Microsemi Corporation LX1554CPW, LX1554CM, LX1554CDM, LX1553IM, LX1553IDM Datasheet

...
Copyright © 1994
Rev. 1.0a 1/01
FOR FURTHER INFORMATION CALL (714) 898-8121
11861 WESTERN AVENUE , GARDEN GROVE, CA. 92841
1
U
LTRA-LOW START-UP CURRENT
, C
URRENT-MODE
PWM
PRODUCTION DATA SHEET
THE INFINITE POWER OF INNOVATION
LX1552/3/4/5
LIN DOC #:
1552
DESCRIPTION KEY FEATURES
■■
■■
ULTRA-LOW START-UP CURRENT
(150µA typ.)
■■
■■
TRIMMED OSCILLATOR DISCHARGE
CURRENT (±2% typ.)
■■
■■
INITIAL OSCILLATOR FREQUENCY BETTER
THAN ±4%
■■
■■
OUTPUT PULLDOWN DURING UVLO
■■
■■
PRECISION 2.5V REFERENCE (±2% max.)
pCURRENT SENSE DELAY TO OUTPUT
(150ns typ.)
pAUTOMATIC FEED FORWARD
COMPENSATION
pPULSE-BY-PULSE CURRENT LIMITING pENHANCED LOAD RESPONSE
CHARACTERISTICS
pUNDER-VOLTAGE LOCKOUT WITH
HYSTERESIS
pDOUBLE PULSE SUPPRESSION pHIGH CURRENT TOTEM POLE OUTPUT
(±1Amp peak)
p500kHz OPERATION
The LX155X family of ultra-low start-up current (250µA max.), current mode control IC's offer new levels of energy efficiency for offline converter applica­tions. They are ideally optimized for personal computer and CRT power supplies although they can be used in any number of off-line applications where energy efficiency is critical. Coupled with the fact that the LX155X series requires a minimal set of external components, the series offers an excellent value for cost conscious consumer applications.
Optimizing energy efficiency, the LX155X series demonstrates a signifi­cant power reduction as compared with other similar off-line controllers. Table 1 compares the SG384X, UC384XA and the LX155X start-up resistor power dissipation. The LX155X offers an overall 4X reduction in power dissipa-
tion. Additionally, the precise oscillator discharge current gives the power supply designer considerable flexibility in optimizing system duty cycle consistency.
The current mode architecture demonstrates improved load regulation, pulse by pulse current limiting and inherent protection of the power supply output switch. The LX155X includes a bandgap reference trimmed to 1%, an error amplifier, a current sense com­parator internally clamped to 1V, a high current totem pole output stage for fast switching of power mosfet's, and an externally programmable oscillator to set operating frequency and maximum duty cycle. The undervoltage lock-out circuitry is designed to operate with as little as 250µA of supply current permitting very efficient bootstrap designs.
PRODUCT HIGHLIGHT
PACKAGE ORDER INFORMATION
T
A
(°C)
Plastic DIP 8-pin
0 to 70 LX155xCM LX155xCDM LX155xCD — LX155xCPW
-40 to 85 LX155xIM LX155xIDM LX155xID — —
-55 to 125 — — — LX155xMY —
M
Plastic SOIC 8-pin
DM
Plastic SOIC 14-pin
D
Ceramic DIP 8-pin
Y
TSSOP 20-pin
PW
TYPICAL APPLICATION OF LX155X USING ITS
MICROPOWER START-UP FEATURE
Max. Start-up Current Specification (I
ST
)
Typical Start-Up Resistor Value (R
ST
)
Max. Start-Up Resistor Power Dissipation (PR)
Design Using
SG384xUC384xALX155x
1000µA
500µA 250µA
2.26W1.13W0.56W
62K
ΩΩ
ΩΩ
124K
ΩΩ
ΩΩ
248K
ΩΩ
ΩΩ
Note:Calculation is done for universal AC input speci­fication of V
ACMIN
= 90V
RMS
to V
ACMAX
= 265V
RMS
using the
following equation: (Resistor current is selected to be
2 * I
ST
at V
ACMIN
.)
RST =, P
R
=
V
AC MIN
2 * I
ST
2V
AC2 MAX
R
ST
TABLE 1
APPLICATIONS
■■
■■
ECONOMY OFF-LINE FLYBACK OR
FORWARD CONVERTERS
DC-DC BUCK OR BOOST CONVERTERS
LOW COST DC MOTOR CONTROL
AVAILABLE OPTIONS PER PART #
Part # Start-UpHysteresisMax.Duty
Voltage Cycle
LX1552 16V 6V <100%
LX1553 8.4V 0.8V <100%
LX1554 16V 6V <50%
LX1555 8.4V 0.8V <50%
I
ST
R
ST
V
CC
AC
INPUT
LX1552
or
LX1554
Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number. (i.e. LX1552CDMT)
U
LTRA-LOW START-UP CURRENT
, C
URRENT-MODE
PWM
LX1552/3/4/5
PRODUCT DATABOOK 1996/1997
Copyright © 1994
Rev. 1.0a 1/01
2
P
RODUCTION DATA SHEET
ABSOLUTE MAXIMUM RATINGS (Note 1)
Supply Voltage (Low Impedance Source)..................................................................30V
Supply Voltage (I
CC
< 30mA).........................................................................Self Limiting
Output Current.............................................................................................................±1A
Output Energy (Capacitive Load)................................................................................5µJ
Analog Inputs (Pins 2, 3)...........................................................................-0.3V to +6.3V
Error Amp Output Sink Current...............................................................................10mA
Power Dissipation at TA = 25°C (DIL-8)......................................................................1W
Operating Junction Temperature
Ceramic (Y Package)............................................................................................150°C
Plastic (M, DM, D, PW Packages)........................................................................150°C
Storage Temperature Range....................................................................-65°C to +150°C
Lead Temperature (Soldering, 10 Seconds)............................................................300°C
PACKAGE PIN OUTS
V
REF
V
CC
OUTPUT GND
COMP
V
FB
I
SENSE
RT/C
T
1 8
27
36
45
M & Y PACKAGE
(Top View)
DM PACKAGE
(Top View)
V
REF
V
CC
OUTPUT GND
COMP
V
FB
I
SENSE
RT/C
T
1 8
27
36
45
V
REF
N.C. V
CC
V
C
OUTPUT GND PWR GND
COMP
N.C.
V
FB
N.C. I
SENSE
N.C.
RT/C
T
1 14
213
312
411
510
69
78
D PACKAGE
(Top View)
PW PACKAGE
(Top View)
1 20 219
318
417
516
615
714
813
912 10 11
N.C. N.C.
COMP
V
FB
N.C. I
SENSE
N.C.
RT/C
T
N.C. N.C.
N.C. N.C. V
REF
N.C. V
CC
V
C
OUTPUT GND PWR GND N.C.
M PACKAGE:
THERMAL RESISTANCE-JUNCTION TO AMBIENT,
θθ
θθ
θ
JA
95°C/W
DM PACKAGE:
THERMAL RESISTANCE-JUNCTION TO AMBIENT,
θθ
θθ
θ
JA
165°C/W
D PACKAGE:
THERMAL RESISTANCE-JUNCTION TO AMBIENT,
θθ
θθ
θ
JA
120°C/W
Y PACKAGE:
THERMAL RESISTANCE-JUNCTION TO AMBIENT,
θθ
θθ
θ
JA
130°C/W
PW PACKAGE:
THERMAL RESISTANCE-JUNCTION TO AMBIENT,
θθ
θθ
θ
JA
144°C/W
Junction Temperature Calculation: T
J
= TA + (PD x θJA).
The θ
JA
numbers are guidelines for the thermal performance of the device/pc-board system.
All of the above assume no ambient airflow
THERMAL DATA
Note 1.Exceeding these ratings could cause damage to the device. All voltages are with respect
to Ground. Currents are positive into, negative out of the specified terminal. Pin numbers refer to DIL packages only.
U
LTRA-LOW START-UP CURRENT
, C
URRENT-MODE
PWM
LX1552/3/4/5
PRODUCT DATABOOK 1996/1997
3
Copyright © 1994
Rev. 1.0a 1/01
PRODUCTION DATA SHEET
ELECTRICAL CHARACTERISTICS
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for LX155xC with 0°C TA 70°C, LX155xI with -40°C TA 85°C, LX155xM with -55°C T
A
125°C; VCC=15V (Note 5); RT=10K; CT=3.3nF. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the
ambient temperature.)
Reference Section
Parameter
Symbol
Test Conditions
Output Voltage V
REFTA
= 25°C, IL = 1mA
Line Regulation 12 VIN 25V Load Regulation 1 I
O
20mA
Temperature Stability (Note 2 & 7) Total Output Variation Over Line, Load, and Temperature Output Noise Voltage (Note 2) V
N
10Hz f 10kHz, TA = 25°C
Long Term Stability (Note 2) TA = 125°C, t = 1000hrs Output Short Circuit I
SC
LX155xC
Units
Min.Typ.Max.Min.Typ.Max.
LX155xI/155xM
4.955.005.054.955.005.05 V 620 620mV 625 625mV
0.2 0.4 0.2 0.4 mV/°C
4.9 5.1 4.9 5.1 V 50 50 µV
525 525mV
-30 -100-180 -30 -100-180 mA
Oscillator Section
Initial Accuracy (Note 6) TA = 25°C
TA = 25°C, RT = 698, CT = 22nF, LX1552/3 only
Voltage Stability 12 V
CC
25V
Temperature Stability (Note 2) T
MIN
TA ≤ T
MAX
Amplitude (Note 2) V
PIN 4
peak to peak
Discharge Current I
D
TA = 25°C, V
PIN 4
= 2V
V
PIN 4
= 2V, T
MIN
≤ TA T
MAX
48.550.552.548.550.552.5 kHz 56 58 60 56 58 60 kHz
0.2 1 0.2 1 % 55%
1.7 1.7 V
8.0 8.3 8.6 8.0 8.3 8.6 mA
7.6 8.8 7.8 8.8 mA
Output Voltage Low Level V
OLISINK
= 20mA
I
SINK
= 200mA
Output Voltage High Level V
OHISOURCE
= 20mA
I
SOURCE
= 200mA
Rise Time (Note 2) T
R
TA = 25°C, CL = 1nF Fall Time (Note 2) TFTA = 25°C, CL = 1nF UVLO Saturation V
SATVCC
= 5V, I
SINK
= 10mA
Error Amp Section
Current Sense Section
Gain (Note 3 & 4) A
VOL
Maximum Input Signal (Note 3) V
PIN 1
= 5V
Power Supply Rejection Ratio (Note 3) PSRR 12 VCC 25V Input Bias Current I
B
Delay to Output (Note 2) T
PDVPIN 3
= 0 to 2V
Output Section
2.452.502.552.452.502.55 V
-0.1 -1 -0.1 -0.5 µA
65 90 65 90 dB
0.6 0.6 MHz
60 70 60 70 dB
24 24 mA
-0.5 -0.8 -0.5 -0.8 mA 5 6.5 5 6.5 V
0.7 1.1 0.7 1.1 V
2.85 3 3.152.85 3 3.15 V/V
0.9 1 1.1 0.9 1 1.1 V 70 70 dB
-2 -10 -2 -5 µA
150 300 150 300 ns
0.1 0.4 0.1 0.4 V
1.5 2.2 1.5 2.2 V 13 13.5 13 13.5 V 12 13.5 12 13.5 V
50 100 50 100 ns 50 100 50 100 ns
0.7 1.2 0.7 1.2 V
(Electrical Characteristics continue next page.)
Input Voltage V
PIN 1
= 2.5V
Input Bias Current I
B
Open Loop Gain A
VOL
2 VO 4V
Unity Gain Bandwidth (Note 2) UGBW TA = 25°C Power Supply Rejection Ratio (Note 3) PSRR 12 V
CC
25V
Output Sink Current I
OLVPIN 2
= 2.7V, V
PIN 1
= 1.1V
Output Source Current I
OHVPIN 2
= 2.3V, V
PIN 1
= 5V
Output Voltage High Level V
OHVPIN 2
= 2.3V, RL = 15K to ground
Output Voltage Low Level V
OLVPIN 2
= 2.7V, RL = 15K to V
REF
U
LTRA-LOW START-UP CURRENT
, C
URRENT-MODE
PWM
LX1552/3/4/5
PRODUCT DATABOOK 1996/1997
Copyright © 1994
Rev. 1.0a 1/01
4
P
RODUCTION DATA SHEET
ELECTRICAL CHARACTERISTICS (Con't.)
Under-Voltage Lockout Section
Parameter
Symbol
Test Conditions
Start Threshold VST1552/1554
1553/1555
Min. Operation Voltage After Turn-On 1552/1554
1553/1555
LX155xC
Units
Min.Typ.Max.Min.Typ.Max.
LX155xI/155xM
15 16 17 15 16 17 V
7.8 8.4 9.0 7.8 8.4 9.0 V
9 10 11 9 10 11 V
7.0 7.6 8.2 7.0 7.6 8.2 V
PWM Section
Maximum Duty Cycle 1552/1553
1552/1553, RT = 698, CT = 22nF 1554/1555
Minimum Duty Cycle
94 96 94 96 %
50 50 %
47 48 47 48 %
00%
Power Consumption Section
Start-Up Current I
ST
Operating Supply Current I
CC
VCC Zener Voltage VZICC = 25mA
150 250 150 250 µA
11 17 11 17 mA
30 35 30 35 V
Notes:2.These parameters, although guaranteed, are not 100% tested in
production.
3.Parameter measured at trip point of latch with V
FB
= 0.
4.Gain defined as:A = ; 0 V
ISENSE
0.8V.
5.Adjust V
CC
above the start threshold before setting at 15V.
6.Output frequency equals oscillator frequency for the LX1552 and LX1553. Output frequency is one half oscillator frequency for the LX1554 and LX1555.
7.Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation:
Temp Stability =
V
REF
(max.) & V
REF
(min.) are the maximum & minimum reference voltage measured over the appropriate temperature range. Note that the extremes in voltage do not necessarily occur at the extremes in temperature.
V
REF
(max.) - V
REF
(min.)
TA (max.) - TA (min.)
V
COMP
V
ISENSE
BLOCK DIAGRAM
*
- V
CC
and VC are internally connected for 8 pin packages.
**
- POWER GROUND and GROUND are internally connected for 8 pin packages.
***
- Toggle flip flop used only in 1554 and 1555.
OSCILLATOR
S
R
***
V
REF
GOOD LOGIC
INTERNAL
BIAS
S / R
5V
REF
PWM LATCH
CURRENT SENSE COMPARATOR
1V
R
2R
ERROR AMP
16V (1552/1554)
8.4V (1553/1555)
16V (1552/1554)
8.4V (1553/1555)
UVLO
34V
GROUND**
V
CC
*
R
T/CT
V
FB
T
COMP
I
SENSE
POWER GROUND**
OUTPUT
V
C
*
V
REF
U
LTRA-LOW START-UP CURRENT
, C
URRENT-MODE
PWM
LX1552/3/4/5
PRODUCT DATABOOK 1996/1997
5
Copyright © 1994
Rev. 1.0a 1/01
PRODUCTION DATA SHEET
GRAPH / CURVE INDEX
Characteristic Curves
FIGURE #
1. OSCILLATOR FREQUENCY vs. TIMING RESISTOR
2. MAXIMUM DUTY CYCLE vs. TIMING RESISTOR
3. OSCILLATOR DISCHARGE CURRENT vs. TEMPERATURE
4. OSCILLATOR FREQUENCY vs. TEMPERATURE
5. OUTPUT INITIAL ACCURACY vs. TEMPERATURE
6. OUTPUT DUTY CYCLE vs. TEMPERATURE
7. REFERENCE VOLTAGE vs. TEMPERATURE
8. REFERENCE SHORT CIRCUIT CURRENT vs. TEMPERATURE
9. E.A. INPUT VOLTAGE vs. TEMPERATURE
10.START-UP CURRENT vs. TEMPERATURE
11.START-UP CURRENT vs. SUPPLY VOLTAGE
12.START-UP CURRENT vs. SUPPLY VOLTAGE
13.DYNAMIC SUPPLY CURRENT vs. OSCILLATOR FREQUENCY
14.CURRENT SENSE DELAY TO OUTPUT vs. TEMPERATURE
15.CURRENT SENSE THRESHOLD vs. ERROR AMPLIFIER OUTPUT
16.START-UP THRESHOLD vs. TEMPERATURE
17.START-UP THRESHOLD vs. TEMPERATURE
18.MINIMUM OPERATING VOLTAGE vs. TEMPERATURE
19.MINIMUM OPERATING VOLTAGE vs. TEMPERATURE
20.LOW LEVEL OUTPUT SATURATION VOLTAGE DURING UNDER-
VOLTAGE LOCKOUT
21.OUTPUT SATURATION VOLTAGE vs. OUTPUT CURRENT and TEMPERATURE
22.OUTPUT SATURATION VOLTAGE vs. OUTPUT CURRENT and TEMPERATURE
FIGURE INDEX
Theory of Operation Section
FIGURE #
23.TYPICAL APPLICATION OF START-UP CIRCUITRY
24.REFERENCE VOLTAGE vs. TEMPERATURE
25.SIMPLIFIED SCHEMATIC OF OSCILLATOR SECTION
26.DUTY CYCLE VARIATION vs. DISCHARGE CURRENT
27.OSCILLATOR FREQUENCY vs. TIMING RESISTOR
28.MAXIMUM DUTY CYCLE vs. TIMING RESISTOR
29.CURRENT SENSE THRESHOLD vs. ERROR AMPLIFIER OUTPUT
Typical Applications Section
FIGURE #
30.CURRENT SENSE SPIKE SUPPRESSION
31.MOSFET PARASITIC OSCILLATIONS
32.ADJUSTABLE BUFFERED REDUCTION OF CLAMP LEVEL
WITH SOFT-START
33.EXTERNAL DUTY CYCLE CLAMP AND MULTI-UNIT SYCHRONIZATION
34.SLOPE COMPENSATION
35.OPEN LOOP LABORATORY FIXTURE
36.OFF-LINE FLYBACK REGULATOR
U
LTRA-LOW START-UP CURRENT
, C
URRENT-MODE
PWM
LX1552/3/4/5
PRODUCT DATABOOK 1996/1997
Copyright © 1994
Rev. 1.0a 1/01
6
P
RODUCTION DATA SHEET
CHARACTERISTIC CURVES
FIGURE 2. — MAXIMUM DUTY CYCLE vs. TIMING RESISTOR
FIGURE 3. — OSCILLATOR DISCHARGE CURRENT vs.
TEMPERATURE
FIGURE 4. — OSCILLATOR FREQUENCY vs. TEMPERATURE
FIGURE 1. — OSCILLATOR FREQUENCY vs. TIMING RESISTOR
0.1
0
40
(RT) Timing Resistor - (k)
100
Maximum Duty Cycle - (%)
20
50
80
110100
10
60
70
90
30
VCC = 15V T
A
= 25°C
100
0.1
0.1
1
1000
Oscillator Frequency - (kHz)
(RT) Timing Resistor - (k)
100
10
1
10
VCC = 15V T
A
= 25°C
CT = 3.3nF
CT = 1nF
CT = 6.8nF
CT = 22nF
CT = 47nF
CT = 0.1µF
7.70
8.10
(TA) Ambient Temperature - (°C)
(I
d
) Oscillator Discharge Current - (mA)
7.90
8.20
7.80
8.30
8.40
8.00
-75
-50 -25 0 25 50 75 100 125
8.50
VCC = 15V V
PIN4
= 2V
45
49
(TA) Ambient Temperature - (°C)
Oscillator Frequency - (KHz)
47
50
46
51
52
48
-75
-50 -25 0 25 50 75 100 125
53
VCC = 15V R
T
= 10k
C
T
= 3.3nF
54
55
Loading...
+ 12 hidden pages