NOTE: If the cradle is difficult to move on the column, loosen the gib
screws (see "Adjusting the Gib Screws").
2. Fasten the mounting bracket or the optional spacer assembly to the
Dymodrill (Fig. 5) motor using the four (4) 1/4"-20 threaded socket
head screws and four (4) lock washers (they are the smaller of the
two provided in separate accessory bag). Make sure the square
key on the mounting bracket or spacer assembly engages with the
slot on the Dymodrill motor.
3. Fasten the mounting bracket (or optional spacer assembly) and
motor assembly to the cradle slot (Fig. 6) by inserting the four (4)
3/8"-16 threaded socket head cap screws and lock washers (they
are the larger of the two provided in separate accessory bag)
through the cradle. Place screws through the holes from the other
side of the Dymorig and place lock washers on the side of the
mounting bracket.
After the Dymodrill motor is mounted, make sure the cradle is rigid against
the column to prevent the motor or bit from wobbling during coring.
Before coring, try to wiggle the cradle and motor with your hands. If the
cradle is secure, it should not move. If it does move, tighten the gib
screws that secure the cradle to the column (see "Adjusting the Gib
Screws").
Fig. 5
Adjusting the Gib Screws (Fig. 7)
After the motor is mounted, make sure the cradle and motor are rigid
against the column to prevent the motor or bit from wobbling during
coring. Before coring, try to wiggle the cradle with your hands. If the
cradle is secure, it should not move. If it does move, tighten the six (6) gib
screws that secure the cradle to the column as follows.
Fig. 7
Gib
Screws
For Cat. No. 4125 & 4130 only.
Tighten the six (6) gib screws with the hex wrench (supplied in a sepa-
rate accessory bag).
For Cat. No. 4115 & 4120 only.
To tighten the six (6) gib screws: loosen the hex nuts, tighten the screws
and then tighten the hex nuts.
Selecting and Installing a Core Bit (Fig. 8)
MILWAUKEE offers both standard and premium Dymobits designed to
cut through a variety of materials including poured concrete, steel-reinforced concrete, and prestressed concrete. Always use clean, sharp
bits.
Fig. 8
Copper
Washer
1. To install a bit, grease the spindle and bit threads to prevent corrosion and to help prevent the bit from seizing on the threaded spindle.
2. Slip one copper washer (provided in separate accessory bag with
the water shut-off valve components) onto the threaded spindle
against the spindle shoulder. The bag should contain an extra copper washer; save it for future use.
3. Thread the bit securely onto the threaded spindle.
Water
Control
Valve
Fig. 6
Selecting Speeds
Dymodrills operate in either high or low gear. Use low speed for large
diameter bits and high speed for small diameter bits (see "Specifications").
Slot
page 7
Assembling the Water Shut-Off Valve to the Dymodrill (Fig. 9)
OPERATION
Fig. 9
Attach to
Dymodrill
Shut-off
valve
1. Remove the water shut-off valve components from the accessory
bag. (The copper washers inside the bag are for bit installation.)
2. Insert the hose adapter into the hose nut. Then insert the rubber
washer into the hose nut.
3. Insert the hose nut assembly into the shut-off valve and securely
tighten the assembly with the supplied socket wrench; some threads
on the hose adapter will still be exposed.
4. Screw the shut-off valve assembly into the water swivel housing
on the Dymodrill motor (Fig. 8). Hand-tighten the assembly and then
tighten it approximately 1/4 turn with an adjustable wrench (not
provided).
Methods for Securing Equipment to Work Surface
Hose nut
Rubber
washer
Hose adapter
WARNING!
To reduce the risk of injury always secure the rig
to the work surface to help prevent personal
injury and to protect the rig. An unsecured rig
could rotate during coring and possibly cause
injury.
NOTE: Some building materials contain steel reinforcements.
MILWAUKEE Dymobits can cut through embedded steel, but are not
recommended for coring solid steel plates.
Horizontal Coring (walls)
For specific instructions on using anchors, see "Using an ExpansionType Anchor".
WARNING!
Securing the Equipment to the Work Surface - Using an
Expansion-Type Anchor (Fig. 10)
For Catalog No. 4125 & 4130 only.
Fig. 10
Leveling
Screws
Rod or Bolt
Nut & Washer
or Vacuum
Pad Nut
Use a 5/8" expansion-type anchor (not supplied) that will accept a 5/8"
threaded rod or bolt to secure the base to the work surface.
1. Level the stand with the four (4) leveling screws using the bubble
level as a guide. When the stand is level, tighten the four (4) nuts on
the leveling screws.
2. Using an expansion-type anchor, insert a threaded rod or bolt through
the slot located on the base of the Dymorig and tighten the bolt or
washer and nut firmly in the anchor following the anchor
manufacturer's instructions.
Assembling and Using a Vacuum System (Fig. 11 & 12)
For Catalog No. 4115, 4125 & 4130 only.
Fig. 11
Small Hole for
Attaching Pump to
Dymorig Stand
Vacuum
Gauge
Filter Jar
Vacuum Release
Valve
To reduce the risk of injury always use an
expansion-type anchor during horizontal coring.
Vacuum systems can slip when used on a vertical
surface.
Vertical Coring (floors)
Two methods will work to secure the rig for vertical coring: either an
expansion-type anchor OR a vacuum pump and vacuum pad system.
Securing the rig with an anchor gives better bit performance because
the attachment is more rigid. For specific instructions on assembling the
vacuum system, see "Assembling and Using a Vacuum System".
Optional Telescoping Assembly
The telescoping assembly can be used to supplement either securing
method.
NOTE: Vac-U-Rig® Cat. No. 4136 includes a vacuum pump and vacuum
pad. However, for some applications, you may choose to use an expansion-type anchor to secure the tool.
Anchors and Telescoping Assembly are not supplied with any of the
above rigs. Telescoping Assembly can be purchased separately (see
“Accessories”). Anchors unavailable through MILWAUKEE.
page 8
Fig. 12
Vacuum
Pad
Vacuum Pad Nut
Coupler
Vacuum Hose
Leveling
Screws
Vacuum
Pad Stud
Vacuum Line Coupler
One vacuum pad is supplied with the Vac-U-Rig® and they can be purchased separately for other Dymorigs. The vacuum pad is most effective when it is secured to a relatively smooth surface such as poured
concrete. If the surface is too porous or rough, the pad may not hold
securely. Before using a vacuum pad, always check the gasket on the
underside of the pad to make sure it isn't worn, cracked or torn. If it is,
immediately replace the gasket, otherwise the vacuum pad may not hold
the rig securely. To replace the gasket, see "Replacing Vacuum Pad
Gaskets" in the "Maintenance" section. See "Accessories" for gasket
part number.
1. To use the vacuum pad, tilt the base of the rig and slide the vacuum
pad under it so the threaded stud goes through the hole on the end
of the center slot on the base. Then set the stand upright.
2. Position the rig as required for coring the hole.
3. Level the rig with the four (4) leveling screws using the bubble level
(4125 & 4130 only) as a guide. When the rig is level, tighten the four
(4) nuts (4125 & 4130 only) on the leveling screws.
4. Connect one end of the supplied vacuum hose to the vacuum line
coupler on the vacuum pad. To do this, pull back the collar on the
hose and push the end of the hose onto the coupler until in snaps
into place. Then, connect the other end of the vacuum hose to the
coupler on the vacuum pump following the same procedure.
5. The vacuum pump may be set on a dry surface away from the rig or
mounted to the base of the Dymorig as shown. However, DO NOT
mount the vacuum pump to the Dymorig when angle coring.
To mount the vacuum pump on the Dymorig, place the small hole on
the vacuum pump mounting bracket over the vacuum pad stud on
the Dymorig.
6. Plug the vacuum pump into the power source—the pump will start
automatically. Step on the vacuum pad or the vacuum pad stud until
the vacuum pad lowers and adheres to the work surface.
7. After the pad is secured to at least 20 inches of mercury vacuum,
tighten the vacuum pad nut securely.
WARNING!
The vacuum gauge must read a minimum of 20
inches of mercury vacuum. To reduce the risk of
injury DO NOT CORE if the gauge reads less than 20
inches of mercury vacuum.
Using an Expansion-Type Anchor (Fig. 13)
Fig. 13
Leveling
Screws
For Cat. No. 4115 & 4120 only.
Use a 5/8" expansion-type anchor (not supplied) that will accept a 5/8"
threaded rod or bolt to secure the base to the work surface.
1. Remove the rubber gasket from the base.
2. Level the rig with the four (4) leveling screws.
3. Using an expansion-type anchor, insert a threaded rod or bolt through
the slot located in the base of the Dymorig and tighten the bolt or
washer and nut firmly in the anchor following the manufacturer's
instructions.
Rod or Bolt
Assembling and Using a Vacuum System (Fig. 14 & 15)
Fig. 14
Vacuum
Release
Valve
Small Hole for
Attaching
Pump to
Dymorig Stand
Vacuum Hose
Fig. 15
Vacuum
Pad
Gasket
Vacuum Adapter Assembly
For Cat. No. 4120 only.
The vacuum pad is most effective when it is secured to a relatively
smooth surface such as poured concrete.
If the surface is too porous or rough, the vacuum pad may not hold
securely. Before using the vacuum pad, always check the gasket on the
underside of the base to make sure it isn't worn, cracked or torn. If it is,
immediately replace the gasket, otherwise the vacuum may not hold the
rig securely.
To replace the gasket, see "Replacing Vacuum Pad Gaskets" in the "Maintenance" section. See “Accessories" for gasket part number.
1. Position the rig as required for coring the hole.
2. Loosen the four (4) leveling screws until the ends are above the
bottom surface of the base.
3. Place the vacuum adapter assembly into the slot in the base.
4. Connect one end of the supplied vacuum hose to the vacuum line
coupler on the vacuum base. To do this, pull back the collar on the
hose and push the end of the hose onto the coupler until it snaps into
place. Connect the other end of the vacuum hose to the coupler on
the vacuum pump following the same procedure.
5. The vacuum pump may be set on a dry surface away from the rig or
mounted to the base of the Dymorig as shown. To mount the vacuum
pump on the base, place the small holes on the vacuum pump mounting bracket over the two tapped holes on the base. Attach the
vacuum pump to the base with two (2) 1/4" - 20 screws supplied in
the accessory bag.
6. Plug the vacuum pump into the power source - the pump will start
automatically. Step on the base until it lowers and adheres to the
work surface.
7. Tighten the four (4) leveling screws only enough to eliminate rocking. Over-tightening can lift the gasket off the ground and release
the vacuum.
Filter Jar
Vacuum
Gauge
Coupler
Leveling
Screws
Vacuum
Line
Coupler
WARNING!
The vacuum gauge must read a minimum of 20
inches of mercury vacuum. To reduce the risk
of injury DO NOT CORE if the gauge reads less
than 20 inches of mercury vacuum.
page 9
Using the Optional Telescoping Assembly
1. Secure the rig using either an expansion-type anchor or a vacuum
system (see "Securing the Equipment to the Work Surface").
2. Place the top flange of the extension against a ceiling or wall and
place the other end on the jack screw at the top of the Dymorig
column.
The assembly is adjustable up to 14 feet. Turn the jack screw to
tighten the assembly and to make small adjustments.
Supply an Adequate Water Flow
An adequate supply of water must flow freely and constantly during the
entire cut. Dymodrills are equipped with a built-in water shut-off valve to
allow water to flow down the inside and up around the outside of the bit.
This acts to cool the bit and flush cuttings from the hole.
Reading the Meter Box (Fig. 16)
Fig. 16
20 Amp
Operating
Range
15 Amp
Operating
Range
The ammeter is the dial indicator on the meter box, which is standard
equipment with the Vac-U-Rig® and can be purchased separately for
other Dymorigs. The ammeter provides pressure feedback during coring, allowing you to help prevent motor overload and premature bit wear.
The green area on the ammeter is the operating range and the red area
indicates that you are applying too much pressure.
Shear Pin and Clutch (Fig. 17)
Fig. 17
Shear Pin
Spindle Sleeve
(Shear pin models)
Threaded Spindle
(Clutch Models)
Retaining Ring
(shear pin model only)
Dymodrill Nos. 4079, 4090, and 4094 contain a shear pin to protect the
gear and motor against overload. This pin drives the spindle sleeve. If the
bit binds, the pin will shear to prevent gear and motor damage. Extra
shear pins are supplied with each Dymodrill and can be replaced (see
"Accessories" for part numbers). It is important to check the condition of
the spindle before using the tool each time. The spindle must be smooth
without grooves or pitting. If the spindle is not in good condition, it is
possible for the threaded spindle sleeve and the internal spindle to weld
together and seize during coring (see "Lubricating the Spindle for
Dymodrills with a Shear Pin" in the "Maintenance" section for spindle
lubricating instructions).
Cat. Nos. 4004, 4005, 4092, 4096 and 4097 feature a friction clutch
rather than a shear pin to protect the motor and gears. If the motor
overloads, the clutch will begin to slip and the bit will stop rotating. The
clutch is factory-set and does not require adjustment. Nuisance (frequent) clutch slippage should be addressed by an authorized
MILWAUKEE service center.
WARNING!
WARNING!
To reduce the risk of injury, always use Dymodrills in conjunction with meter boxes. Meter
Boxes provide a switch to turn the Dymodrill
motor OFF and ON and an optimum operation
range to help prevent motor overload.
To reduce the risk of injury, always check the
work area for hidden wires before coring.
Coring Procedure (Fig. 18)
1. Select and install a bit following guidelines in "Selecting and Installing
a Core Bit".
2. Secure the rig to the work surface using one of the methods described in "Methods for Securing Equipment to Work Surface".
3. With the motor OFF, adjust the gear to either high or low speed
according to the guidelines in "Selecting Speeds".
NOTE: DO NOT SHIFT SPEEDS WHEN THE DYMODRILL MOTOR IS
ON. To adjust the speed on all Dymodrills, move the gear shift lever
to the desired setting.
Fig. 18
Water
Shut-Off
Valve
Gear
Shift
Lever
page 10
4. Connect the water hose to the Dymodrill water shut-off valve and to
the water supply. Make sure the seal is watertight. Use a standard
garden hose if you require additional length. Set up a water collection system.
5. If you are using a vacuum system, read the instructions for specific
setup in "Assembling & Using a Vacuum System".
Do not continue the following steps until the vacuum gauge reads at
least 20 inches of mercury vacuum. Never operate the Dymodrill if
the gauge reads less than 20 inches (see "Mothods for Securing
Equipment to Work Surface"). Always monitor the vacuum gauge
during coring. If water collects in the vacuum pump filter jar, empty it
to prevent damage to the pump.
WARNING!
Retrieving Cores and Deep Coring
When coring holes that are longer than the core bit, follow the steps
below.
1. Begin coring the hole as usual. When you have cored to the length of
the bit, stop the Dymodrill motor.
2. Remove the core by driving a chisel or slender wedge into the cut
between the core and the work surface. You may also use a special
core tongs, bent wire or anchor bolts to remove the core.
3. After removing the core, reinsert the bit or use a bit extension and
continue coring (see "Accessories"). Removing cores with diameters greater than twice their length can be difficult. One method to
remove such cores is to first break the core into smaller pieces and
then remove the pieces. Electric hammers and chisels are ideal for
breaking cores.
To reduce the risk of injury, do not operate the
Dymorig if the gauge reads less than 20 inches of
mercury vacuum.
6. Turn the Dymodrill motor ON. Turn the water on so it flows freely
through the water shut-off valve (see "Supply an Adequate Water
Flow"). Turn the valve clockwise to increase water flow and counterclockwise to decrease water flow.
7. While holding the handle, slightly loosen the cradle lock handle and
slowly rotate the handle to lower the bit into the workpiece, applying
steady, even pressure. To help reduce bit wandering, always use a
light load to start the hole and wait for the tip of the bit to penetrate
the work surface completely before increasing the load.
8. Use sufficient pressure so the bit cuts constantly. Use the ammeter
on the meter box as a guide for proper pressure.
NOTE: If the rig shifts during coring, stop the motor, reposition the rig
and resume coring.
9. Monitor the water flow (see "Diamond Coring"). Generally, water
should flow at a rate of approximately one to two gallons per minute.
If the water flow is too heavy, the two holes in the water swivel
housing will leak. If that happens, reduce water flow. Water flow is
adequate when the water and cuttings are flushed in a circular
pattern about 1/2" around the bit. Keep the work area dry.
10. When the cut is complete, keep the drill motor ON and rotate the
handle clockwise to remove the bit. The bit may become stuck in the
hole if you turn the motor OFF before the bit is completely removed.
Once the bit is removed from the work surface, turn the motor OFF.
Tighten the cradle lock handle. Unplug the meter box from the power
supply before removing the vacuum pump to prevent accidental
starting of the motor when the vacuum pump is released.
If you are using a vacuum pump, unplug it and open the vacuum
release valve to release the vacuum.
WARNING!
When coring through floors, cores generally
drop from the bit. To reduce the risk of injury,
provide proper protection for people and property below the coring area.
Diamond Coring
Factors that influence diamond core performance:
•Amount of coolant
•Dymorig rigidity
•Dymorig condition
•RPM of drill motor
•Feed pressure applied to bit by operator
•Amount of steel
•Size of embedded steel
•Age of concrete
•Aggregate (size, type, hardness, abrasiveness)
•Type of sand–manufactured vs. river (natural)
•Operator technique
•Operator care
•Bit runout
Operator Technique
Core with consistent, firm feed pressure. Do not subject the bits to
sudden impacts. Uneven feed rate cracks diamonds. Low feed pressure polishes diamonds, slows penetration and contributes to bit glazing. High feed pressure can overload the drill motor or can cause diamonds to pull out prematurely, particularly when coring embedded steel.
Make the bit work, but do not try to jam the bit through the material.
If vibration occurs:
1. Stop drilling.
2. Turn motor off.
3. Check for loose bolts, nuts and gib screws. Tighten if required.
4. Check for bit runout. Replace if required.
If vibration continues to occur, remove the core and loose material.
If vibration continues to occur after attempting these measures, return
the rig to the nearest MILWAUKEE service facility.
page 11
Water
Water provides two main benefits during coring:
1. Water acts as a coolant, eliminating the heat caused by the friction
of the coring action. This preserves the integrity of the diamonds,
the bond matrix, the segment solder, and core tube. Without a coolant, the heat buildup during coring can cause all of these components to fail.
2. Water flushes loose, abrasive particles created during coring. These
particles consist of aggregate, sand, diamond particles and various
metals from embedded steel and the core bit matrix. The hole must
be free of debris to allow the core bit to work. If loose particles are
not properly flushed from the hole, an unnecessary drag will occur
along the side of the core barrel. This can contribute to bit glazing
through lack of power as well as motor damage through amperage
increases due to bit resistance. In addition, loose particles tend to
wear the bit tube, which can eventually result in the loss of segments.
Monitor water flow. Water volume should be adjusted until water return
is a muddy, solid color. Clear water or clear streaks indicate too much
water volume. Excess water is a leading cause of bit glazing and failure.
Other factors contribute to glazing, but water adjustment is one of the
most easily controlled by the operator. Excessive water prevents adequate segment/material contact. When the bit segments do not properly
contact the work surface, the desired "controlled erosion" effect which
maintains bit sharpness does not occur and the bit begins to glaze. This
happens especially with smaller diameter bits. Adequate water volume
varies according to the bit diameter. Use only enough water during coring to flush the cuttings from the work surface.
Equipment
•Make sure machinery is in good operating condition. The column,
carriage, motor connection and base should all be firmly connected
and should not vibrate during coring.
•Motors should be of proper size (amperage and RPM) for the diameter of the core bit used. Consult motor guide in catalog.
•Always make sure the Dymorig is rigidly mounted with an anchor or
vacuum; any movement or vibration will shorten the life of the core
bit. Standing on the rig's base as a form of anchoring is dangerous
and does not provide the necessary rigidity.
Diamond Core Bits
•For the first 2 or 3 holes, use light feed pressure, so the new
diamond gradually breaks in.
•Lower the bit very slowly onto the work surface. Use light feed
pressure until the bit crown has penetrated or "seated" into the
material.
•If the core bit encounters embedded steel, slow down the feed
pressure and let the bit core at its own pace. Don't force the bit.
Typically the water around the bit will clear when embedded steel is
encountered. Do not allow any vibration whatsoever or severe diamond breakage or pullout will occur.
•Keep bits sharp.
Bit Glazing & Diamond Core Motor Shear Pins
Bit binding is caused by one of two things: a dull (glazed) bit or a poorly
stabilized rig.
Causes of bit glazing:
•Wrong RPM for bit diameter
•High feed pressure
•Low feed pressure
•High steel content in work surface
•Large, hard aggregate
•Too much water
•Low motor power
A sharp bit typically has good diamond exposure and will cut/grind almost anything in its path, including embedded steel.
Sharpening Procedure for Core Bits
To work efficiently, diamond core bits must maintain good diamond exposure. Many factors work together to provide the "controlled erosion"
cycle of the tool's segment to occur. When this "controlled erosion" cycle
is altered, the bit can become dull or "glazed." Glazing becomes noticeable when the coring feed rate slows dramatically or the bit does not cut.
Examine the bit immediately. If the diamonds are flush with the metal, they
are underexposed or "glazed."
The following steps will often correct the problem:
1. Reduce water flow until it becomes very muddy. Continue using as
little water as possible until penetration increases.
2. If the bit does not open up, remove from hole. Pour into the kerf a
thick (1/4") layer of silica sand (the coarser the better).
3. Resume drilling for approximately 3 to 5 minutes with very little water and at a lower RPM if possible.
4. Gradually increase water flow to flush sand from kerf.
5. Repeat as needed.
The Effects of Steel in Coring
•To self-sharpen, diamond-impregnated core bits require interaction
with an abrasive material. This abrasive material wears away the
metal composition in the segment's matrix. As this is done, sharp
diamonds are exposed and the grinding action created by the diamonds continues.
•Embedded metal (rebar) is not an abrasive material. It does not
provide the degree of abrasiveness required for matrix wear to
occur and expose sharp diamonds embedded in the segment's matrix.
•A high degree of exposure to embedded metal by the bit's segments
creates glazing. Glazing prevents the bit from cutting and coring.
page 12
MAINTENANCE
WARNING!
To reduce the risk of injury, always unplug
your tool before performing any maintenance.
Never disassemble the tool or try to do any
rewiring on the tool's electrical system. Contact
a MILWAUKEE service facility for ALL repairs.
Maintaining Tools
Keep your tool in good repair by adopting a regular maintenance program. Before use, examine the general condition of your tool. Inspect
guards, switches, tool cord set and extension cord for damage. Check
for loose screws, misalignment, binding of moving parts, improper mounting, broken parts and any other condition that may affect its safe operation. If abnormal noise or vibration occurs, turn the tool off immediately
and have the problem corrected before further use. Do not use a damaged tool. Tag damaged tools “DO NOT USE” until repaired
(see “Repairs”).
Under normal conditions, relubrication is not necessary until the motor
brushes need to be replaced. After six months to one year, depending on
use, return your tool to the nearest MILWAUKEE service facility for the
following:
•Lubrication
•Brush inspection and replacement
•Mechanical inspection and cleaning (gears, spindles, bearings,
housing, etc.)
•Testing to assure proper mechanical and electrical operation
Lubricating Rack and Pinion
Maintain a light coat of MILWAUKEE Type "E" Grease on the rack and
pinion gears to reduce friction and wear.
Lubricating the Spindle for Dymodrills with a Shear Pin
Before each use, clean and lubricate the spindle or spindle sleeve with
MILWAUKEE Type "E" Grease to prevent the spindle from seizing during
coring.
1. To maintain the spindle on shear pin models, remove the retaining
ring with a screwdriver. Then remove the spindle sleeve.
2. Remove dust and debris from the inside and outside diameter of the
spindle and spindle sleeve and from the water hole in the spindle.
Place a light coating of MILWAUKEE Type "E" grease on the spindle.
3. Replace the spindle sleeve onto the spindle. Make sure the spindle
sleeve rotates freely on the spindle. Then replace the retaining ring.
Replacing Vacuum Pad Gaskets
For Cat. No. 4115, 4125 & 4130 only.
Through normal use, the rubber gaskets on the underside of the vacuum
pads can become worn, requiring replacement. If replacement is required, take the pad to an authorized service center or replace the
gasket as follows:
1. Remove the old gasket and thoroughly remove the old glue from the
groove.
2. Squeeze a continuous bead of rubber cement (Cat. No. 44-22-0060)
in the entire bottom of the groove.
3. Immediately place a new gasket (Cat. No. 43-44-0570) in the groove
and press firmly in place.
4. Turn the pad over and place the gasket side on a smooth flat surface
and apply pressure to all edges of the pad.
5. Allow cement to dry for 24 hours before using.
For Cat. No. 4120 only.
With normal use, the rubber gasket on the underside of the base can
become worn, requiring replacement. If replacement is required, take the
base to an authorized service center or replace the gasket as follows:
1. Remove the motor and bit.
2. Tip the Dymorig on its back so that the wheels point down.
3. Remove the old gasket.
4. Squeeze a continuous bead of rubber cement (Cat. No.
44-22-0060) in the entire bottom of the groove.
5. Place the new gasket (Cat. No. 43-44-0605) into the groove making
sure it is pushed in completely.
6. Stand the Dymorig upright again.
7. Reinstall the motor and bit.
Cleaning the Filter on the Vacuum Pump
Periodically clean the filter felts to keep the vacuum pump operating
efficiently. To clean the filter felts, remove the plastic jar and remove the
felts from the plastic tube. Remove dust and debris from the felts and
clean the plastic jar. Then replace the felts on the plastic tube and position the jar onto the filter assembly.
WARNING!
To reduce the risk of injury, electric shock and
damage to the tool, never immerse your tool in
liquid or allow a liquid to flow inside the tool.
Cleaning
Clean dust and debris from vents. Keep the tool handles clean, dry and
free of oil or grease. Use only mild soap and a damp cloth to clean your
tool since certain cleaning agents and solvents are harmful to plastics
and other insulated parts. Some of these include: gasoline, turpentine,
lacquer thinner, paint thinner, chlorinated cleaning solvents, ammonia
and household detergents containing ammonia. Never use flammable or
combustible solvents around tools.
Repairs
If your tool is damaged, return the entire tool to the nearest service
center.
FIVE YEAR TOOL LIMITED WARRANTY
Every MILWAUKEE tool is tested before leaving the factory and is warranted to be free from defects in material and workmanship. MILWAUKEE
will repair or replace (at MILWAUKEE’s discretion), without charge, any
tool (including battery chargers) which examination proves to be defective in material or workmanship from five (5) years after the date of
purchase. Return the tool and a copy of the purchase receipt or other
proof of purchase to a MILWAUKEE Factory Service/Sales Support
Branch location or MILWAUKEE Authorized Service Station, freight prepaid and insured. This warranty does not cover damage from repairs
made or attempted by other than MILWAUKEE authorized personnel,
abuse, normal wear and tear, lack of maintenance, or accidents.
Battery Packs, Flashlights, and Radios are warranted for one (1) year
from the date of purchase.
THE REPAIR AND REPLACEMENT REMEDIES DESCRIBED HEREIN ARE
EXCLUSIVE. IN NO EVENT SHALL MILWAUKEE BE LIABLE FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOSS OF PROFITS.
THIS WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, OR CONDITIONS, WRITTEN OR ORAL, EXPRESSED OR IMPLIED FOR
MERCHANTABLILITY OR FITNESS FOR PARTICULAR USE OR PURPOSE.
This warranty gives you specific legal rights. You may also have other
rights that vary from state to state and province to province. In those
states that do not allow the exclusion of implied warranties or limitation
of incidental or consequential damages, the above limitations or exclusions may not apply to you. This warranty applies to the United States,
Canada, and Mexico only.
page 13
ACCESSORIES
WARNING!
To reduce the risk of injury, always unplug the tool before attaching
or removing accessories. Use only specifically recommended accessories. Others may be hazardous.
For a complete listing of accessories refer to your MILWAUKEE Electric Tool catalog or go on-line to www.milwaukeetool.com. To obtain a
catalog, contact your local distributor or a service center.
Meter Boxes
Cat. No. 48-51-0100 (30 amp, 120 volt)
(Not available in Canada)
Same as supplied with Vac-U-Rig® Attachment Kit No. 49-22-7075 and
with Cat. No. 4136. Ammeter and power switch appear on the front
panel and a single 20 amp twist lock receptacle for the drill motor and
two convenience outlets are on the back of the box.
Meter Boxes
Cat. No. 48-51-0120 (20 amp, 120 volt)
(Can be used in Canada)
Ammeter and power switch appear on the front panel with a single 20
amp twist lock receptacle for the drill motor on the back.
This assembly braces the rig between the floor and ceiling for maximum
rigidity. It adjusts for 14-foot ceilings and features fixed hole adjustments.
Copper Washer
Cat. No. 45-88-8565
Before using the tool, slip this washer onto the spindle to prevent the bit
from seizing on spindle during coring.
Spacer Assembly
Cat. No. 49-67-0110
For use with Cat. Nos. 4125 and 4130. Mounts between cradle and
Dymodrill motor when using 10" - 14" coring bits.
Spacer Assembly
Cat. No. 49-67-0115
For use with Cat. No. 4115 and 4120. Mounts between cradle and
Dymodrill motor when using 10" - 14" coring bits.
Water Collecting Ring
Cat. No. 48-70-0060
For use where water flow from coring must be trapped and drained.
Dike-type collector ring holds water for fast disposal when used with
bits up to 10" in diameter. A built-in vacuum hose fitting also allows the
ring to be used with a wet/dry vacuum cleaner.
Water Hose
Cat. No. 49-18-0055
This 8-foot water hose features a 5/8" coupling and standard brass
male and female water hose fittings.
Water Tank
Cat. No. 49-76-0055
This 3-1/2 gallon heavy-duty, impact-resistant poly tank is for use where
a regular tap water supply is not available.
Vacuum Pad Assembly (Single Pad)
Cat. No. 49-22-7100
This single vacuum pad is the same as supplied with Vac-U-Rig® Attachment Kit No. 49-22-7075. Can be used with Cat. Nos. 4115, 4125 and
This heavy-duty 1/8 H.P. pump comes complete with vacuum gauge, air
filter and cord. May be mounted to the base of the unit. Same as furnished with Vac-U-Rig® 49-22-7075. Can be used with Cat. Nos. 4115,
4125 and 4130.
This heavy-duty 1/8 H.P. pump comes complete with vacuum gauge, air
filter and cord. May be mounted to the base of the unit. Can be used with
Cat. No. 4120.
This kit includes: (1) vacuum pad; (1) vacuum pump assembly with
gauge, filter, 8-foot air hose, and fittings. Can be used with Cat. No.
4120.
Vac-U-Rig® Attachment Kit
Cat. No. 49-22-7075
This kit includes: (1) vacuum pad; (1) vacuum pump assembly with
gauge, filter, 8-foot air hose, and fittings. Can be used with Cat. Nos.
4115, 4125 & 4130.
Threaded Adapter
Cat. No. 48-04-0160
Thread Adapter reduces the thread size of 1-1/4"-7 to 5/8"-11
MILWAUKEE Dymobits and extensions.
* (Standard equipment on Dymodrills except clutch Cat. Nos. 4004, 4005,
4092, 4206 and 4097).
9" Bit Extension
Cat. No. 48-95-1500
Extension threaded on both ends with a 1-1/4"-7 thread. For use with
Diamond Core Bits over 2" in diameter and a 1-1/4"-7 thread. Extension
mounts directly to the Dymodrill. Two or more extensions can be used
together to core deep holes.
10-1/2" Bit Extension
Cat. No. 48-95-2100
Extension threaded on both ends with a 5/8"-11 thread. For use with 1-1/4"
and 1-1/2" diameter Diamond Core Bits with a 5/8"-11 thread. Extension
requires Threaded Adapter No. 48-04-0160 for mounting to Dymodrills.
Two or more extensions can be used together to core deep holes.
3/16" Socket Wrench
Cat. No. 49-96-0085
Use to mount Dymodrills onto the cradle on Dymorigs
1-3/8" Open End Wrench
Cat. No. 49-96-4700
Use to install bits onto Dymodrills.
Vacuum Pad Gasket
Cat. No. 43-44-0570
Replacement part for vacuum pads on Cat. Nos. 4115, 4125 & 4130
Vacuum Base Gasket
Cat. No. 43-44-0605
Replacement part for vacuum base Cat. No. 4120.
Rubber Cement
Cat. No. 44-22-0060
Use to bond vacuum pad gaskets to vacuum pads on Cat. Nos. 4115,
4120, 4125 and 4130.
Type "E" Grease
Cat. No. 49-08-4122
Use for lubricating rack and pinion as well as spindle.
Loading...
+ 30 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.