McQuay THR-060D Installation Manual

TABLE OF CONTENTS
INTRODUCTION
General Description . . . . . . . . . . . . . . . . . . . . . . . . . ...3
Nomenclature . . . . . . . . . . . . . . . . ., . ., . . . . . . . . . ...3
Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3
INSTALLATION
Handling . ., ., . . . . . . . . . . . . . . ., . . . . . . . . . . . . . ...3
Location .,.....,........,.. ., . ., ., ., . . . . . . . ...4
Clearance Requirements ...,. . . . . . . . . . . . . . . . . ...4
Placing the Unit . ., ..,.,.... , . . . . . . . . . . . . . . . ...4
Vibration isolators,.,...,.,.. . . . . . . . . . . . . . . ...5.6
WATER PIPING
General . . . . . . . . . . . . . . . . . . . . . . ., . . . . . . . . . . . ...6
Evaporator Piping . ., ..,.,.... . .,.,......,....,.6
Evaporator Temperature Limits . ., . . . . . . . . . . . . . ...6
Flow Rate Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...7
Evaporator Pressure Drop Corrections . . . . . . . . . . ...7
Evaporator Pressure Drop Curve.... . ., . . . . . . . . ...7
CONDENSER WATER PIPING . . . . . . . . . . . . . . . . . . ...8
Condenser Temperature Rise . . . . . . . . . . . . . . . . . ...8
Condenser Flow Rate Limits... . . . . . . . . . . . . . . . ...8
Condenser Pressure Drop Correction ., .,........,.9
Condenser Pressure Drop Curves . ., . . . . . . . . ...9. 10
TYPICAL PIPING DIAGRAMS., . . . . . . . . . . . . . . . . ...11
Water Quality . . . . . . . . . . . . . . . , . ., ., . ., . . . . . ...12
Condenser Water Thermostat .,, . . . . . . . . . . . . . ...12
Flow Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...12
Relief Valve Piping . . . . . . . . . . . . . . . . . . . . . . . . . ...13
DIMENSIONAL DATA . . . . . . . . . . . . . . . . . . . . .14.15.16
STARTUP&SHUTDOWN
Pre Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...45
Startup . . . . . . . . . . . . . . . . . . . . . . . . .,.,.....,.,.,45
Temporary Shutdown .,,.,... . . . . . . . . . . . . . . . ...45
Extended Shutdown .,,.,.... , . . . . . . . . . . . . . . ...46
Startup After Extended Shutdown ,, ., . . . . . . . . . ...46
SYSTEM MAINTENANCE
General ..,.,..,..,....,.,.. . . . . . . . . . . . . . . ...47
Control Center Service, .,..... . . . . . . . . . . . . . . ...47
Electrical Terminals.,....,.. ., ., . . . . . . . . . . . ...47
Compressor Oil Level, .,....,. . ., ., . . . . . . . . . ...47
Refrigerant Sightglass .,.,.... ., . . . . . . . . . . . . ...48
Lead-Lag . . . . . . . . . . . . . . . . . . . . . ., ., . . . . . . . . ...48
Crankcase Heaters .,, ..,..... . ., . ., ., . ., ..,...48
SYSTEM SERVICE
Filter-driers ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...49
Liquid Line Solenoid Valve.... , . . . . . . . . . . . . . . ...49
Thermostatic Expansion Valve, ...,.,.,. . .,.....,49
Evaporator, . . . . . . . . . . . . . . . . . .,,...,.,,..,.,.,50
Watercooled Condenser,..,.. ., ., ., . . . . . . . . ...50
IN-WARRANTY RETURN MATERIAL PROCEDURE
Compressor . ., .,, . . . . . . . . . . . . . . . . . . . . . . . . . ...50
Components Other Than Compressor . . . . . . . . . . ...51
APPENDIX
STANDARD CONTROLS:
Thermostat, . . . . . . . . . . . . . . . . . ., ..,.,.......,51
Oil Pressure Safety Control ., . ., . ., ., . ., ..,.,.51
Compressor Lockout ., . . . . . . . . . ., . . . . . . . . . ...52
High Pressure Control. .,...... . . . . . . . . . . . . ...52
Low Pressure Control .,.....,. . . . . . . . . . . . . ...52
Freezestat . . . . . . . . . . . . . . . . . . , ., . ., . . . . . . ...52
Compressor Motor Protector . . . . . . . . . . . . . . . ...53
PHYSICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . ...17.18
Compresor Locations . . . . . . . . . , . . . . . . . . . . . . . ...19
Contactor Designation . . . . . . . . . . . . . . . . . . . . . . ...19
Major Components . . . . . . . . . . . . . . . . . . . . . . . . . ...19
WIRING
Field Wiring, Power...,..,.. . . . . . . . . . . . . . . . ...20
Field Wiring, Control, . . . . . . . . . . . . . . . . . . . . . . . . ..2o
Interlock Wiring . . . . . . . . . . . . . . , . . . . . . . . . . ...20.21
Sequence of Operation . . . . . . . . ., . . . . . . . . ...22.23
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...24
Control Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...25
Electrical Legend . . . . . . . . . . . . . . . . . . . . . . . . . . ...26
Power Schematics . . . . . . . . . . . ,. ... . . . . . ..27—33
Control & Safety Schematics . . . . . . . . . . . . . . ...34.35
Thermostat Schematics . . . . . . . . . . . . . . . . . ..36—41
Electrical Schematic Drawing Decision Tables.42—44
Page2/lM377
OPTIONAL CONTROLS:
Part Winding Start, . . . . . . . . . . , . ., . ., ., ..,....53
Phase/VoltageMonitor., . . . . . . . . . . . . . . . . . . ...53
Alarm Bell . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . ...53
Low Source Water, . . . . . . . . . . , . . . . . . . . . . . . ...54
Hot Gas Bypass . . . . . . . . . . . . . . . . . . . . . . . . . ...54
CONTROLS, SETTINGS, & FUNCTIONS. ., . . . . . . ...55
TROUBLESHOOTING CHART,. . . . . . . . . . . . . . . . ...56
PRESSURE TEMPERATURE TABLE . . . . . . . . . . . ...57
INTRODUCTION
GENERAL
McQuay Type THR Templifier heat pump water heaters are designed for indoor installations. Each unit is completely assembled and factory wired before evacuation, charging and testing. Each unit consists of multiple accessible hermetic compressors, replaceable tube dual circuit shell-and-tube evaporator, water cooled condenser, and complete refrigerant piping.
Liquid line components that are included are manual liquid line shutoff valves, charging valves, filter-driers, liquid line solenoid valves, sightglass/moisture indicators, and dia­phragm element thermal expansion valves. Other features
NOMENCLATURE
THR-040 D-1
D;::+J
(Accessible Hermetic)
Nominal Capacity (Tons)
DESCRIPTION
include compressor discharge check valves, crankcase heaters, recycling pumpdown during “on” or “off” seasons, compressor lead-lag switch to alternate the compressor start­ing sequence, and sequenced starting of compressors.
The electrical control center includes all safety and operating controls necessary for dependable automatic operation.
Compressors are not fused, but may be protected by op-
tional circuit breakers, or may rely on the field installed fused disconnect for protection.
Basic Unit With Single Water Cooled Condenser Per Refrigerant Circuit
L
‘1
1 = R-22 Refrigerant, 130” F Max. Leaving Water Temp.
INSPECTION
When the equipment is received, all items should be careful- be checked before unloading the unit to be sure that it agrees Iy checked against the bill of lading to insure a complete ship­ment. All units should be carefully inspected for damage upon arrival. All shipping damage should be reported to the car­rier and a claim should be filed. The unit serial plate should
with the power supply available. Physical damage to unit after acceptance is not the responsibility of McQuay International.
Note: Unit shipping and operating weights are available in
the physical data table (pages 17 and 18).
INSTALLATION
Note: Installation and maintenance are to be performed only by qualified personnel who are familiar with local codes and regulations, and experienced with this type of equipment. Caution: Sharp edges are a potential injury hazard. Avoid contact.
HANDLING
Every model THR Templifier heat pump is supplied with a full area since the refrigerant will displace the air. Avoid expos­refrigerant charge. For shipment the charge is contained in ing an open flame to refrigerant when moving the unit. Care the condenser and is isolated by the manual condenser li- should be taken to avoid rough handling or shock due to drop­quid valve and the compressor discharge service valve. ping the unit.
Should the unit be damaged, allowing the refrigerant to other than the unit base, unit skid, or rigging holes in the escape, there may be danger of suffocation in the equipment, area since the refrigerant will displace the air. Avoid exposure
evaporator or condenser vessels.
Never lift, push or pull unit from anything
IM 377 I Page 3
MOVING THE UNIT
The McQuay Templifier heat pump is mounted on heavy wooden skids to protect the unit from accidental damage and to permit easy handling and moving.
It is recommended that all moving and handling be per­formed with the skids under the unit when possible and that the skids not be removed until the unit is in the final location.
When moving the unit, dollies or simple rollers can be
used under the skids.
Never put the weight of the unit against the control box.
In moving, always apply pressure to the base on skids on­ly and not to the piping or shells, A long bar helps move the unit easily. Avoid dropping the unit at the end of the roll.
If the unit must be hoisted, it is necessary to lift the unit by attaching cables or chains at the lifting holes in the
evaporator tube sheets. Spreader bars must be used to pro­tect the control cabinet and other areas of the chiller (see
Figure 1).
Do not attach slings to piping or equipment. Move unit in the upright horizontal position at all times. Set unit down gently when lowering from the trucks or rollers.
Note: On unit sizes 120 through 170D, ordered with the op-
tional acoustical enclosure, there will be extension brackets attached to the evaporator tube sheets. These brackets will be used for hoisting the unit and should be removed when unit is in place.
Figure 1.
I
Unit is designed for indoor application and must be located in an area where the surrounding ambient temperatures are 40F or above,
Because of the electrical control devices, the units should not be exposed to the weather. A plastic cover over the con­trol box is supplied as temporary ’protection during transfer.
SPACE REQUIREMENTS FOR CONNECTIONS AND SERVICING
The chilled water piping for all units enters and leaves the evaporator from the rear, with the control box side being the front side of the unit. (A clearance of 3 to 4 feet should be pro­vided for this piping and for replacing the filter-driers, for ser­vicing the solenoid valves, or for changing the compressors, should it ever become necessary). Recommended service
clearances are shown in Figure 2.
The condenser water piping enters and leaves the shell from the ends. Work space must be provided in case water regulating valves are being used and for general servicing.
Clearance should be provided for cleaning condenser tubes or for removing evaporator tubes on one end of the unit as specified in Table 1. It is also necessary to leave a work area on the end opposite that used for replacement of a cooler tube.
Table 1. Minimum recommended clearance requirements
B
A
961<
41“
I Minimum clearance required for removal and replacement of cooler tubes
(either end).
flJ 36,,
c
I 96” 0! 46 “
D
A B
120” @ 36 “ 120“ (u
LOCATION
A reasonably level and sufficiently strong floor is all that is required for the Templifier heat pump. If necessary, addi­tional structural members should be provided to transfer the
weight of the unit to the nearest beams.
Note: Unit shippinq and operating weights are available in
the physical data’ table, pages 17 and I8
Figure 2. Clearance requirements
01
FRONT
cONTROL BOX
20
1
f
The small amount of vibration normally encountered with the Templifier makes this unit particularly desirable for basement or ground floor installations where the unit can be bolted directly to the floor. The floor construction should be such that the unit will not affect the building structure, or transmit noise and vibration into the structure, See vibration isolator
Page 4 I IM 337
PLACING
THE UNIT
section for additional mountina information.
Note: On the THR 120D thru 170D, shipping bolts are used
to secure the compressor rails to the evaporator brackets. Remove these and discard after unit is mounted and before unit is started.
VIBRATION ISOLATORS
Rubber-in-shear or spring isolators can be furnished and field placed under each corner of the package, It is recom­mended that a rubber-in-shear pad be used as the minimum isolation on all upper level installations or areas in which vibra-
tion transmission is a consideration.
Transfer the unit as indicated under “Moving the Unit.” In all cases, set the unit in place and level with a spirit level. When spring type isolators are required, install springs run­ning under the main unit supports. Adjust spring type mount­ings so that upper housing clears lower housing by at least 1/4” and not more than 1/2”.A rubber anti-skid pad should be used under isolators if hold-down bolts are not used.
Vibration eliminators in all water piping connected to the Templifier are recommended to avoid straining the piping and transmitting vibration and noise.
Table 2.
-----
Figure 3. Isolator Locations
REAR
= o Q
K 0
FRONT
CONTROL BOX
!5
Q
Table 3. Spring Flex Isolators
CP-1-25 Gray WI 1 Red Stripe CP-1-26 Gray WI 2 White Stripes CP-1-27 Gray WI 1 Orange Stripe CP-1-28 Gray WI 1 Green Stripe CP-1-31 Gray WI 2 Yellow Stripes 1100 0.63 7% CP-2-26 Gray WI 2 White Stripes
CP-2-27 Gray WI 1 Orange Stripe 1500 1.06 1 CP-2-28 Gray WI 1 Green Stripe CP-2-31 I Gray w/ 2 Yellow Stripes I 2200 I 0.83 IIOV. I 9Vz I 6 CP-4-27 I Gray w/ 1 orange Stripe I 3000 I 1.06 II ol/4 [ 9’/2 I 7’/2 I 5 ] 6% ] 886-58051 3A-27
450 1.22 71/z 600 1.17 ?kJ 750 1.06 71/2
900 1.02 i’~/2
1200 1,17 I ol/4
1800 1.02 1ol/4
6V2 5 6VZ 5 6VZ 5 6VZ 5 6V2 5 9Vi 6
ov4
9v4 8 91/2 8
23h 5y8 886-477927A-25 23h 57/s 886-477927A-26 23h 5778 886-477927A-27 23,4 57/8 886-477927A-28 23h 578 886-477927A-31 23h 5y~
23h 5778 866-477929A-27 23h 5778 886-477929A-28
] 23A I 578 I 866-477929A-31
888-477929A-26
Figure 4. Spring Flex Mountings
wc/2y
ADJUST MOUNTING S0 UPPER
HOUSING CLEARS LOWER HOUSING
BY AT LEAST I 16’ AND NOT MORE THAN I 2
\
w
\
ACOUSTICAL NON. SKID NEOPRENE PAD
1
I 2 DIA
POSITIONING PIN
r–
E
ivJ_
1
4!
\
I
IM 377 I Page 5
Table 4. Rubber-in-Shear Isolators
Figure 5. Single Rubber-in-Shear
Mounting
-D DIA
,-0- DIA.
‘Os’’’O”’”’ w--A--
a
WATER PIPING
Since regional piping practices vary considerably, local or­dinances and practices will govern the selection and installa­tion of piping. In all cases local building and safety codes and ordinances should be studied and complied with.
All piping should be installed and supported to prevent the unit connections from bearing any strain or weight of the system piping.
Vibration eliminators in all water piping connected to the unit are recommended to avoid straining the piping and transmitting pump noise and vibration to the building structure.
It is recommended that temperature and pressure indicators be installed within 3 feet of the inlet and outlet of the shells
to aid in the normal checking and servicing of the unit.
A strainer or some means of removing foreign matter from
EVAPORATOR PIPING
The water flow entering the evaporator must always be on the
end nearest the expansion valves and evaporator refrigerant piping connections to assure proper expansion valve opera-
tion and unit capacity (see pages 14 thru 16).
Design the piping so that it has a minimum number of changes in elevation. Include manual or automatic vent valves at the high points of the chilled water piping, so that air can be vented from the water circuit, System pressures can be
GENERAL
the water before it enters the unit or the pump is recom-
mended. It should be placed far enough upstream to prevent
cavitation at the pump inlet (consult pump manufacturer for
recommendations). The use of a strainer will prolong pump
and unit life and thus keep system performance up.
A preliminary leak check of the water piping should be
made before filling the system.
Shutoff valves should be provided at the unit so that nor­mal servicing can be accomplished without draining the system.
A water flow switch or pressure differential switch must be mounted in the water lines to the evaporator and the condenser to verify water flow before unit is permitted to start.
maintained by using an expansion tank or a combination pressure relief and reducing valve.
All chilled water piping should be insulated to prevent con-
densation on the lines. If insulation is not of the self-contained
vapor barrier type, it should be covered with a vapor seal.
Piping should not be insulated until completely leak tested.
Vent and drain connections must extend beyond pro-
posed insulation thickness
for accessibility.
Page 6 I IM 377
EVAPORATOR TEMPERATURE LIMITS
EVAPORATOR FLOW RATE LIMITS–GPM*
Table 6.
THR
UNIT
SIZE
040D
0500 0600 0700 080D
0900 1000
1100
1200 t30D 1400
1500
1600 1700
‘ Water flows are basedon 10 FPS for max. flow and3 FPS formin, flow.
CHILLER WATER FLOW *
MAX.
230 244 316 312 352 352 370 460 403 463 463 439 579
579
MIN.
31 34 45 47 44 44 54 68 50 67 67 41 93 93
EVAPORATOR
MODEL
NUMBER
E-1008-2 E-1OO8-1 E-1208-3 E-1208-2 E-1208-1 E-1208-1 E-1408-2 E-1408-1 E-141 O-2 E-141 O-1 E-141 O-1 E-161 O-3 E-161 O-1 E-161 O-1
EVAPORATOR PRESSURE DROP CORRECTION
EVAPORATOR PRESSURE DROP CURVE
NOTE: Maximum allowable evaporator water pressure is 175 psig
WATER FLOW –GPM
lM3771Page7
CONDENSER WATER PIPING
THR condensers have factory manifolds for single inlet and outlet connections. Water flow may be 2-pass parallel, 4-pass
parallel or 8-pass series/parallel to suit the application, Refer to Figure 6 to determine condenser water circuiting arrange­ment. For proper performance, the condenser water must enter the bottom connection of the condenser on all circuiting arrangements.
Condenser water pressure drop for the unit should be
measured at the common inlet and outlet pipe, through a port
provided by the installing contractor. All pressure drop mea­surements should be made with the same gauge to insure an accurate reading, Before the pressure drop curves can be read, the pressure drop values on the curve must be corrected based on the average hot condenser water temperature. The
correction factor can be obtained from page 9, and then
multiplied by the values on the pressure drop curves to ad­just them according to the average water temperature in the system.
CONDENSER TEMPERATURE LIMITS
Table 7. Condenser temperature limits, operating and maximum ( 0F)
!,
UNIT SERIES
REFRIGERANT
TW%
OPERATING MAX. ALLOWABLE
MAX. LEAVING
WATERTEMP.
WATERTEMP, IN CONDENSER
(“F) (“F)
I
Note: Water flowlng through the condenser should never exceed the maximum allowable
temperature in the table above even when the urmt IS not operating.
1
R-22
I
I
130
I
145
I
CONDENSER TEMPERATURE RISE
Table 8. Allowable condenser temperature rise applicable to refrige
!rant 22
Note: Temperature rise for various water circuit arrangements may for a given
load be limited by the maximum or minimum flow hsted in the unit condenser and evaporator flow Iimlt tables. The flow Iimlts for a given unit should be used to calculate the temperature rise limit before a water circuiting arrangement and temperature rise are established.
CONDENSER FLOW RATE LIMITS
Table 9. Unit Condenser Water Flow Limits (GPM)*
060D
070D 080D 090D
100D
I1OD 508 1200 440 56
130D 506 64 260 32
\
140D 506 64 260 32 150D 610 80
1600 610 170D 610
‘Values shown are total unit flow AdJust flow per condenser to meet flow requirement for flow arrangement being used
252 32 126 16 63 8 316
360 444 56
444
40 44
56 62
80
80
158 180 22 90
222 222
254 224
305 305
305
20 79 10
28 111 14 28 111 14
31 130 28 112 14
40 150 40 150 20
40 150
130 16 130 16
11
16
20
20
Page 8 I IM 377
Figure 6. Condenser Water Arrangements.
2-Pass Parallel
m
OUT
IN
NOTE: When parallel circuiting is used, design leaving condenser water temperature may not be obtainable unless both condenser circuits
are in operation.
IN
4-Pass Parallel
w
OUT
8-Pass Series/Parallel
-
OUT
IN
CONDENSER PRESSURE DROP CORRECTION
10
#
09
2E W;
:: O*
J
~$ m
z% o, gg
0 u
w
CONDENSER PRESSURE DROP CURVES
NOTE: Maximum allowable condenser water pressure is 250 psig.
2-Pass Parallel Flow (Standard Arrangement).
k t
n
o
K n
u
a
:
m u K n.
a w 1-
S
110 130 lwl
AVERAGECONDENSERWATERTEMPERATURE
170 193 210
230 253
WATER FLOW – GPM
IM 3771 Page 9
4-Pass Parallel Flow (Alternate Arrangement).
.
8-Pass Series/Parallel Flow (Alternate Arrangement).
WATERFLOW– GPM
Page 10 / IM 377
WATERFLOW— GPM
TYPICAL PIPING DIAGRAMS
HEAT RECOVERY
FROM WASTE FLUlO
I
WASTE
HEAT
SOURCE
up ORAIN1
HEAT LOAD
FROM WATER TO AIR HEAT PUMP SOURCE
SUPPLEMENTARY CLOSEOCIRCUIT COOLER
HEAT RECOVERY
P
1=
--------
I
USEFUL
HEAT LOAO
J
------ -. TEMPLIFIER
L
-
SUPPLEMENTARY
HEATER
SOLAR HEAT SOURCE
COLLECTOR
ARRAY
I
TANK
i i
I_/
USEFUI
HEAT LOAD
WITH INTERMITTENT WATER FLOW
HEAT OUTPUT
(SERVICEHOT WATERI
OUTPUT
140° F
TEMPLIFIER
t
STORAGE
TANK
<140”C
t- STANOBY
I
OR
AUXILIARY
I I
A
140°F
P
I
I 1(T
I L--------J
f
b
HEAT
SOURCE
TEMPLIFIER
CIRCULATOR
L
,r HEAT
HEAT RECOVERY
FROM GAS OR AIR SOURCE
------ _ r I
i 1
- ----.- .I
EXHAUSTAIR
NOTES: Valves, drains, vents, expansion tanks and instrumentation must be added in accordance with good piping practice.
Temperatures, where shown, are for illustration only. These are typical Templifier application possibilities shown in schematic way. Each specific application will vary in the use of storage, supplemental heat, etc., to suit the job characteristics
WASTE HEATCONVERSIONUNIT
# I
4
150°F
170”F *
L------ ----
-------. ~
TEMPLIFIER
FROM PARTIAL SOURCE FLUIO FLOW
HEAT RECOVERY
-------
!~~
—EVAPORATOR-
I I
CONDENSER!
L
--..-.-
1+=
TEMPLIFIER
USEFUL
1
TOWEROR CLOSEO
CIRCUITCOOLER
IM 377 I Page 11
WATER QUALITY
The water flowing through the condenser and evaporator must
be of suitable quality for use with standard materials of construction:
Condenser: Steel heads and tube sheets,
rubber gaskets, copper tubes.
Evaporator: Steel shell, copper tubes,
polypropylene baffles
Any additives that may be harmful should not be used.
quality may deteriorate later, an intermediate heat exchanger is recommended, Plate type exchangers should be considered for minimum temperature approach at economical cost.
Note: If cooling”tower or other source water containing dirt, sediment or other foreign matter is used, assure that take-offs to the Templifier are at the top of horizontal pipelines to mini­mize foreign matter getting into the evaporator. Depending on water conditions, dual strainers and/or a settling drum should be considered.
Where water or other fluids of unsuitable quality, or where
CONDENSER WATER THERMOSTAT
On units THR-040D thru 170D units, the condenser water ther­mostat (CP1) is mounted inside the control console. The con-
ever be removed from the well for servicing, care should be
taken as not to wipe off the heat conducting compound sup­trol sensor is mounted in a well, located in the condenser plied in the well. water inlet manifold. Care should be taken not to damage the sensor cable or leadwires when working around the unit. It
is also advisable to check the leadwire before running the unit to be sure that it is firmly anchored and not rubbing on
the frame or any other component, Should the sensor
Figure 7. Thermostat Well Installation
Note: See page 51 for additional thermostat information.
Caution: The thermostat bulb should not be exposed to
water temperatures above those listed in the condenser water temperature limit Table 7.
EVA
INLET
The water flow switches must be mounted in either the entering or leaving water lines to insure that there will
INSTALLED
FLOW SWITCHES
be ade­quate water flow and load to the evaporator and condenser before the unit can start. This will safeguard against liquid
refrigerant entering the compressors on startup. It also serves to shut down the unit in the event that water flow is interrupted to guard against evaporator freeze-up.
A flow switch is available from McQuay under ordering number 175033 B-00. It is a “paddle” type switch and adap­table to any pipe size from 1“ to 6“ nominal. Certain minimum flow rates are required to close the switch and are listed in Table 10. Installation should be as shown in Figure 8. Elec­trical connections in the unit control center should be made at terminals 5 and 6. The normally open contacts of the flow switch should be wired between these two terminals. There is also a set of normally closed contacts on the switch that could be used for an indicator light or an alarm to indicate when a “no flow” condition exists.
1. Apply pipe sealing compound to only the threads of the
switch and screw unit into D“x D“x1” reducing tee (see
Figure 8). The flow arrow must be pointed in the correct
direction.
2. Piping should provide a straight length before and after
R
the flow switch of at least five times the pipe diameter.
3. Trim flow switch paddle if needed to fit the pipe diameter. Make sure paddle does not hang up in pipe.
Caution: Make sure the arrow on the side of the switch is pointed in the proper direction of flow.
The flow switch is designed to handle the control voltage and should be con­nected according to the wiring diagram (see wiring diagram inside control box door).
Table 10. Flow Switch Minimum Flow Rates
NOMINAL PIPE SIZE MINIMUM REQUIRED FLOW TO
(INCHES) ACTIVATESWITCH (GPM)
1 6.00 11A
I 1/2 2 18.80
21/2
3
A
5 6
I
9.80
12.70
24.30
30.00
39.7C
-. .
58.70 79,20
Page 12 I IM 377
Figure 8.
FLOW SWITCH
PADDLE
FLOW SWITCH
*
1“2,,
VIEW FROM END OF EVAPORATOR/CONDENSER
--
m
PIPE
-EF;?’ )
~ FLOW3
w
STRAIGHT PIPE FOR AT LEAST 5D”
Y
The ANSI/ASHRAE Standard 15-1978 specifies that pressure relief valves on vessels containing Group 1 refrigerants (R-22) “shall discharge to the atmosphere at a location not less than 15 feet above the adjoining ground level and not less than 20 feet from any window, ventilation opening or exit in any building.” The piping must be provided with a rain cap at the outside terminating point and a drain at the low point on the vent piping to prevent water buildup on the atmospheric side
of the relief valve. In addition, a flexible pipe section should
be installed in the line to eliminate any piping stress on the relief valve(s).
Figure 9. Relief Valve Piping
rl
f“’”
I
‘EI %%’:,w%’on
I ;~;~ble to relief
~:
c:
‘;
c
66
3“
Wall
Rain Cap
“eeve&Vent
Pitch !O Outside OUTSIDE
[r
WALL
15 Ft. Min. Clearance To Ground
Level (See
Adjacent
Information)
RELIEF VALVE PIPING
The size of the discharge pipe from the pressure relief valve shall not be less than the size of the pressure relief outlet. When two or more vessels are piped together, the common header and piping to the atmosphere shall not be less than
the sum of the area of the relief valve outlets connected to the header. Fittings should be provided to permit vent piping to be easily disconnected for inspection or replacement of the
relief valve.
Note: Provide adequate fittings in piping to permit repair or
replacement of relief valve.
Refrigerant Condenser
[1
/
3/8” N.P.T
Inlet
RELIEF VALVE (SET AT 450 PSI)
Outlet
IM 377 / Page 13
Figure 10. THR-040D thru 11 OD, 2-pass parallel.
‘i- I ‘-w:’”’
29 ~
DIMENSIONAL DATA
L—
I %4 MOUI{TIIIG HOLES -1 k7vz
7,,8 DIA
b IEVLP03LTOR
w,i TER !PILET)
~ fl:~CTATOR
f
. . .
—90 7/8
– POWER
I 1
k“
A [EVAPORATOR
4
--F
wIRING CONNECTION
I?; OUIRED FOR TUBE REMO$IAL EITHER END
!
u
I
I
WATER OUTLET)
de
h
Table 11. THR-040D thru 11 OD, 2-pass parallel.
THR
MODEL
N&
O@
0500
060D 070D 0s00 OSOD 100D
11OD
Ficrure 11. THR-120D thru 170D, 2-pass parallel.
Recommended
t-36”–
lFOr ‘“W’””’
“D” Evaporator _
Water Corm
MAX. OVERALL
DIMENSIONS
L
125% 34
125%
125?4 34 125% 34 125% 34 127 127
127
34” ~46°
\
w
34
34 65?4 34 34
EVAP. WATER CONN.
A
H
621/4 23h 621/4 633~ 633A 633A
661/4 661/4
IClearance”
23A 31/2 31/2 31/2
31/2
51/2 51/2
H
(VIcTAULtC)
c
23% 23~8 24V8 24T/o 24VB
261/2
271~ 271~
1] Door SwIna
e
r
‘f
P“ Victaul,c
Top Outlet
Bottom Inlet
---E
CONDENSER WATER
CONNECTIONS (VICTAULlc) ~
D
4 4
E “F
65/8 65A 65/8
5
65/8
5
6%
5
71/2
5
71/2
6
71/2
6
Q&31fl,.--j
\
11~* 11~8 lly~ llye lly* 131A 131/s 13%
x-Ae
J
Q
11~/2
17%
111/2
171h
I I 1/2
171~
111/2
171/E
I I 1/2
171/E 161/4
12y8
161/4
12y8
161/4
123/8
~ Ind(cator L,ghts
/
. . . . . . . . .
~ u:
P
283/3 561/k
3
28% 58%
3
28% 59% 43
3
26~8 59% 43
3
28% 59% 43
3
293A 61 1/>
4
29% 62%
4
29% 62%
4
1517A ~’’””l
D
Power Wlrlng ConnectIons
CENTER, OFWWWTY
“x
4278 23 42~8 23
431/2
4378 28 433~
y ‘ “z
251/3 251A 25% 27V8 13
28
i
\
13 13
123A 123~ 123A
I 25h 125/8
Requ,red For
ube Removal
E,ther End
I
I
t
L..
27A -
Tabie 12. THR-120D thru 170D, 2-pass parallel.
34 77 34 34 34 77
77 77
160D
160D 170D
Page 14 I IM 377
1517* 1517~ 151y~ 151T/~
EVAP. WATER CONN.
3131A
51/2
51/2 51/2
51/2
3131/4 3131/4
301/4
6
6 6
6
Evaporator
‘AL
Water Inlet
1
I
CONDENSER WATER
131/Is
77A 6
131/16
7~16
13~h6
7~16
131/Is
7YIS
109A6
109/16
10%6
10%6
@
167/,s 4 167/,6 4 167/,6 4 167/,,3 4
~ A fi::~:;e,
163/4
l-/-
CENTER OF
@liWITY .’
,
P x y z
293~ 293A 293~ 293A
561/3 56%
561/2
561/4
32V8 32%
331/4
337/2
131/2 131/2
13ye
13y8
Figure 12. THR-040D thru 110D, 4-paas parallel.
36­RECOMMENDED FOR SERVICING
D
EVAPORATOR WATER CONNECTION
1
\
SI 1111/ II (iTls”s’DE1
I
&3’1
L–
1.
-1
2 3/4 -
MAX. OVERALL
DIMENSIONS
L
124% I 34 124% I 34 124% ] 34
124%4 124% 34 125% 34 125% 34 125% 34
MO UN T:NG HOLES
Table 13. THR-040D thru 110D, 4-pass parallel.
,THR
k
. . .
T- l\L
29+
r
?49
w
34
H
621A 621/4
I
633A 31/2
&j3~
633A 65%
661/4
661/4 51/2
F
II
E
BOTTOM
‘.
...-
EVAP. WATER CONN.
(WCTAULIC)
A
23A 23~
31/2 31/2 31/2 51/2
c D
23Y8 4 23% 24~B
24~a 24Y8
261/2 271~
271~
TO. Ou
P
‘LET
INLET
4 7%
4
5 72/~ 5 5 8 6 6 8
I
irD=r
1
E F
73/4
I
73/3
778 11~~
8
. . .
nn
=lnrz
IIL‘i%
r
CONDENSER WATER
CONNECTIONS (VICTAULIC)
111/s
111A
111/s
111A
I 21/2 gl~ 121/2
121/2 914
ka
— 4 UOUNT’NG HOLLS J~
7/8 31A
1-1
r---
—Y<e
G
81/4 61A 61/4
al~
81/4
91/4
/
—90 7/8
J
1578 157/, 157/8 157/8
157/8 1478 3 14y8 3
14T/~ 3
I
EVLDORb TOP 4-’
CO I:DF!SEP
I I
P
21/2
271/2
21/2
271/2
21/2
271/2
21/2 271/2
21/2
271/, 281/2 281/2 281/2
-/
T-l n r
LJ[. ”-
<oUT.
,1
--ill
--/
t-
CENTER OF
y
2514 251k 251~ 27Ye 13
26
581~
42S~ 23
581~
425~ 23 59y* 43 595A 43 59y* 43
61 1/2 431/2 621A
437/, 28
433A
621A
x
-P OWFI? WIRING c01it4Fc Tlotl
1)
c’
b7
GRAV!W.
!3
,..’;J;:F
13 13
lz3~ 123A
123~
123/8 125h
1
,’::
Figure 13. THR-120Dthru 170 D,4-passparalleI.
46,,
Door SW,ng
i
Clearance
D,, Evaporamr
walercm”
:@
T
Y
I
,
Control Con. % Knockout ,7
I
I
I
L
lanleter
Holes
l-z+
Table 14. THR-120D thru 170D, 4-pass parallel,
THR
>
MODEL
NO. 1201J 15u12 1300
!
140D
D
wor 160D
170D
MAXIMUM OVERALL
I
DIMENSIONS
L w H A c o
# .. -.,.
150Yz I
!
1501/2]~
1
1501/z I 34
I
i501/z I
I
1501/2 34
34
!
I
34
I
34
34
EVAP. WATER CONN.
1 I
51/2
77
I
51/2 3131,4
77
51/2
77
51/2
77
51/2 301~
77
I
5 1/,
77
----- ,.w
P Vlcla”l,c ToDOu!lel ­Bottom Inlet
(VICTAULIC)
30 1/4
I
3r31A
3(31/4
q(l
1/”
I
150%
Ind,cator L,ghls
. . . . . .
I
\
I +1 4“-—.-~
I- T+... __
1
‘AL
Evaporator Wz!er Inlet
11413/,, –-
0
CONDENSER WATER
CONNECTIONS (WCTAULIC
F F n .1
1 I !
127A6
8
I
8 12fi6
127A6
8
8 127/4~
8 127/, ~
8I127/,6
71/2
151/& I
71/2
151/s
71/2
151~
71/2
151A
77/2
151/s
71/2
151/s
I
I
I I
$ 1
I I
h!:.m
3
203/,
3
205A
3 203/~
3
203/8
!
3
2os~
1
557/*
561A 32VB 56~B
561/2
I
561/4 331/2
1
I
I R
1
I
m
6
I
6 6
6
6
!
I
–~ 120 -
Req., red For
“be Remov:
.p.aporatm
~
--4
325h
32V8
331~
Erlher End
waler
I
1
131/2 131/2
133h
133/4
I I
(
k16,4-–
CENTER OF ..+ “]
35,%
outlet
31/2
I
I
I
IM 377 I Page 15
Figure 14. THR-040Dthru 11OD, 8-pass series/parallel.
L7/yiiR$’:LEs,o,/
‘“”NT’NGH”LESJ++] ‘-,,,,:
Lz4e
Table 15. THR-040Dthru 11OD, 8-pass series/parallel.
.-rrn
7 !/2
4
A (EVAPORATOR
J~
—T
e
WATER OUTLETI
Fiaure15. THR-120Dthru 170 D,8-pass series/parallel.
_
l==
1
Q~,-
Door Sw,ng Clearance
- 3%
~
Control Con. ~%,,Knockout
/
1
p,, V,claullc
77
Too Outlet
BotlomInlet
*36+ _. 3-- Recommended
For Sermng
,,D ~
Waler
I
Lz -/
L
T Ind!calor L,ahts
I V’”””””:, I
3 D
Power W,r(ng Connections ~
Evaporator
‘AL
Waler Inlet
‘1
~o,A+ --
L——- x –– ---J
114>%-
0
L6:~fi~r~fi”
120--+
Mequired For
Tube Flemoval
E(lher End
Page 16 / IM 377
PHYSICAL DATA
Table 17. THR-040D thru 11 OD
~ UNIT SIZE
Nominal Horsepower Number Speed RPM (60 Hz/50 No. of Cylindera Oil Charge (Oz.) Discharge Line Size (In.)
Number 2 2 2 Diameter (In,) Tube Length (In.) 96 I 96 Design W.P, (PSIG):
Refrigerant Side Water Side
I Rc,l,.nfl=, ore
Purge Valve Flare Liquid Subcooler
No. Water Passes Pump-Out Capacity 0
I
Connections:
Water inlet&Outlet (Victaulic)l 2V2
P
No. Water Passes
Pump-Out Capacity @
I
Connections:
Water Inlet & Outlet (Victaulic)
Water Passes@
No.
Pump-Out Capacity 0 130
Hz) _
I
20 ] 25
1],
040D
0500
25 I 25 30 35 35 35
1 1
1750/1 450 1750/1 450 1750/ 1450
4
I 4
136 136 136 I 1:
I
11A 11/2
8Y8 85/8 8%
4 4 4 6 6
36
11A 1ye 1yo
11A
85/8 878
96 I 96 96 [ 96 96 I 96
450 450
I
I
250
1/,
Y4 & ~/2
I
I
250
1/..
1/4 & J/2
Integral Integral Integral Integral Integral
2 I 2 I 2 12 I 2 / 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 12 I 2 I .2
I
130 130
I I
41414 41414/4 4 14 I 4 14 14 I 4 I 4 14 I 4
I
130
I
2V2
4 4
130
130 125
21/2 21/2 21/2 21/2 21/2
130 130
21/2 27/2
130
21/2
4 4 14 14 14 I 4 I 4 14 I 4 I 4 14 I 4
130 130
130
060D
070D
080D
G60D
I
1OOD
I
cOMPRESSORS
40 40 50 50 50
1 1 1
152 160
1750/ 1450
160 160
1% 1ye
1 1 1 1
1
1750 II 450
6 6 6 8 8 8
242
1ye
1750/ 1450 1750/
242
260
260 260
1% 1yeI1ye 1ye 1yeI1ye
1
CONDENSERS
2 2
85~ 6Y8 85/, 85/3 85A
96 ] 96 96 ] 96 96 I 96
450 450 450 450 450 450 250 250 250
1/,
I
I
J14 & V2
I v?
~/4 & ~/2
I
I v, I v? I
Y4 & J/2
I
2.PASS ARRANGEMENT
125 116 116
21/2 21/2
109 199 199
109
21/21 3 I 3 I 3 I 3
21/2
4-PASSARRANGEMENT
125 125 116 116 109
21/2 21/2 21/2
21/2
109 199
21/2 21/2 I 3 I 3
2 2 2
103A 103/4
103A
250
I
250 I 250
I
Y4 & ~/2
Integral
!
7/4 & 3/2
Integral
188
199 166
313/3 3
8-PASSARRANGEMENT
125 125 116 116 109 109
199 199 166 188 166 188
1100
I
60 60 I 60
1 1 1
1750/1 450
1450
8 618
260 260
lf33~
v, I v? I
166 168
186
103A 103~
96 ! 96
J/a & 7/2
1
Integral
3 3
188 188
4
260
15h
I
186
4
I
Water inlet&Outlet (Victaulic) I 2 21212121212 121212
EVAPORATOR
Refrigerant Circuits
No.
Diameter (In.) Tube Length (In.) Water Volume (Gallons)
Refrigerant Side D.W.P. (PSIG) Water Side D.W.P. (PSIG) Water Connections:
Inlet & Outlet (NPT EXT.) Drain & Vent (NPT INT.)
2 2 2
103,4
lo3~
lz3~
96 96 96
20.6 17.9 26.0 225
225
225
175 175 175
4
%
4
=/8
5 5 5
%
DlMENSIONS– 2-PASS
Length (In,)
Width (In,)
Height (In.)
3/i
125
125%
34 34 34
&J1/4 &.1/4 ss3~
125?4
DlMENSiONS– 4-PASS
Length (In,) Width (In,) Height (In.)
124%
34
szl/4
124?4
34
Gzl/4
124%
34
Gs3~
DIMENSIONS– 6-PASS
Length (In.) Wdth (In,) Height (In,)
1167/s 116VS
34 34 34 621/4 621/4
1167/s 1167/s
Gs3~
WEIGHTS—2-& 4-PASS
Operating Weight (Lbs.) Shipping Weight (Lbs.) Operating Charge Lbs. R-22
&
Operating Weight (Lbs.)
I
Shipping Weight (Lbs.) Operating Charge Lbs. R-22
NOTES: @ 60Vo Full refrigerant at90° F. @ 8-Pass Series/Parallel Arrangement.
3655 3705
I
3655
I
40 I 50 I 50 I 50 150 160 I 60 I 60
3635 3665
I
3635 3695 3895
I
3735
40 I 50 I 50 ] 50 I 50 I 60 I 60 I 60
3995 4065 4240 3935
WEIGHTS-8-PASS
3955
21/2 21/2 21/2 21/2 21/2I21/2
2 2
1 z3~
lZ3~
2 2
1 z3~
96 96 96 96
25,6 24.3 24.3 30.5
225
225
175 175
225 225
175
5 6 6
3/8 % =/8 %
125% 125%
34 34
6? 3/4
633A
12434 124%
34
&,3~
34 34 34
Gs3~
1167/8
127 127
34
655A
125% 125%
65%
117% 1171~
34 34 34 34
Gs3~ ss3~
655/3
4675
4025 4185
4690
65 I 65 I 70 I 70 [ 60 I 60 I 60 I 60
4045
4200
3965 4045
4715 4630
5255 5115
65 I 65 70 I 70 60 I 80
14
175
34
~~l/d
sG1/4
GG1/4
5315 5175
2
14
96
27.6 225
175
%
127
34
fjfjlfi
125?4
34
&jl/4
117%
34
GG1/4
5465 5325
5405 5265
60 I 80
Table 18. WHR-120D thru 170D.
UNIT SIZE
120D
1
130D 140D
COMPRESSORS
Nominal Horsepower Number Speed RPM (60 Hz/50 Hz) No. of Cylinders Oil Charge (Oz.) Discharge Line Size (In.)
Number Diameter (In,)
Tube Length (In.)
Design W.P, (PSIG):
Refrigerant Side
Water Side Relief Flare Purge Valve Flare Liquid Subcooler Integral
No. Water Passes PumpOut Capacity 0 Connections:
Water Inlet & Outlet (Victaulic)
No. Water Passes Pump-Out Capacity @ I 250.0
I
Connections:
Water Inlet & Outlet (Victaulic)
160/1 36 160/136 160/1 36 160/1 60 160/1 60
I
I
I
35/25 35/25 35/25
2 2 2 2
1750/ 1450
6/4 6/4 614
1%111A 1y*ll 1/3 12/8/11A
2 2
103~ liJ3~ lrJ3~ 1133~
120 120 120
450 450 450 250 250 250
% 5/8
V4 & V2
2 2 2
250.0 250.0
4 4 4
4 4 4
3 3 3
2-PASS ARRAN QEMENT
238.6 238.6 238.6 236.6
4-PASS ARRANGEMENT
250,0 238,6
35135 35135 35/35 35/35 35/40
2 2
1750/1 450
6/6
1yJl 1A
CONDENSERS
120 120
V4 & V2 V4 & V2
Integral
2 2
4 4 4
4 4 4 4 4
238,6 236,6 236.
3 3 3 3 3 3
1750/ 1450 1750/ 1450
6/6 6/6 6/6 6/6 6/6
160/1 60 160/160 160/242
1%/1 ye
13/Jl Ya
2
1034 103~ f 03~ I03/4
1133~
I
120 120 120
5/8
Integral Integral Integral
2 2 2 2
6 219.2 219.2
S-PASS ARRANGEMENT
No. Water Passes@ PumpOut Capacity @ 250.0 250.0 Connections:
Water Inlet & Outlet (Victaulic)
No. Refrigerant Circuits Diameter (In,) Tube Length (In.) Water Volume (Gallons) 38.2 36.1 36.1 Refrigerant Side D.W.P. (PSIG) Water Side D.W.P. (PSIG) Water Connections:
Inlet & Outlet (NPT EXT.) 6 6 6 Drain & Vent (NPT INT.)
Length (In.) Width (In,) Height (In.) 77 77
t nla*EM@lnNe
Length (In.)
Width (In,)
Mainht (In 1 77 77 77 77 77 77
,,“, =,!. ,, !!.,
4 4 4
I
21/2
2 2 2
14 14 14
120 120 120
225 225 225
175 175 175
% %
1517/~ 1517/8
I
34 34 34
I
150% t501/2 150Vz
34 34 34
,,
1
238.6 236.6 238.6 238.6 219.2
21/2 21/2
DIMENSIONS - 2-PASS
“,!wE,.e,”$.” — .rr””!
1
4 4 4
21/2 21/2
EVAPORATOR
,,
1
21/2
3/8
151y~ 1517/8
77
I
A-CI&~s
,,
DIMENSIONS - 8-PASS
Length (In.)
Width (In,) Height (In,)
142s%
I
34 34 34 77 77 77
I
14234
142% 142%
WEIGHTS -2 & 4 PASS
Operating Weight (Lbs.) Shipping Weight (Lbs.) 6160 6335
Operating Charge Lbs. R-22
6370 6525
100 100 105
110 110 110
6600 6940 7290
6410 6775 6990
WEIGHTS -6 PASS
Operating Weight (Lbs.) 6330 6485
Shipping Weight (Lbs.) 6140 6295
Operating Charge Lbs. R-22 100 100
NOTES: 0 60°/0 Full refrigerant at 90” F. @ 8 Pass Series/Parallel Arrangement.
105 110 110 110 115 115
6560 6900 7250 6380 6735 6950
150D 160D
35/40 35/40
2 2 2
1750/ 1450
160/242 160/242 242/242 242/242
1%11%
1%11%
I %1~%
2 2
120 120
450 450 450
250 250 250
=% %
X4 & Y2
219.2 219.2
4 4 4
4 4 4
219,2
Y4 & V2
219.2 219.2 219.2 219.2
4
219.2
219,2 219.2 219.2 219.2
21/2 21/2 .21/2
2 2
14
120 120
53.7 225 225 175 175
6
%
34 34 77 77
15ol/z
34 34
. .
1
34 34 77 77
115
115 120 120
16 16
45.1
6 6
Y8 %’s
I
1517/8
1507/2
. .
1
142?4
120 120 125 125
2 2 2
6/6 6/6 6/6
1%11ye 13/”11Vi 12/!!11ye
103~ 103/4
2 2 2
4 4 4
4 4 4
219.2 219.2
3 3 3
4 4 4
21/2 21/2 21/2
170D .
40/40 40/40
1750/1 450
120 120
7/4& V2
Integral
120
45.1 225 175
1517/~
34 77
150%’
34
.,
1
142%
34 77
7400
7100
125 125
7360 7060
2
103~
I
%
,.
219.2
2
.,
Page 18 I IM 377
Loading...
+ 39 hidden pages