Linear Technology LTC1709 Datasheet

LTC1709
2-Phase, 5-Bit Adjustable,
High Efficiency, Synchronous Step-Down
FEATURES
Two Ouput Stages Operate Antiphase Reducing Input Capacitance and Power Supply Noise
5-Bit VID Control (VRM 8.4 Compliant) V
: 1.3V to 3.5V in 50mV/100mV Steps
OUT
Current Mode Control Ensures Current Sharing
True Remote Sensing Differential Amplifier
OPTI-LOOPTM Compensation Minimizes C
Programmable Fixed Frequency: 150kHz to
OUT
300kHz—Effective 300kHz to 600kHz Switching Frequency
±
1% Output Voltage Accuracy
Wide VIN Range: 4V to 36V Operation
Adjustable Soft-Start Current Ramping
Internal Current Foldback
Short-Circuit Shutdown Timer with Defeat Option
Overvoltage Soft-Latch Eliminates Nuisance Trips
Low Shutdown Current: 20µA
Small 36-Lead Narrow (0.209") SSOP Package
U
APPLICATIO S
Desktop Computers
Internet/Network Servers
Large Memory Arrays
DC Power Distribution Systems
Battery Chargers
Switching Regulator
U
DESCRIPTIO
The LTC®1709 is a 2-phase, VID programmable, synchro­nous step-down switching regulator controller that drives all N-channel external power MOSFET stages in a fixed frequency architecture. The 2-phase controller drives its two output stages out of phase at frequencies up to 300kHz to minimize the RMS ripple currents in both input and output capacitors. The 2-phase technique effectively multiplies the fundamental frequency by two, improving transient response while operating each channel at a optimum frequency for efficiency. Thermal design is also simplified.
An internal differential amplifier provides true remote sensing of the regulated supply’s positive and negative output terminals as required in high current applications.
The RUN/SS pin provides soft-start and optional timed, short-circuit shutdown. Current foldback limits MOSFET dissipaton during short-circuit conditions when overcurrent latchoff is disabled. OPTI-LOOP compensation allows the transient response to be optimized for a wide range of output capacitors and ESR values.
, LTC and LT are registered trademarks of Linear Technology Corporation.
OPTI-LOOP is a trademark of Linear Technology Corporation.
TYPICAL APPLICATIO
S
0.1µF
V
IN
RUN/SS
1.2nF
15k
5 VID BITS
I
TH
SGND
VID0–VID4
EAIN FBOUT SENSEIN V
DIFFOUT
V
OS
+
V
OS
Q1–Q4 2× FAIRCHILD FDS7760A OR SILICONIX Si4874
TG1
SW1
BG1
PGND
TG2
SW2
BG2
S
S
+ –
S
S
S
CC
+ –
10µF
+
LTC1709
BOOST 1
SENSE1 SENSE1
BOOST2
INTV SENSE 2 SENSE 2
Figure 1. High Current 2-Phase Step-Down Converter
0.47µF
S
U
0.47µF
V
IN
+
5V TO 28V
V
OUT
1.3V TO 3.5V 40A
C
OUT
1000µF 4V ×2
1709 TA01
100
90
80
70
EFFICIENCY (%)
60
50
10µF ×4
Q1
Q2
Q3
Q4
35V
0.002
1µH
0.002
1µH
Efficiency Curve
515
10
0
LOAD CURRENTS (A)
VIN = 5V V f
25 45
30
20
= 1.6V
OUT
= 200kHz
S
35
40
1709 TA01a
1
LTC1709
WW
W
U
ABSOLUTE AXI U RATI GS
(Note 1)
Input Supply Voltage (VIN).........................36V to –0.3V
Topside Driver Voltages (BOOST 1, 2).......42V to –0.3V
Switch Voltage (SW1, 2) .............................36V to –5 V
SENSE 1+, SENSE 2+, SENSE 1–,
SENSE 2– Voltages....................... (1.1)INTVCC to –0.3V
EAIN, V AMPMD, V
VID0–VID4, Voltages ...................................7V to –0.3V
Boosted Driver Voltage (BOOST-SW) ..........7V to –0.3V
PLLFLTR, PLLIN, V
ITH Voltage................................................2.7V to –0.3V
Peak Output Current <1µs(TGL1, 2; BG1, 2).............. 3A
INTVCC RMS Output Current................................ 50mA
Operating Ambient Temperature Range
(Note 2) .................................................. – 40°C to 85°C
Junction Temperature (Note 3)............................. 125°C
Storage Temperature Range ................. –65°C to 150°C
Lead Temperature (Soldering, 10 sec)..................300°C
OS
+
, V
, EXTVCC, INTVCC, RUN/SS,
OS
, ATTENIN, ATTENOUT,
BIAS
DIFFOUT
Voltages .... INTVCC to –0.3V
UUW
PACKAGE/ORDER I FOR ATIO
RUNN/SS SENSE 1 SENSE 1
EAIN
PLLFLTR
PLLIN
SGND
V
DIFFOUT
VOS– V
OS
SENSE 2 SENSE 2
ATTENOUT
ATTENIN
VID0 VID1
TOP VIEW
1
+
2
3 4 5 6 7
NC
8
I
TH
9 10 11 12
+
13
+
14 15 16 17 18
G PACKAGE
36-LEAD PLASTIC SSOP
T
= 125°C, θJA = 85°C/W
JMAX
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19
NC TG1 SW1 BOOST 1 V
IN
BG1 EXTV
CC
INTV
CC
PGND BG2 BOOST 2 SW2 TG2 AMPMD V
BIAS
VID4 VID3 VID2
ORDER PART
NUMBER
LTC1709EG
Consult factory for Industrial and Military grade parts.
ELECTRICAL CHARACTERISTICS
temperature range, otherwise specifications are at T
The denotes the specifications which apply over the full operating
= 25°C. V
A
= 15V, V
IN
= 5V unless otherwise noted.
RUN/SS
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
Main Control Loop
V
EAIN
V
SENSEMAX
I
INEAIN
V
LOADREG
V
REFLNREG
V
OVL
Regulated Feedback Voltage (Note 4); ITH Voltage = 1.2V 0.792 0.800 0.808 V Maximum Current Sense Threshold V
= 5V 62 75 88 mV
SENSE
Feedback Current (Note 4) –5 –50 nA Output Voltage Load Regulation (Note 4)
Measured in Servo Loop; ∆I Measured in Servo Loop; I
Voltage: 1.2V to 0.7V 0.1 0.5 %
TH
Voltage: 1.2V to 2V –0.1 –0.5 %
TH
Reference Voltage Line Regulation VIN = 3.6V to 30V (Note 4) 0.002 0.02 %/V Output Overvoltage Threshold Measured at V
EAIN
0.84 0.86 0.88 V
UVLO Undervoltage Lockout VIN Ramping Down 3 3.5 4 V g
m
g
mOL
I
Q
I
RUN/SS
V
RUN/SS
Transconductance Amplifier g
m
ITH = 1.2V; Sink/Source 5µA; (Note 4) 3 mmho Transconductance Amplifier Gain ITH = 1.2V; (gmxZL; No Ext Load); (Note 4) 1.5 V/mV Input DC Supply Current (Note 5)
Normal Mode EXTV
Shutdown V Soft-Start Charge Current V RUN/SS Pin ON Arming V
Tied to V
CC
= 0V 20 40 µA
RUN/SS
= 1.9V –0.5 –1.2 µA
RUN/SS
Rising 1.0 1.5 1.9 V
RUN/SS
OUT
; V
= 5V 470 µA
OUT
2
LTC1709
ELECTRICAL CHARACTERISTICS
temperature range, otherwise specifications are at T
The denotes the specifications which apply over the full operating
= 25°C. V
A
= 15V, V
IN
= 5V unless otherwise noted.
RUN/SS
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
RUN/SSLO
I
SCL
I
SDLHO
I
SENSE
DF
MAX
RUN/SS Pin Latchoff Arming V RUN/SS Discharge Current Soft Short Condition V
Shutdown Latch Disable Current V Total Sense Pins Source Current Each Channel: V
Rising from 3V 4.1 4.5 V
RUN/SS
= 0.5V; 0.5 2 4 µA
= 4.5V
V
RUN/SS
= 0.5V 1.6 5 µA
EAIN
EAIN
SENSE1–, 2
– = V
SENSE1+, 2
+ = 0V –85 –60 µA
Maximum Duty Factor In Dropout 98 99.5 % Top Gate Transition Time: (Note 6)
TG1, 2 t TG1, 2 t
Rise Time C
r
Fall Time C
f
= 3300pF 30 90 ns
LOAD
= 3300pF 40 90 ns
LOAD
Bottom Gate Transition Time: (Note 6)
BG1, 2 t BG1, 2 t
TG/BG t
BG/TG t
t
ON(MIN)
Rise Time C
r
Fall Time C
f
Top Gate Off to Bottom Gate On Delay (Note 6)
1D
Synchronous Switch-On Delay Time C Bottom Gate Off to Top Gate On Delay (Note 6)
2D
Top Switch-On Delay Time C Minimum On-Time Tested with a Square Wave (Note 7) 180 200 ns
= 3300pF 30 90 ns
LOAD
= 3300pF 20 90 ns
LOAD
= 3300pF Each Driver 90 ns
LOAD
= 3300pF Each Driver 90 ns
LOAD
Internal VCC Regulator
V
INTVCC
V
LDO
V
LDO
V
EXTVCC
V
LDOHYS
Internal VCC Voltage 6V < VIN < 30V; V
INT INTVCC Load Regulation ICC = 0 to 20mA; V EXT EXTVCC Voltage Drop ICC = 20mA; V
EXTVCC
EXTVCC Switchover Voltage ICC = 20mA, EXTV EXTVCC Switchover Hysteresis ICC = 20mA, EXTV
= 4V 4.8 5.0 5.2 V
EXTVCC
= 4V 0.2 1.0 %
EXTVCC
= 5V 120 240 mV Ramping Positive 4.5 4.7 V
CC
Ramping Negative 0.2 V
CC
VID Parameters
R
ATTEN
Resistance Between ATTENIN and 20 k ATTENOUT Pins
ATTEN
R
PULLUP
VID
THLOW
VID
THHIGH
VID
LEAK
Resistive Divider Worst-Case Error Programmed from 1.3V to 2.05V (VID4 = 0) –0.25 +0.25 %
ERR
Programmed from 2.1V to 3.5V (VID4 = 1)
–0.35 +0.25 %
VID0–VID4 Pull-Up Resistance (Note 8) 40 k VID0–VID4 Logic Threshold Low 0.4 V VID0–VID4 Logic Threshold High 1.6 V VID0–VID4 Leakage V
< VID0–VID4 < 7V 1 µA
BIAS
Oscillator and Phase-Locked Loop
f
NOM
f
LOW
f
HIGH
R
PLLIN
I
PLLFLTR
R
RELPHS
Nominal Frequency V Lowest Frequency V Highest Frequency V
= 1.2V 190 220 250 kHz
PLLFLTR
= 0V 120 140 160 kHz
PLLFLTR
2.4V 280 310 360 kHz
PLLFLTR
PLLIN Input Resistance 50 k Phase Detector Output Current
Sinking Capability f
Sourcing Capability f
PLLIN PLLIN
< f > f
OSC OSC
–15 µA 15 µA
Controller 2-Controller 1 Phase 180 Deg
Differential Amplifier/Op Amp Gain Block (Note 9)
A
DA
CMRR
Gain Differential Amp Mode 0.995 1 1.005 V/V Common Mode Rejection Ratio Differential Amp Mode; 0V < VCM < 5V 46 55 dB
DA
3
LTC1709
ELECTRICAL CHARACTERISTICS
temperature range, otherwise specifications are at T
The denotes the specifications which apply over the full operating
= 25°C. V
A
= 15V, V
IN
= 5V unless otherwise noted.
RUN/SS
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
R
IN
V
OS
I
B
A
OL
V
CM
CMRR PSRR I
CL
V
O(MAX)
GBW Gain-Bandwidth Product Op Amp Mode; I
Input Resistance Differential Amp Mode; Measured at VOS+ Input 80 k Input Offset Voltage Op Amp Mode; VCM = 2.5V; V
I
= 1mA
DIFFOUT
= 5V; 6 mV
DIFFOUT
Input Bias Current Op Amp Mode 30 200 nA Open Loop DC Gain Op Amp Mode; 0.7V ≤ V
< 10V 5000 V/mV
DIFFOUT
Common Mode Input Voltage Range Op Amp Mode 0 3 V Common Mode Rejection Ratio Op Amp Mode; 0V < VCM < 3V 70 90 dB
OA
Power Supply Rejection Ratio Op Amp Mode; 6V < VIN < 30V 70 90 dB
OA
Maximum Output Current Op Amp Mode; V Maximum Output Voltage Op Amp Mode; I
= 0V 10 35 mA
DIFFOUT
= 1mA 10 11 V
DIFFOUT
= 1mA 2 MHz
DIFFOUT
SR Slew Rate Op Amp Mode; RL = 2k 5 V/µs Note 1: Absolute Maximum Ratings are those values beyond which the
life of a device may be impaired. Note 2: The LTC1709EG is guaranteed to meet performance specifications
from 0°C to 70°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.
Note 3: TJ is calculated from the ambient temperature TA and power dissipation P
according to the following formulas:
D
LTC1709EG: TJ = TA + (PD • 85°C/W) Note 4: The LTC1709 is tested in a feedback loop that servos V
specified voltage and measures the resultant V
EAIN
.
ITH
to a
Note 5: Dynamic supply current is higher due to the gate charge being
Note 6: Rise and fall times are measured using 10% and 90% levels. Delay
times are measured using 50% levels. Note 7: The minimum on-time condition corresponds to the on inductor
peak-to-peak ripple current 40% I
(see Minimum On-Time
MAX
Considerations in the Applications Information section). Note 8: Each built-in pull-up resistor attached to the VID inputs also has a
series diode to allow input voltages higher than the VIDV
supply without
CC
damage or clamping (see the Applications Information section). Note 9: When the AMPMD pin is high, the IC pins are connected directly to
the internal op amp inputs. When the AMPMD pin is low, internal MOSFET switches connect four 40k resistors around the op amp to create a standard unity-gain differential amp.
delivered at the switching frequency. See Applications Information.
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Efficiency vs Output Current (Figure 12)
100
80
60
40
EFFICIENCY (%)
20
0
0.1 1 10 100
VIN = 5V VIN = 8V VIN = 12V VIN = 20V
V V f = 200kHz
OUTPUT CURRENT (A)
OUT EXTVCC
= 2V
= 0V
1709 G01
Efficiency vs Output Current (Figure 12)
100
V
= 2V
OUT
= 12V
V
IN
f = 200kHz
80
60
40
EFFICIENCY (%)
20
0
0.1
INTERNAL LDO VS EXTERNALLY APPLIED 5V OVERALL EFFICIENCY (FIGURE 12)
V
EXTVCC
V
EXTVCC
1 10 100
OUTPUT CURRENT (A)
= 5V = 0V
4
1709 G02
Efficiency vs Input Voltage (Figure 12)
100
V
= 3.3V
OUT
= 5V
V
EXTVCC
= 20A
I
OUT
90
EFFICIENCY (%)
80
70
5
10 15 20
VIN (V)
1709 G03
UW
TEMPERATURE (°C)
–50
INTV
CC
AND EXTV
CC
SWITCH VOLTAGE (V)
4.95
5.00
5.05
25 75
1709 G06
4.90
4.85
–25 0
50 100 125
4.80
4.70
4.75
INTVCC VOLTAGE
EXTVCC SWITCHOVER THRESHOLD
TYPICAL PERFOR A CE CHARACTERISTICS
LTC1709
Supply Current vs Input Voltage and Mode EXTVCC Voltage Drop
1000
800
600
400
SUPPLY CURRENT (µA)
200
0
05
ON
SHUTDOWN
15
10
INPUT VOLTAGE (V)
20
25
30
35
1709 G04
250
200
150
100
VOLTAGE DROP (mV)
CC
EXTV
50
0
10
0
Maximum Current Sense Threshold
Internal 5V LDO Line Reg
5.1 I
= 1mA
LOAD
5.0
4.9
4.8
VOLTAGE (V)
4.7
CC
INTV
4.6
4.5
4.4
0
510
15 25
INPUT VOLTAGE (V)
20 30 35
1709 G07
vs Duty Factor
75
50
(mV)
SENSE
V
25
0
0
20 40 60 80
30
20
CURRENT (mA)
DUTY FACTOR (%)
INTVCC and EXTVCC Switch Voltage vs Temperature
40
50
1709 G05
Maximum Current Sense Threshold vs Percent of Nominal Output Voltage (Foldback)
80
70
60
50
(mV)
40
SENSE
V
30
20
10
100
1709 G08
0
0
PERCENT ON NOMINAL OUTPUT VOLTAGE (%)
25
50
75
100
1709 G09
80
60
(mV)
40
SENSE
V
20
0
Maximum Current Sense Threshold vs V
V
SENSE(CM)
0
(Soft-Start)
RUN/SS
= 1.6V
1234
V
(V)
RUN/SS
56
1709 G10
Maximum Current Sense Threshold vs Sense Common Mode Voltage
80
76
72
(mV)
SENSE
68
V
64
60
1
0
COMMON MODE VOLTAGE (V)
3
2
Current Sense Threshold vs ITH Voltage
90 80 70 60 50 40
(mV)
30 20
SENSE
V
10
0 –10 –20
4
1709 G11
–30
5
0.5
0
1.5
2
1
V
(V)
ITH
2.5
1709 G12
5
LTC1709
TEMPERATURE (°C)
–50 –25
0
EXTV
CC
SWITCH RESISTANCE ()
4
10
0
50
75
1709 G22
2
8
6
25
100
125
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Load Regulation V
0.0
–0.1
(%)
OUT
–0.2
NORMALIZED V
–0.3
–0.4
0
1
2
LOAD CURRENT (A)
FCB = 0V V
= 15V
IN
FIGURE 1
3
4
5
1709 G13
Maximum Current Sense Threshold vs Temperature
80
78
76
(mV)
SENSE
74
V
72
70
–50 –25
50
25
0
TEMPERATURE (°C)
75
100
125
1709 G17
vs V
ITH
RUN/SS
2.5 V
= 0.7V
OSENSE
2.0
1.5
(V)
ITH
V
1.0
0.5
0
0
234
1
V
RUN/SS
(V)
RUN/SS Current vs Temperature
1.8
1.6
1.4
1.2
1.0
0.8
0.6
RUN/SS CURRENT (µA)
0.4
0.2
0
–50 –25
0 25 125
TEMPERATURE (°C)
56
75 10050
1709 G14
1709 G18
SENSE Pins Total Source Current
100
50
(µA)
0
SENSE
I
–50
–100
0
24
V
COMMON MODE VOLTAGE (V)
SENSE
Soft-Start Up (Figure 12)
V
ITH
1V/DIV
V
OUT
2V/DIV
V
RUNSS
2V/DIV
100ms/DIV
6
1709 G15
1629 G19
V
OUT
50mV/DIV
I
OUT
10A/DIV
6
Load Step Response Using Active Voltage Positioning (Figure 12)
20A
0A
20µs/DIV
1709 G20
Current Sense Pin Input Current vs Temperature
35
EXTVCC = 5V
33
31
29
27
CURRENT SENSE INPUT CURRENT (µA)
25
–50 –25
0
TEMPERATURE (°C)
50
25
EXTVCC Switch Resistance vs Temperature
100
125
1709 G21
75
UW
TYPICAL PERFOR A CE CHARACTERISTICS
LTC1709
Oscillator Frequency vs Temperature
350
300
250
200
150
FREQUENCY (kHz)
100
50
0
–50
–25 0
V
= 5V
FREQSET
V
= OPEN
FREQSET
V
= 0V
FREQSET
50 100 125
25 75
TEMPERATURE (°C)
1709 G23
Undervoltage Lockout vs Temperature
3.50
3.45
3.40
3.35
3.30
UNDERVOLTAGE LOCKOUT (V)
3.25
3.20 –50
–25 0
TEMPERATURE (°C)
UUU
PI FU CTIO S
RUN/SS (Pin 1): Combination of Soft-Start, Run Control Input and Short-Circuit Detection Timer. A capacitor to ground at this pin sets the ramp time to full current output. Forcing this pin below 0.8V causes the IC to shut down all internal circuitry. All functions are disabled in shutdown.
SENSE 1+, SENSE 2+ (Pins 2,14): The (+) Input to Each Differential Current Comparator. The ITH pin voltage and built-in offsets between SENSE– and SENSE+ pins in conjunction with R
SENSE 1–, SENSE 2– (Pins 3, 13): The (–) Input to the Differential Current Comparators.
EAIN (Pin 4): Input to the Error Amplifier that compares the feedback voltage to the internal 0.8V reference voltage. This pin is normally connected to a resistive divider from the output of the differential amplifier (DIFFOUT).
PLLFLTR (Pin 5): The Phase-Locked Loop’s Low Pass Filter is tied to this pin. Alternatively, this pin can be driven with an AC or DC voltage source to vary the frequency of the internal oscillator.
PLLIN (Pin 6): External Synchronization Input to Phase Detector. This pin is internally terminated to SGND with 50k. The phase-locked loop will force the rising top gate signal of controller 1 to be synchronized with the rising edge of the PLLIN signal.
set the current trip threshold.
SENSE
V
Shutdown Latch
RUN/SS
Thresholds vs Temperature
4.5
LATCH ARMING
LATCHOFF
THRESHOLD
0 25 125
TEMPERATURE (°C)
75 10050
1709 G25
50 100 125
25 75
1709 G24
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
SHUTDOWN LATCH THRESHOLDS (V)
0
–50 –25
NC (Pins 7, 36): Do not connect.
ITH (Pin 8): Error Amplifier Output and Switching Regula-
tor Compensation Point. Both current comparator’s thresh­olds increase with this control voltage. The normal voltage range of this pin is from 0V to 2.4V
SGND (Pin 9): Signal Ground, common to both control­lers. Route separately to the PGND pin.
V
DIFFOUT
(Pin 10): Output of a Differential Amplifier that
provides true remote output voltage sensing. This pin normally drives an external resistive divider that sets the output voltage.
V
OS
+
, V
(Pins 11, 12): Inputs to an Operational Ampli-
OS
fier. Internal precision resistors capable of being elec­tronically switched in or out can configure it as a differen­tial amplifier or an uncommitted Op Amp.
ATTENOUT (Pin 15): Voltage Feedback Signal Resistively Divided According to the VID Programming Code.
ATTENIN (Pin 16): The Input to the VID Controlled Resis­tive Divider.
VID0–VID4 (Pins 17,18, 19, 20, 21): VID Control Logic Input Pins.
V
(Pin 22): Supply Pin for the VID Control Circuit.
BIAS
7
LTC1709
PI FU CTIO S
UUU
AMPMD (Pin 23): This Logic Input pin controls the connections of internal precision resistors that configure the operational amplifier as a unity-gain differential amplifier.
TG2, TG1 (Pins 24, 35): High Current Gate Drives for Top N-Channel MOSFETS. These are the outputs of floating drivers with a voltage swing equal to INTVCC superim­posed on the switch node voltage SW.
SW2, SW1 (Pins 25, 34): Switch Node Connections to Inductors. Voltage swing at these pins is from a Schottky diode (external) voltage drop below ground to VIN.
BOOST 2, BOOST 1 (Pins 26, 33): Bootstrapped Supplies to the Topside Floating Drivers. External capacitors are connected between the Boost and Switch pins, and Schottky diodes are connected between the Boost and INTVCC pins.
BG2, BG1 (Pins 27, 31): High Current Gate Drives for Bottom N-Channel MOSFETS. Voltage swing at these pins is from ground to INTVCC.
PGND (Pin 28): Driver Power Ground, connect to sources of bottom N-channel MOSFETS and the (–) terminals of CIN.
INTVCC (Pin 29): Output of the Internal 5V Linear Low Dropout Regulator and the EXTVCC Switch. The driver and control circuits are powered from this voltage source.
Decouple to power ground with a 1µF ceramic capacitor placed directly adjacent to the IC and minimum of 4.7µF additional tantalum or other low ESR capacitor.
EXTVCC (Pin 30): External Power Input to an Internal Switch . This switch closes and supplies INTV ing the internal low dropout regulator whenever EXTVCC is higher than 4.7V. See EXTVCC Connection in the Applica­tions Information section. Do not exceed 7V on this pin and ensure V
VIN (Pin 32): Main Supply Pin. Should be closely decoupled to the IC’s signal ground pin.
EXTVCC
VIN.
bypass-
CC,
8
LTC1709
UU
W
FU CTIO AL DIAGRA
PLLIN
F
IN
R
LP
C
LP
PLLFLTR
V
OS
V
OS
AMPMD
DIFFOUT
V
IN
V
IN
EXTV
INTV
5V
+
SGND
PHASE DET
50k
0.8V
+ –
CLK1 CLK2
TO
SECOND
CHANNEL
A1
– +
V
REF
5V LDO REG
INTERNAL
SUPPLY
OSCILLATOR
+
0V POSITION
4.7V
CC
CC
DUPLICATE FOR SECOND CHANNEL
V
IN
1.2µA
6V
4(VFB)
I1
SLOPE
COMP
SRQ
INTV
BOOST
INTV
CC
30k
30k
CC
TG
SW
BG
PGND*
SENSE
SENSE
EAIN
I
TH
RUN/SS
+
R
SENSE
C
C
DROP
OUT DET
BOT
FORCE BOT
Q
SHDN
+
+
45k
SHDN
RST
4(VFB)
45k
2.4V
RUN
SOFT-
START
EA
OV
SWITCH
LOGIC
+
+
TOP
BOT
INTV
V
FB
0.80V
0.86V
V
CC
IN
D
B
C
B
L
+
C
IN
C
OUT
+
V
OUT
R
C
ATTENIN
ATTENOUT
R2
20k
R1 R1 VARIABLE
5-BIT VID DECODER
VID0 VID1 VID2 VID4
VID3
TYPICAL ALL VID PINS
40k
C
SS
V
BIAS
1709 FBD
9
Loading...
+ 19 hidden pages