Lincoln Electric R350 User Manual

IM10083
RETURN TO MAIN MENU
POWER WAVE R350
For use with machines having Code Numbers:
Safety Depends on You
OPERATE OR REPAIR THIS EQUIPMENT WITHOUT READ­ING THIS MANUAL AND THE SAFETY PRECAUTIONS CON­TAINED THROUGHOUT. And,
most importantly, think before you act and be careful.
11745
®
October, 2010
Cleveland, Ohio 44117-1199 U.S.A. TEL: 216.481.8100 FAX: 216.486.1751 WEB SITE: www.lincolnelectric.com
OPERATORʼS MANUAL
Copyright © Lincoln Global Inc.
• World's Leader in Welding and Cutting Products •
• Sales and Service through Subsidiaries and Distributors Worldwide •
i
SAFETY
i
WARNING
CALIFORNIA PROPOSITION 65 WARNINGS
Diesel engine exhaust and some of its constituents are known to the State of California to cause can­cer, birth defects, and other reproductive harm.
The Above For Diesel Engines
ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.
Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box 351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.
BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.
The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.
The Above For Gasoline Engines
FOR ENGINE powered equipment.
1.a. Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.
____________________________________________________
1.b. Operate engines in open, well-ventilated areas or vent the engine exhaust fumes outdoors.
____________________________________________________
1.c. Do not add the fuel near an open flame welding arc or when the engine is running. Stop the engine and allow it to cool before refueling to prevent spilled fuel from vaporiz­ing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes have been eliminated.
____________________________________________________
1.d. Keep all equipment safety guards, covers and devices in position and in good repair.Keep hands, hair, clothing and tools away from V-belts, gears, fans and all other moving parts when starting, operating or repairing equipment.
____________________________________________________
1.e. In some cases it may be necessary to remove safety
guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.
___________________________________________________
1.f. Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle control rods while the engine is running.
1.h. To avoid scalding, do not remove the radiator pressure cap when the engine is hot.
ELECTRIC AND MAGNETIC FIELDS may be dangerous
2.a. Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines
2.b. EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.
2.c. Exposure to EMF fields in welding may have other health effects which are now not known.
2.d. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:
2.d.1.
Route the electrode and work cables together - Secure them with tape when possible.
2.d.2. Never coil the electrode lead around your body.
2.d.3. Do not place your body between the electrode and
work cables. If the electrode cable is on your right side, the work cable should also be on your right side.
___________________________________________________
1.g. To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.
2.d.4. Connect the work cable to the workpiece as close as possible to the area being welded.
2.d.5. Do not work next to welding power source.
ii
SAFETY
ii
ELECTRIC SHOCK can kill.
3.a. The electrode and work (or ground) circuits are electrically “hot” when the welder is on. Do not touch these “hot” parts with your bare skin or wet clothing. Wear dry, hole-free
gloves to insulate hands.
3.b. Insulate yourself from work and ground using dry insulation. Make certain the insulation is large enough to cover your full area of physical contact with work and ground.
In addition to the normal safety precautions, if welding must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:
• Semiautomatic DC Constant Voltage (Wire) Welder.
• DC Manual (Stick) Welder.
• AC Welder with Reduced Voltage Control.
3.c. In semiautomatic or automatic wire welding, the electrode, electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically “hot”.
3.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should be as close as possible to the area being welded.
3.e. Ground the work or metal to be welded to a good electrical (earth) ground.
3.f.
Maintain the electrode holder, work clamp, welding cable and welding machine in good, safe operating condition. Replace damaged insulation.
3.g. Never dip the electrode in water for cooling.
3.h. Never simultaneously touch electrically “hot” parts of electrode holders connected to two welders because voltage between the two can be the total of the open circuit voltage of both welders.
3.i. When working above floor level, use a safety belt to protect yourself from a fall should you get a shock.
3.j. Also see Items 6.c. and 8.
ARC RAYS can burn.
4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Headshield and filter lens should conform to ANSI Z87. I standards.
4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.
4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.
FUMES AND GASES can be dangerous.
5.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these fumes and gases. When welding, keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep
fumes and gases away from the breathing zone. When
welding with electrodes which require special ventilation such as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and within applicable OSHA PEL and ACGIH TLV limits using local exhaust or mechanical ventilation. In confined spaces or in some circum­stances, outdoors, a respirator may be required. Additional precautions are also required when welding on galvanized steel.
5. b. The operation of welding fume control equipment is affected by various factors including proper use and positioning of the equipment, maintenance of the equipment and the spe­cific welding procedure and application involved. Worker exposure level should be checked upon installation and periodically thereafter to be certain it is within applicable OSHA PEL and ACGIH TLV limits.
5.c.
Do not weld in locations near chlorinated hydrocarbon coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors form phosgene, a highly toxic gas, and other irritating prod­ucts.
5.d. Shielding gases used for arc welding can displace air and
cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.
vapors
to
5.e. Read and understand the manufacturerʼs instructions for this
equipment and the consumables to be used, including the material safety data sheet (MSDS) and follow your employerʼs safety practices. MSDS forms are available from your welding distributor or from the manufacturer.
5.f. Also see item 1.b.
iii
SAFETY
iii
WELDING and CUTTING SPARKS can cause fire or explosion.
6.a.
Remove fire hazards from the welding area.
If this is not possible, cover them to prevent
Remember that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.
6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to “Safety in Welding and Cutting” (ANSI Standard Z49.1) and the operating information for the equipment being used.
6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.
6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not cause flammable or toxic vapors from substances inside. They can cause an explosion even been “cleaned”. For information, purchase “Recommended Safe Practices for the Containers and Piping That Have Held Hazardous Substances”, AWS F4.1 from the American Welding Society
(see address above).
6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.
Sparks and spatter are thrown from the welding arc. Wear oil
6.f. free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.
6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate cir­cuits. This can create fire hazards or overheat lifting chains or cables until they fail.
6.h. Also see item 1.c.
the welding sparks from starting a fire.
though
they have
Preparation
for Welding and Cutting of
CYLINDER may explode if damaged.
7.a. Use only compressed gas cylinders containing the correct shielding gas for the process used and properly operating regulators designed for the gas and
pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.
7.b. Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.
7.c. Cylinders should be located:
• Away from areas where they may be struck or subjected to
physical damage.
• A safe distance from arc welding or cutting operations and
any other source of heat, sparks, or flame.
7.d. Never allow the electrode, electrode holder or any other electrically “hot” parts to touch a cylinder.
7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.
7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.
7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-l, “Precautions for Safe Handling of Compressed Gases in Cylinders,” available from the Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202.
FOR ELECTRICALLY powered equipment.
8.a. Turn off input power using the disconnect switch at the fuse box before working on the equipment.
8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturerʼs recommendations.
8.c. Ground the equipment in accordance with the U.S. National Electrical Code and the manufacturerʼs recommendations.
6.I. Read and follow NFPA 51B “ Standard for Fire Prevention During Welding, Cutting and Other Hot Work”, available from NFPA, 1 Batterymarch Park, PO box 9101, Quincy, Ma 022690-9101.
6.j. Do not use a welding power source for pipe thawing.
Refer to http://www.lincolnelectric.com/safety for additional safety information.
iv
SAFETY
iv
PRÉCAUTIONS DE SÛRETÉ
Pour votre propre protection lire et observer toutes les instructions et les précautions de sûreté specifiques qui parraissent dans ce manuel aussi bien que les précautions de sûreté générales suiv­antes:
Sûreté Pour Soudage A LʼArc
1. Protegez-vous contre la secousse électrique:
a. Les circuits à lʼélectrode et à la piéce sont sous tension
quand la machine à souder est en marche. Eviter toujours tout contact entre les parties sous tension et la peau nue ou les vétements mouillés. Porter des gants secs et sans trous pour isoler les mains.
b. Faire trés attention de bien sʼisoler de la masse quand on
soude dans des endroits humides, ou sur un plancher metallique ou des grilles metalliques, principalement dans les positions assis ou couché pour lesquelles une grande partie du corps peut être en contact avec la masse.
c. Maintenir le porte-électrode, la pince de masse, le câble
de soudage et la machine à souder en bon et sûr état defonctionnement.
d.Ne jamais plonger le porte-électrode dans lʼeau pour le
refroidir.
e. Ne jamais toucher simultanément les parties sous tension
des porte-électrodes connectés à deux machines à souder parce que la tension entre les deux pinces peut être le total de la tension à vide des deux machines.
f. Si on utilise la machine à souder comme une source de
courant pour soudage semi-automatique, ces precautions pour le porte-électrode sʼapplicuent aussi au pistolet de soudage.
2. Dans le cas de travail au dessus du niveau du sol, se protéger contre les chutes dans le cas ou on recoit un choc. Ne jamais enrouler le câble-électrode autour de nʼimporte quelle partie du corps.
5. Toujours porter des lunettes de sécurité dans la zone de soudage. Utiliser des lunettes avec écrans lateraux dans les zones où lʼon pique le laitier.
6. Eloigner les matériaux inflammables ou les recouvrir afin de prévenir tout risque dʼincendie dû aux étincelles.
7. Quand on ne soude pas, poser la pince à une endroit isolé de la masse. Un court-circuit accidental peut provoquer un échauffement et un risque dʼincendie.
8. Sʼassurer que la masse est connectée le plus prés possible de la zone de travail quʼil est pratique de le faire. Si on place la masse sur la charpente de la construction ou dʼautres endroits éloignés de la zone de travail, on augmente le risque de voir passer le courant de soudage par les chaines de lev­age, câbles de grue, ou autres circuits. Cela peut provoquer des risques dʼincendie ou dʼechauffement des chaines et des câbles jusquʼà ce quʼils se rompent.
9. Assurer une ventilation suffisante dans la zone de soudage. Ceci est particuliérement important pour le soudage de tôles galvanisées plombées, ou cadmiées ou tout autre métal qui produit des fumeés toxiques.
10. Ne pas souder en présence de vapeurs de chlore provenant dʼopérations de dégraissage, nettoyage ou pistolage. La chaleur ou les rayons de lʼarc peuvent réagir avec les vapeurs du solvant pour produire du phosgéne (gas fortement toxique) ou autres produits irritants.
11. Pour obtenir de plus amples renseignements sur la sûreté, voir le code “Code for safety in welding and cutting” CSA Standard W 117.2-1974.
PRÉCAUTIONS DE SÛRETÉ POUR
3. Un coup dʼarc peut être plus sévère quʼun coup de soliel, donc:
a. Utiliser un bon masque avec un verre filtrant approprié
ainsi quʼun verre blanc afin de se protéger les yeux du ray­onnement de lʼarc et des projections quand on soude ou quand on regarde lʼarc.
b. Porter des vêtements convenables afin de protéger la
peau de soudeur et des aides contre le rayonnement de lʻarc.
c. Protéger lʼautre personnel travaillant à proximité au
soudage à lʼaide dʼécrans appropriés et non-inflammables.
4. Des gouttes de laitier en fusion sont émises de lʼarc de soudage. Se protéger avec des vêtements de protection libres de lʼhuile, tels que les gants en cuir, chemise épaisse, pan­talons sans revers, et chaussures montantes.
LES MACHINES À SOUDER À TRANSFORMATEUR ET À REDRESSEUR
1. Relier à la terre le chassis du poste conformement au code de lʼélectricité et aux recommendations du fabricant. Le dispositif de montage ou la piece à souder doit être branché à une bonne mise à la terre.
2. Autant que possible, Iʼinstallation et lʼentretien du poste seront effectués par un électricien qualifié.
3. Avant de faires des travaux à lʼinterieur de poste, la debranch­er à lʼinterrupteur à la boite de fusibles.
4. Garder tous les couvercles et dispositifs de sûreté à leur place.
Thank You
vv
for selecting a QUALITY product by Lincoln Electric. We want you to take pride in operating this Lincoln Electric Company product
••• as much pride as we have in bringing this product to you!
The business of The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equip­ment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for advice or information about their use of our products. We respond to our customers based on the best information in our posses­sion at that time. Lincoln Electric is not in a position to warrant or guarantee such advice, and assumes no liability, with respect to such infor­mation or advice. We expressly disclaim any warranty of any kind, including any warranty of fitness for any customerʼs particular purpose, with respect to such information or advice. As a matter of practical consideration, we also cannot assume any responsibility for updating or correcting any such information or advice once it has been given, nor does the provision of information or advice create, expand or alter any warranty with respect to the sale of our products.
Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.
Subject to Change – This information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.com for any updated information.
CUSTOMER ASSISTANCE POLICY
Please Examine Carton and Equipment For Damage Immediately
When this equipment is shipped, title passes to the purchaser upon receipt by the carrier. Consequently, Claims for material damaged in shipment must be made by the purchaser against the transportation company at the time the shipment is received.
Please record your equipment identification information below for future reference. This information can be found on your machine nameplate.
Product _________________________________________________________________________________
Model Number ___________________________________________________________________________
Code Number or Date Code_________________________________________________________________
Serial Number____________________________________________________________________________
Date Purchased___________________________________________________________________________
Where Purchased_________________________________________________________________________
Whenever you request replacement parts or information on this equipment, always supply the information you have recorded above. The code number is especially important when identifying the correct replacement parts.
On-Line Product Registration
- Register your machine with Lincoln Electric either via fax or over the Internet.
• For faxing: Complete the form on the back of the warranty statement included in the literature packet accompanying this machine and fax the form per the instructions printed on it.
• For On-Line Registration: Go to our
“Product Registration”. Please complete the form and submit your registration.
Read this Operators Manual completely before attempting to use this equipment. Save this manual and keep it handy for quick reference. Pay particular attention to the safety instructions we have provided for your protection. The level of seriousness to be applied to each is explained below:
WEB SITE at www.lincolnelectric.com. Choose “Quick Links” and then
WARNING
This statement appears where the information must be followed exactly to avoid serious personal injury or loss of life.
CAUTION
This statement appears where the information must be followed to avoid minor personal injury or damage to this equipment.
TABLE OF CONTENTS
Page
Installation.......................................................................................................................Section A
Technical Specifications ...............................................................................................A-1, A-2
Safety Precautions ...............................................................................................................A-3
Location, Lifting .............................................................................................................A-3
Stacking ........................................................................................................................A-3
Tilting.............................................................................................................................A-3
Input and Ground Connections .....................................................................................A-3
Machine Grounding.......................................................................................................A-3
High Frequency Protection............................................................................................A-3
Input Connection ..................................................................................................................A-4
Input Fuse and Supply Wire..........................................................................................A-4
Input Voltage Selection .................................................................................................A-4
Power Cord Replacement .............................................................................................A-4
Connection Diagram .....................................................................................................A-5
Recommended Work Cable Sizes ................................................................................A-6
Cable Inductance and its Effects on Welding................................................................A-7
Remote Sense Lead Specifications.......................................................................A-7, A-8
Voltage Sensing Considerations for Multiple Arc Systems..................................A-9, A-10
Control Cable Connections ................................................................................................A-11
________________________________________________________________________________
Operation.........................................................................................................................Section B
Safety Precautions ...............................................................................................................B-1
Power-Up Sequence .....................................................................................................B-1
Duty Cycle.....................................................................................................................B-1
Graphic Symbols...........................................................................................................B-1
Product Description ..............................................................................................................B-2
Recommended Processes and Equipment ..........................................................................B-2
Equipment Limitations ..........................................................................................................B-2
Design Features ...................................................................................................................B-3
Case Front Controls .............................................................................................................B-3
Case Back Controls..............................................................................................................B-4
Common Welding Procedures................................................................................B-5 thru B-7
________________________________________________________________________________
vivi
Accessories.....................................................................................................Section C
Kits, Options / Accessories....................................................................................C-1
Field Installed Options...........................................................................................C-1
TIG and MIG Options ...........................................................................................C-1
________________________________________________________________________
Maintenance........................................................................................................Section D
Safety Precautions ...............................................................................................................D-1
Routine Maintenance ...........................................................................................................D-1
Periodic Maintenance...........................................................................................................D-1
Calibration Specification.......................................................................................................D-1
________________________________________________________________________________
Troubleshooting..............................................................................................Section E
Safety Precautions.................................................................................................E-1
How to Use Troubleshooting Guide.......................................................................E-1
Using Status LED, Error Fault Codes, Input Control Board, Wire Drive Module ..........E-2, E-4
Troubleshooting Guide.............................................................................E-5 thru E-8
________________________________________________________________________________
Wiring Diagram and Dimension Print............................................................Section F
________________________________________________________________________
Parts Pages ...............................................................................................................P-664 Series
_______________________________________________________________________
________
A-1
INSTALLATION
TECHNICAL SPECIFICATIONS - POWER WAVE® R350
POWER SOURCE-INPUT VOLTAGE AND CURRENT
Model
Duty Cycle
Input Voltage ± 10%
Input Amperes
(1 Phase in parenthesis)
Idle Power
A-1
Power Factor @
Rated Output
K3022-1
40% rating
208/230/380-415/460/575
50/60 Hz
100% rating
39/35/19/17/14
(60/67*/NA/NA/NA)
31/28/15/14/11
(60/53/NA/NA/NA)
300 Watts Max.
(fan on)
RATED OUTPUT
INPUT
VOLTAGE/PHASE/
FREQUENCY
200-208/1/50/60
230/1/50/60*
200-208/3/50/60
230/3/50/60
380-415/3/50/60
460/3/50/60 575/3/50/60
* On 230 Volt / 1 phase inputs the max. rating is at a duty cycle of 30%, except for GTAW processes.
40%
350 Amps
31.5 Volts
RECOMMENDED INPUT WIRE AND FUSE SIZES
GMAW
60%
300 Amps / 29 Volts
320 Amps
30 Volts
300 Amps
29 Volts
100%
40%
350 Amps
24 Volts
GTAW-DC
60%
325 Amps
23 Volts
1
.95
100%
300 Amps
22 Volts
INPUT
VOLTAGE / PHASE/
FREQUENCY
200-208/1/50/60 200-208/3/50/60
230/1/50/60
230/3/50/60 380-415/1/50/60 380-415/3/50/60
460/1/50/60
460/3/50/60
575/1/50/60
575/3/50/60
1. Based on U.S. National electrical Code
2. Also called " inverse time" or "thermal / magnetic" circuit breakers; circuit breakers that have a delay in trip-
ping action that decreases as the magnitude of the current increases
3. Type SO cord or similar in 30° C ambient
4. When operating on these inputs, the line cord should be changed to an input conductor of 6 AWG or larger.
ING AND DUTY CYCLE
MAXIMUM
INPUT AMPERE RAT-
60A, 100% 39A, 40%
67A, 30% 35A, 40% 38A, 40% 19A, 40%
34A, 40% 17A, 40% 27A, 40%
14A, 40%
CORD SIZE
AWG SIZES
(mm2)
6 (13) 8 (10)
4 (16) 8 (10)
8 (10)
12 (4) 8 (10)
12 (4) 10 (6)
14 (2.5)
3
TIME DELAY FUSE
OR BREAKER
AMPERAGE
80 50 80 45 50 30
45 25 35
20
2
POWER WAVE® R350
A-2
MODEL
PROCESS
GMAW
GMAW-Pulse
FCAW
GTAW-DC
HEIGHT
INSTALLATION
WELDING PROCESS
OUTPUT RANGE (AMPERES)
40-350A
5-350A
PHYSICAL DIMENSIONS
WIDTH
OCV (Uo)
Mean Peak
40-70V
24V
DEPTH
A-2
100V
WEIGHT
K3022-1
20.40 in ( 518 mm)
14.00in ( 356 mm)
TEMPERATURE RANGES
OPERATING TEMPERATURE RANGE
Environmentally Hardened: -4°F to 104°F (-20C to 40C)
IP23 155º(F) Insulation Class
* Weight does not include input cord.
24.80in ( 630mm)
STORAGE TEMPERATURE RANGE
Environmentally Hardened: -40°F to 185°F (-40C to 85C)
85 lbs (39 kg)*
Thermal tests have been performed at ambient tem­perature. The duty cycle (duty factor) at 40°C has been determined by simulation.
POWER WAVE® R350
A-3
INSTALLATION
A-3
SAFETY PRECAUTIONS Read this
entire installation section before you start installa­tion.
WARNING
ELECTRIC SHOCK can kill.
• Only qualified personnel should perform this installation.
• Turn the input power OFF at the
disconnect switch or fuse box before working on this equipment. Turn off the input power to any other equipment connected to the welding system at the disconnect switch or fuse box before work­ing on the equipment.
• Do not touch electrically hot parts.
• Always connect the POWER WAVE® R350
grounding lug to a proper safety (Earth) ground.
-------------------------------------------------------------
SELECT SUITABLE LOCATION
The POWER WAVE® R350 will operate in harsh envi­ronments. Even so, it is important that simple preven­tative measures are followed in order to assure long life and reliable operation.
LIFTING
Both handles should be used when lifting POWER WAVE® R350. When using a crane or overhead device a lifting strap should be connected to both handles. Do not attempt to lift the POWER WAVE® R350 with accessories attached to it.
WARNING
• Lift only with equipment of ade­quate lifting capacity.
• Be sure machine is stable when lifting.
• Do not operate machine while suspended when lifting.
FALLING
EQUIPMENT can
cause injury.
-------------------------------------------------------------
STACKING
The POWER WAVE® R350 cannot be stacked.
TILTING
Place the machine directly on a secure, level surface or on a recommended undercarriage. The machine may topple over if this procedure is not followed.
• The machine must be located where there is free circulation of clean air such that air movement in the back, out the sides and bottom will not be restricted.
• Dirt and dust that can be drawn into the machine should be kept to a minimum. The use of air filters on the air intake is not recommended because nor­mal air flow may be restricted. Failure to observe these precautions can result in excessive operating temperatures and nuisance shutdown.
• Keep machine dry. Shelter from rain and snow. Do not place on wet ground or in puddles.
• Do not mount the POWER WAVE® R350 over combustible surfaces. Where there is a com­bustible surface directly under stationary or fixed electrical equipment, that surface shall be covered with a steel plate at least .060” (1.6mm) thick, which shall extend not less than 5.90” (150mm) beyond the equipment on all sides.
INPUT AND GROUND CONNECTIONS
Only a qualified electrician should connect the POWER WAVE® R350. Installation should be made in accordance with the appropriate National Electrical Code, all local codes and the information in this manual.
MACHINE GROUNDING
The frame of the welder must be grounded. A ground terminal marked with a ground symbol is located next to the input power connection block.
See your local and national electrical codes for proper ground­ing methods.
HIGH FREQUENCY PROTECTION
Locate the POWER WAVE® R350 away from radio controlled machinery. The normal operation of the POWER WAVE® R350 may adversely affect the operation of RF controlled equipment, which may result in bodily injury or damage to the equipment.
POWER WAVE® R350
A-4
CONNECTION BLOCK
GROUND LUG
INPUT POWER CORD
INSTALLATION
A-4
INPUT CONNECTION
WARNING
Only a qualified electrician should connect the input leads to the POWER WAVE® R350. Connections should be made in accordance with
all local and national electrical codes and the connection diagrams. Failure to do so may result in bodily injury or death.
------------------------------------------------------------------------
A 10 ft. (3.1m) power cord is provided and wired into the machine. Follow the power cord connection instructions.
For Single Phase Input
Connect green lead to ground per National Electrical Code.
Connect black and white leads to power.
Wrap red lead with tape to provide 600V insulation.
For Three Phase Input
Connect green lead to ground per National Electric Code.
Connect black, red and white leads to power.
INPUT FUSE AND SUPPLY WIRE CONSIDERATIONS
Refer to Specification Section for recommended fuse, wire sizes and type of the copper wires. Fuse the input circuit with the recommended super lag fuse or delay type breakers (also called "inverse time" or "thermal/magnetic" circuit breakers). Choose input and grounding wire size according to local or national electrical codes. Using input wire sizes, fuses or cir­cuit breakers smaller than recommended may result in "nuisance" shut-offs from welder inrush currents, even if the machine is not being used at high currents.
WARNING
The POWER WAVE® R350 ON/OFF switch is not intended as a service disconnect for this equipment. Only
a qualified electrician should con­nect the input leads to the POWER WAVE® R350. Connections should be made in accordance with all local and national electrical codes and the con­nection diagram located on the inside of the reconnect access door of the machine. Failure to do so may result in bodily injury or death.
------------------------------------------------------------------------
POWER CORD REPLACEMENT
WARNING
Only a qualified electrician should connect the input leads to the POWER WAVE® R350. Connections should be made in accordance with all local and national electrical
codes and the connection dia­grams. Failure to do so may result in bodily injury or death.
------------------------------------------------------------------------
If the input power cord is damaged or needs to be replaced an input power connection block is located in the back of the machine with the access panel removed as shown Figure A.1.
ALWAYS CONNECT THE POWER WAVE GROUND- ING LUG (LOCATED AS SHOWN IN FIGURE A.1) TO A PROPER SAFETY (EARTH) GROUND AND ENSURE IT IS APPROXIMATELY 3" LONGER THAN PHASE LEADS."
FIGURE A.1
INPUT VOLTAGE SELECTION
The POWER WAVE® R350 automatically adjusts to work with different input voltages. No reconnect switches settings are required.
POWER WAVE® R350
A-5
INSTALLATION
CONNECTION DIAGRAM
GMAW (MIG) WELDING
An arclink compatible wire feeder is recommended for Mig welding. Refer to Figure A.2 for the connection details.
FIGURE A.2
REGULATOR FLOWMETER
A-5
MIG PROCESS
PF10-M
WIRE FEEDER
GAS HOSE
ARCLINK CABLE K1543-[XX]
TO POSITIVE (+) STUD
TO NEGATIVE (-) STUD
WORK CLAMP
WORK PIECE
POWER WAVE® R350
A-6
INSTALLATION
A-6
RECOMMENDED WORK CABLE SIZES FOR ARC WELDING
Connect the electrode and work cables between the appropriate output studs of the POWER WAVE R350 per the following guidelines:
• Most welding applications run with the electrode being positive (+). For those applications, connect the electrode cable between the wire drive feed plate and the positive (+) output stud on the power source. Connect a work lead from the negative (-) power source output stud to the work piece
• When negative electrode polarity is required, such as in some Innershield applications, reverse the out­put connections at the power source (electrode cable to the negative (-) stud, and work cable to the posi­tive (+) stud).
CAUTION
Negative electrode polarity operation WITHOUT use of a remote work sense lead (21) requires the Negative Electrode Polarity attribute to be set. See the Remote Sense Lead Specification section of this document for further details.
-----------------------------------------------------------------------
For additional Safety information regarding the elec­trode and work cable set-up, See the standard “SAFETY INFORMATION” located in the front of this Instruction Manual.
OUTPUT CABLE GUIDELINES (Table A.1)
General Guidelines
Select the appropriate size cables per the “Output Cable Guidelines” below. Excessive volt-
age drops caused by undersized welding cables and poor connections often result in unsatisfactory weld­ing performance. Always use the largest welding cables (electrode and work) that are practical, and be sure all connections are clean and tight.
Note: Excessive heat in the weld circuit indicates undersized cables and/or bad connections.
Route all cables directly to the work and wire
feeder, avoid excessive lengths and do not coil excess cable. Route the electrode and work cables
in close proximity to one another to minimize the loop area and therefore the inductance of the weld circuit.
Always weld in a direction away from the work
(ground) connection.
Table A.1 shows copper cable sizes recommended for different currents and duty cycles. Lengths stipulated are the distance from the welder to work and back to the welder again. Cable sizes are increased for greater lengths primarily for the purpose of minimizing cable drop.
Percent Duty
Amperes
200
200
250
250
250
250
300
300
350
** Tabled values are for operation at ambient temperatures of 104°F (40°C) and below. Applications above 104°F (40°C) may
require cables larger than recommended, or cables rated higher than 167°F (75°C).
Cycle
60
100
30
40
60
100
60
100
40
CABLE SIZES FOR COMBINED LENGTHS OF ELECTRODE AND WORK CABLES [RUBBER COVERED COPPER - RATED 167°F (75°C)]**
0 to 50 Ft.
2
2
3
2
1
1
1
2/0
1/0
50 to 100 Ft.
2
2
3
2
1
1
1
2/0
1/0
100 to 150 Ft.
2
2
2
1
1
1
1
2/0
2/0
150 to 200 Ft.
1
1
1
1
1
1
1/0
2/0
2/0
200 to 250 Ft.
1/0
1/0
1/0
1/0
1/0
1/0
2/0
3/0
3/0
POWER WAVE® R350
Loading...
+ 29 hidden pages