Power Feed 10 Bench Model Code 10438, 10617, 10760,10783
RETURN TO MAIN MENU
Boom Mount or Bench Model
IM584-D
August, 2007
For use with:
Safety Depends on You
Lincoln arc welding and cutting
equipment is designed and built
with safety in mind. However, your
overall safety can be increased by
proper installation ... and thoughtful operation on your part. DO
NOT INSTALL, OPERATE OR
REPAIR THIS EQUIPMENT
WITHOUT READING THIS
MANUAL AND THE SAFETY
PRECAUTIONS CONTAINED
THROUGHOUT. And, most
• World's Leader in Welding and Cutting Products •
• Sales and Service through Subsidiaries and Distributors Worldwide •
i
SAFETY
i
WARNING
CALIFORNIA PROPOSITION 65 WARNINGS
Diesel engine exhaust and some of its constituents
are known to the State of California to cause cancer, birth defects, and other reproductive harm.
The Above For Diesel Engines
ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH.
KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.
Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you
purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box
351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available
from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.
BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE
PERFORMED ONLY BY QUALIFIED INDIVIDUALS.
The engine exhaust from this product contains
chemicals known to the State of California to cause
cancer, birth defects, or other reproductive harm.
The Above For Gasoline Engines
FOR ENGINE
powered equipment.
1.a. Turn the engine off before troubleshooting and maintenance
work unless the maintenance work requires it to be running.
1.c. Do not add the fuel near an open flame
welding arc or when the engine is running.
Stop the engine and allow it to cool before
refueling to prevent spilled fuel from vaporizing on contact with hot engine parts and
igniting. Do not spill fuel when filling tank. If
fuel is spilled, wipe it up and do not start
engine until fumes have been eliminated.
1.d. Keep all equipment safety guards, covers and devices in
position and in good repair.Keep hands, hair, clothing and
tools away from V-belts, gears, fans and all other moving
parts when starting, operating or repairing equipment.
1.e. In some cases it may be necessary to remove safety
guards to perform required maintenance. Remove
guards only when necessary and replace them when the
maintenance requiring their removal is complete.
Always use the greatest care when working near moving
parts.
1.f. Do not put your hands near the engine fan.
Do not attempt to override the governor or
idler by pushing on the throttle control rods
while the engine is running.
1.h. To avoid scalding, do not remove the
radiator pressure cap when the engine is
hot.
ELECTRIC AND
MAGNETIC FIELDS
may be dangerous
2.a. Electric current flowing through any conductor causes
localized Electric and Magnetic Fields (EMF). Welding
current creates EMF fields around welding cables and
welding machines
2.b. EMF fields may interfere with some pacemakers, and
welders having a pacemaker should consult their physician
before welding.
2.c. Exposure to EMF fields in welding may have other health
effects which are now not known.
2.d. All welders should use the following procedures in order to
minimize exposure to EMF fields from the welding circuit:
2.d.1.
Route the electrode and work cables together - Secure
them with tape when possible.
2.d.2.Never coil the electrode lead around your body.
2.d.3. Do not place your body between the electrode and
work cables. If the electrode cable is on your right
side, the work cable should also be on your right side.
1.g. To prevent accidentally starting gasoline engines while
turning the engine or welding generator during maintenance
work, disconnect the spark plug wires, distributor cap or
magneto wire as appropriate.
2.d.4. Connect the work cable to the workpiece as close as
possible to the area being welded.
2.d.5. Do not work next to welding power source.
Mar ʻ95
ii
SAFETY
ii
ELECTRIC SHOCK can
kill.
3.a. The electrode and work (or ground) circuits
are electrically “hot” when the welder is on.
Do not touch these “hot” parts with your bare
skin or wet clothing. Wear dry, hole-free
gloves to insulate hands.
3.b. Insulate yourself from work and ground using dry insulation.
Make certain the insulation is large enough to cover your full
area of physical contact with work and ground.
In addition to the normal safety precautions, if welding
must be performed under electrically hazardous
conditions (in damp locations or while wearing wet
clothing; on metal structures such as floors, gratings or
scaffolds; when in cramped positions such as sitting,
kneeling or lying, if there is a high risk of unavoidable or
accidental contact with the workpiece or ground) use
the following equipment:
• Semiautomatic DC Constant Voltage (Wire) Welder.
• DC Manual (Stick) Welder.
• AC Welder with Reduced Voltage Control.
3.c. In semiautomatic or automatic wire welding, the electrode,
electrode reel, welding head, nozzle or semiautomatic
welding gun are also electrically “hot”.
3.d. Always be sure the work cable makes a good electrical
connection with the metal being welded. The connection
should be as close as possible to the area being welded.
3.e. Ground the work or metal to be welded to a good electrical
(earth) ground.
ARC RAYS can burn.
4.a. Use a shield with the proper filter and cover
plates to protect your eyes from sparks and
the rays of the arc when welding or observing
open arc welding. Headshield and filter lens
should conform to ANSI Z87. I standards.
4.b. Use suitable clothing made from durable flame-resistant
material to protect your skin and that of your helpers from
the arc rays.
4.c. Protect other nearby personnel with suitable, non-flammable
screening and/or warn them not to watch the arc nor expose
themselves to the arc rays or to hot spatter or metal.
FUMES AND GASES
can be dangerous.
5.a. Welding may produce fumes and gases
hazardous to health. Avoid breathing these
fumes and gases. When welding, keep
your head out of the fume. Use enough
ventilation and/or exhaust at the arc to keep
fumes and gases away from the breathing zone. When
welding with electrodes which require special
ventilation such as stainless or hard facing (see
instructions on container or MSDS) or on lead or
cadmium plated steel and other metals or coatings
which produce highly toxic fumes, keep exposure as
low as possible and below Threshold Limit Values (TLV)
using local exhaust or mechanical ventilation. In
confined spaces or in some circumstances, outdoors, a
respirator may be required. Additional precautions are
also required when welding on galvanized steel.
3.f.
Maintain the electrode holder, work clamp, welding cable and
welding machine in good, safe operating condition. Replace
damaged insulation.
3.g. Never dip the electrode in water for cooling.
3.h. Never simultaneously touch electrically “hot” parts of
electrode holders connected to two welders because voltage
between the two can be the total of the open circuit voltage
of both welders.
3.i. When working above floor level, use a safety belt to protect
yourself from a fall should you get a shock.
3.j. Also see Items 6.c. and 8.
5. b. The operation of welding fume control equipment is affected
by various factors including proper use and positioning of
the equipment, maintenance of the equipment and the specific welding procedure and application involved. Worker
exposure level should be checked upon installation and
periodically thereafter to be certain it is within applicable
OSHA PEL and ACGIH TLV limits.
5.c.
Do not weld in locations near chlorinated hydrocarbon
coming from degreasing, cleaning or spraying operations.
The heat and rays of the arc can react with solvent vapors
form phosgene, a highly toxic gas, and other irritating products.
5.d. Shielding gases used for arc welding can displace air and
cause injury or death. Always use enough ventilation,
especially in confined areas, to insure breathing air is safe.
5.e. Read and understand the manufacturerʼs instructions for this
equipment and the consumables to be used, including the
material safety data sheet (MSDS) and follow your
employerʼs safety practices. MSDS forms are available from
your welding distributor or from the manufacturer.
5.f. Also see item 1.b.
vapors
AUG 06
to
iii
SAFETY
iii
WELDING and CUTTING
SPARKS can
cause fire or explosion.
6.a.
Remove fire hazards from the welding area.
If this is not possible, cover them to prevent
Remember that welding sparks and hot
materials from welding can easily go through small cracks
and openings to adjacent areas. Avoid welding near
hydraulic lines. Have a fire extinguisher readily available.
6.b. Where compressed gases are to be used at the job site,
special precautions should be used to prevent hazardous
situations. Refer to “Safety in Welding and Cutting” (ANSI
Standard Z49.1) and the operating information for the
equipment being used.
6.c. When not welding, make certain no part of the electrode
circuit is touching the work or ground. Accidental contact
can cause overheating and create a fire hazard.
6.d. Do not heat, cut or weld tanks, drums or containers until the
proper steps have been taken to insure that such procedures
will not cause flammable or toxic vapors from substances
inside. They can cause an explosion even
been “cleaned”. For information, purchase “Recommended
Safe Practices for the
Containers and Piping That Have Held Hazardous
Substances”, AWS F4.1 from the American Welding Society
(see address above).
6.e. Vent hollow castings or containers before heating, cutting or
welding. They may explode.
Sparks and spatter are thrown from the welding arc. Wear oil
6.f.
free protective garments such as leather gloves, heavy shirt,
cuffless trousers, high shoes and a cap over your hair. Wear
ear plugs when welding out of position or in confined places.
Always wear safety glasses with side shields when in a
welding area.
6.g. Connect the work cable to the work as close to the welding
area as practical. Work cables connected to the building
framework or other locations away from the welding area
increase the possibility of the welding current passing
through lifting chains, crane cables or other alternate circuits. This can create fire hazards or overheat lifting chains
or cables until they fail.
6.h. Also see item 1.c.
the welding sparks from starting a fire.
though
they have
Preparation
for Welding and Cutting of
CYLINDER may explode
if damaged.
7.a. Use only compressed gas cylinders
containing the correct shielding gas for the
process used and properly operating
regulators designed for the gas and
pressure used. All hoses, fittings, etc. should be suitable for
the application and maintained in good condition.
7.b. Always keep cylinders in an upright position securely
chained to an undercarriage or fixed support.
7.c. Cylinders should be located:
• Away from areas where they may be struck or subjected to
physical damage.
• A safe distance from arc welding or cutting operations and
any other source of heat, sparks, or flame.
7.d. Never allow the electrode, electrode holder or any other
electrically “hot” parts to touch a cylinder.
7.e. Keep your head and face away from the cylinder valve outlet
when opening the cylinder valve.
7.f. Valve protection caps should always be in place and hand
tight except when the cylinder is in use or connected for
use.
7.g. Read and follow the instructions on compressed gas
cylinders, associated equipment, and CGA publication P-l,
“Precautions for Safe Handling of Compressed Gases in
Cylinders,” available from the Compressed Gas Association
1235 Jefferson Davis Highway, Arlington, VA 22202.
FOR ELECTRICALLY
powered equipment.
8.a. Turn off input power using the disconnect
switch at the fuse box before working on
the equipment.
8.b. Install equipment in accordance with the U.S. National
Electrical Code, all local codes and the manufacturerʼs
recommendations.
8.c. Ground the equipment in accordance with the U.S. National
Electrical Code and the manufacturerʼs recommendations.
6.I. Read and follow NFPA 51B “ Standard for Fire Prevention
During Welding, Cutting and Other Hot Work”, available
from NFPA, 1 Batterymarch Park,PO box 9101, Quincy, Ma
022690-9101.
6.j. Do not use a welding power source for pipe thawing.
Jan, 07
iv
SAFETY
iv
PRÉCAUTIONS DE SÛRETÉ
Pour votre propre protection lire et observer toutes les instructions
et les précautions de sûreté specifiques qui parraissent dans ce
manuel aussi bien que les précautions de sûreté générales suivantes:
Sûreté Pour Soudage A LʼArc
1. Protegez-vous contre la secousse électrique:
a. Les circuits à lʼélectrode et à la piéce sont sous tension
quand la machine à souder est en marche. Eviter toujours
tout contact entre les parties sous tension et la peau nue
ou les vétements mouillés. Porter des gants secs et sans
trous pour isoler les mains.
b. Faire trés attention de bien sʼisoler de la masse quand on
soude dans des endroits humides, ou sur un plancher
metallique ou des grilles metalliques, principalement dans
les positions assis ou couché pour lesquelles une grande
partie du corps peut être en contact avec la masse.
c. Maintenir le porte-électrode, la pince de masse, le câble
de soudage et la machine à souder en bon et sûr état
defonctionnement.
d.Ne jamais plonger le porte-électrode dans lʼeau pour le
refroidir.
e. Ne jamais toucher simultanément les parties sous tension
des porte-électrodes connectés à deux machines à souder
parce que la tension entre les deux pinces peut être le
total de la tension à vide des deux machines.
f. Si on utilise la machine à souder comme une source de
courant pour soudage semi-automatique, ces precautions
pour le porte-électrode sʼapplicuent aussi au pistolet de
soudage.
2. Dans le cas de travail au dessus du niveau du sol, se protéger
contre les chutes dans le cas ou on recoit un choc. Ne jamais
enrouler le câble-électrode autour de nʼimporte quelle partie
du corps.
5. Toujours porter des lunettes de sécurité dans la zone de
soudage. Utiliser des lunettes avec écrans lateraux dans les
zones où lʼon pique le laitier.
6. Eloigner les matériaux inflammables ou les recouvrir afin de
prévenir tout risque dʼincendie dû aux étincelles.
7. Quand on ne soude pas, poser la pince à une endroit isolé de
la masse. Un court-circuit accidental peut provoquer un
échauffement et un risque dʼincendie.
8. Sʼassurer que la masse est connectée le plus prés possible
de la zone de travail quʼil est pratique de le faire. Si on place
la masse sur la charpente de la construction ou dʼautres
endroits éloignés de la zone de travail, on augmente le risque
de voir passer le courant de soudage par les chaines de levage, câbles de grue, ou autres circuits. Cela peut provoquer
des risques dʼincendie ou dʼechauffement des chaines et des
câbles jusquʼà ce quʼils se rompent.
9. Assurer une ventilation suffisante dans la zone de soudage.
Ceci est particuliérement important pour le soudage de tôles
galvanisées plombées, ou cadmiées ou tout autre métal qui
produit des fumeés toxiques.
10. Ne pas souder en présence de vapeurs de chlore provenant
dʼopérations de dégraissage, nettoyage ou pistolage. La
chaleur ou les rayons de lʼarc peuvent réagir avec les vapeurs
du solvant pour produire du phosgéne (gas fortement toxique)
ou autres produits irritants.
11. Pour obtenir de plus amples renseignements sur la sûreté,
voir le code “Code for safety in welding and cutting” CSA
Standard W 117.2-1974.
PRÉCAUTIONS DE SÛRETÉ POUR
3. Un coup dʼarc peut être plus sévère quʼun coup de soliel,
donc:
a. Utiliser un bon masque avec un verre filtrant approprié
ainsi quʼun verre blanc afin de se protéger les yeux du rayonnement de lʼarc et des projections quand on soude ou
quand on regarde lʼarc.
b. Porter des vêtements convenables afin de protéger la
peau de soudeur et des aides contre le rayonnement de
lʻarc.
c. Protéger lʼautre personnel travaillant à proximité au
soudage à lʼaide dʼécrans appropriés et non-inflammables.
4. Des gouttes de laitier en fusion sont émises de lʼarc de
soudage. Se protéger avec des vêtements de protection libres
de lʼhuile, tels que les gants en cuir, chemise épaisse, pantalons sans revers, et chaussures montantes.
LES MACHINES À SOUDER À
TRANSFORMATEUR ET À
REDRESSEUR
1. Relier à la terre le chassis du poste conformement au code de
lʼélectricité et aux recommendations du fabricant. Le dispositif
de montage ou la piece à souder doit être branché à une
bonne mise à la terre.
2. Autant que possible, Iʼinstallation et lʼentretien du poste seront
effectués par un électricien qualifié.
3. Avant de faires des travaux à lʼinterieur de poste, la debrancher à lʼinterrupteur à la boite de fusibles.
4. Garder tous les couvercles et dispositifs de sûreté à leur
place.
Mar. ʻ93
Thank You
vv
for selecting a QUALITY product by Lincoln Electric. We want you
to take pride in operating this Lincoln Electric Company product
••• as much pride as we have in bringing this product to you!
The business of The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln
Electric for advice or information about their use of our products. We respond to our customers based on the best information in our possession at that time. Lincoln Electric is not in a position to warrant or guarantee such advice, and assumes no liability, with respect to such information or advice. We expressly disclaim any warranty of any kind, including any warranty of fitness for any customerʼs particular purpose,
with respect to such information or advice. As a matter of practical consideration, we also cannot assume any responsibility for updating or
correcting any such information or advice once it has been given, nor does the provision of information or advice create, expand or alter any
warranty with respect to the sale of our products.
Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control
of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in
applying these types of fabrication methods and service requirements.
Subject to Change – This information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.com
for any updated information.
CUSTOMER ASSISTANCE POLICY
Please Examine Carton and Equipment For Damage Immediately
When this equipment is shipped, title passes to the purchaser upon receipt by the carrier. Consequently, Claims
for material damaged in shipment must be made by the purchaser against the transportation company at the
time the shipment is received.
Please record your equipment identification information below for future reference. This information can be
found on your machine nameplate.
Model Number ___________________________________________________________________________
Code Number or Date Code_________________________________________________________________
Serial Number____________________________________________________________________________
Date Purchased___________________________________________________________________________
Where Purchased_________________________________________________________________________
Whenever you request replacement parts or information on this equipment, always supply the information you
have recorded above. The code number is especially important when identifying the correct replacement parts.
On-Line Product Registration
- Register your machine with Lincoln Electric either via fax or over the Internet.
• For faxing: Complete the form on the back of the warranty statement included in the literature packet
accompanying this machine and fax the form per the instructions printed on it.
• For On-Line Registration: Go to our
“Product Registration”. Please complete the form and submit your registration.
Read this Operators Manual completely before attempting to use this equipment. Save this manual and keep it
handy for quick reference. Pay particular attention to the safety instructions we have provided for your protection.
The level of seriousness to be applied to each is explained below:
WEB SITE at www.lincolnelectric.com. Choose “Quick Links” and then
WARNING
This statement appears where the information must be followed exactly to avoid serious personal injury or loss of life.
CAUTION
This statement appears where the information must be followed to avoid minor personal injury or damage to this equipment.
vi
TABLE OF CONTENTS
Page
Installation .......................................................................................................Section A
HeightWidthDepthWeightOperatingStorage
K1539-1,-2
(ControlFeed 10(330 mm)( 215 mm)(105 mm)(3.8 Kg)
BoxControl
Only)*Box
K1540-1,-2
(WireFeed 10(195 mm)(325 mm)(345 mm)(13.6 Kg)
DriveWire
Only)*Drive
K1541-1,-2
BenchFeed 10( 470 mm)(345 mm)(775 mm)(28.1 Kg.)
Model
FeederΔDrive and
Power40 VDC13.0 ”8.50 ”4.0 ”8.5 Lbs
Power 40 VDC7.6”12.9 ”13.7”30 Lbs
Power40 VDC18.5”13.5”30.5”62 Lbs-20°C-40°C
Bench Model
Control Box
Dimensions
+40°C+40°C
toto
* Also part of K1538-[ ] Boom package and K1541-[ ] Bench Feeder.
Δ Dimensions do not include wire reel.
# For Control Box and wire drive dimensions and weights, see individual component listings.
POWER FEED 10
A-2
INSTALLATION
A-2
SAFETY PRECAUTIONS
ELECTRIC SHOCK can
kill.
• Only qualified personnel should perform this installation.
• Turn off the input power to the power source at the
disconnect switch or fuse box before working on
this equipment. Turn off the input power to any
other equipment connected to the welding system
at the disconnect switch or fuse box before working on this equipment.
• Do not touch electrically hot parts.
• Always connect the Power Wave grounding lug
(located inside the reconnect input access door) to
a proper safety (Earth) ground.
The electrode supply may be either from reels, ReadiReels, spools, or bulk packaged drums or reels.
Observe the following precautions:
a) The electrode must be routed to the wire drive
unit so that the bends in the wire are at a minimum, and also that the force required to pull the
wire from the reel into the wire drive unit is kept at
a minimum.
b) The electrode is “hot” when the gun trigger is
pressed and must be insulated from the boom
and structure.
c) If more than one wire feed unit shares the same
boom and are not sharing the some power source
output stud, their wire and reels must be insulated
from each other as well as insulated from their
mounting structure.
MOUNTING CONTROL BOX AND
RECEPTACLE CONFIGURATION
Mount the wire drive unit by means of the 4 holes in
the bottom of the wire drive case. (See Figure A.1)
The gearbox assembly is electrically “hot” when the
gun trigger is pressed. Therefore, make certain the
gearbox does not come in contact with the structure
on which the unit is mounted.
The wire feed unit should be mounted so that the
drive rolls are in a vertical plane, so that dirt will not
collect in the drive roll area. Position the mechanism
so it will point down at about a 45° angle so the wire
feed gun cable will not be bent sharply as it comes
from the unit.
.281(7.14mm) Dia
(4 Holes)
9.00(228.6mm)
The Control Box is designed for use in a variety of
configurations. A boom model feeder is shipped from
the factory separated from the Wire Drive, with the
necessary receptacles installed. In the case of a
bench model feeder, the Control Box can be removed
from the Wire Drive and mounted in a location convenient to the user. Doing so requires separating the
Control Box from the Wire Drive, mounting the Control
Box in the desired location, determining which receptacle configuration is best for the application and
installing the receptacle or receptacles for connecting
control cables in the chosen configuration.
SEPARATING THE CONTROL BOX FROM
THE WIRE DRIVE (BENCH MODEL ONLY)
1. Remove the bottom and center option panels from
the front of the Control Box.
2. Disconnect the Control Box to Wire Drive connection by disconnecting the 6-pin plug located in the
hole which passes through the lower back of the
Control Box to the Wire Drive.
3. Loosen the four screws inside the Control Box
located along the sides of the back of the Control
Box, two near the bottom and two near the middle.
4.75(120.7mm)
BOTTOM FRONT
FIGURE A.1
4. Push the Control Box upwards and pull away from
the Wire Drive.
POWER FEED 10
A-3
4
.218(5.54mm) Dia
INSTALLATION
A-3
5. Remove plug button taped to inside of Control Box
and insert it into hole on front panel of the Wire
Drive.
MOUNTING THE CONTROL BOX (BOOM
OR SEPARATED BENCH MODELS)
The back plate of the Control Box has four keyhole
slots for mounting. See Figure A.2 for the size and
location of these slots. #10 screws are recommended
for mounting.
(4 Slots)
.25(108mm)
TOP
6.88(175mm)
FIGURE A.2
installed in the Control Box. An Input/Output
Receptacle Kit, K1548-1, is available for this purpose.
Instructions for installing the receptacles in a Control
Box are included with the kit.
Alternately, a bench feeder can be converted to a
non-typical boom system by installing an output
receptacle in a Wire Drive (use K1549-1) and an input
receptacle in a Control Box (use K1550-1). This system would meet the rule stated above: This means
that the first component in the system (the Power
Wave 455) has an output receptacle. The last component in the system (the Control Box) has an input
receptacle. The component in between (the Wire
Drive) has both an input and output receptacle.
A Control Box can be mounted to the front of a Power
Wave 455. When mounting a Control Box removed
from a bench feeder, no receptacles are required; all
connections are internal. When mounting a Control
Box configured as part of a boom system (both input
and output receptacles are already installed in the
Control Box) the receptacles do not get used. The
wiring harness from either J1 or J2 (the signals are
identical) must be disconnected from the harness on
the back of one of the receptacles (internally). This
open connector is then used during mounting to the
Power Wave 455.
MOUNTING ON POWER SOURCE
DETERMINING RECEPTACLE CONFIGURATION
The components in a Power Wave / Power Feed system are connected in a ʻdaisy chainedʼ fashion. This
means that the first component in the system (always
the Power Wave 455) must have an output receptacle. The last component in the system (typically the
Wire Drive) must have an input receptacle. Every
component in between must have both an input and
output receptacle. (Output receptacles are characterized by having insulated ʻsocketʼ connections, while
input receptacles have uninsulated ʻpinʼ connections.)
In a factory supplied bench system, the Power Wave
455 has an output receptacle, and the Wire Drive has
an input receptacle. The connection between the
Control Box and the Wire Drive is internal; no external
cables or receptacles are required.
In a factory supplied boom system, the Power Wave
455 has an output receptacle, the Control Box has
both input and output receptacles, and the Wire Drive
has an input receptacle.
If a bench feeder is to be converted to a typical boom
feeder, both input and output receptacles must be
Complete instructions for mounting a Control Box to
the front of a Power Wave 455 are included in the
Power Wave 455 Operatorʼs manual.
CONTROL CABLE
CONTROL CABLE CONNECTIONS
• All system control cables are the same.
• All control cables can be connected end to end to
extend their length.
• All system equipment must be connected to a control cable.
The Power Wave / Power Feed Wire Feeders offer
flexibility in the connection of system components.
This system uses the same type of control cable
between all of the system components. Connections
can be “daisy chained” from one system component to
another. Components can be connected in any order,
as long as the proper input and output receptacles are
present. See MOUNTING CONTROL BOX AND
RECEPTACLE CONFIGURATION for details.
NOTE: The maximum cable length between any two
pieces of equipment is 250'.
POWER FEED 10
A-4
INSTALLATION
A-4
Typical Bench Feeder Connection:
Control cable is connected from the Power Wave 455
output receptacle to the input receptacle on the back
of the Wire Drive.
Typical Boom Feeder Connection:
One control cable is connected from the Power Wave
455 output receptacle to the Control Box input receptacle. A second control cable is connected from the
Control Box output receptacle to the input receptacle
on the back of the Wire Drive.
Multiple Wire Drive Connection:
For proper multiple wire drive connections and DIP
switch settings contact the Lincoln Electric Company,
Customer Service Department. 1-800-833-WELD.
Non-Typical Boom Feeder Connection:
One control cable is connected from the Power Wave
455 output receptacle to the the input receptacle on
the back of the Wire Drive. A second control cable is
connected from the output receptacle on the back of
the Wire Drive to the Control Box input receptacle.
Control Box Mounted on Power Wave 455:
AVAILABLE CABLE ASSEMBLIES
K1543 Control cable only. Available in lengths of
8'(2.4m), 16'(4.9m), 25'(7.6m), 50'(15.2m) and
100'(30.5m).
K1544 Control cable and a 3/0 (85 mm2 ) electrode
cable with stud terminal. It is rated at 600
amps, 60% duty cycle and is available in
lengths of 8'(2.4m), 16'(4.9m), 25'(7.6m),
50'(15.2m).
K1545 Control cable and a 3/0 (85 mm2) electrode
cable with Twist-Mate™ connector on one end
and a stud terminal on the other. It is rated at
500 amps, 60% duty cycle and is available in
lengths of 8'(2.4m), 16'(4.9m), 25'(7.6m),
50'(15.2m).
ELECTRODE CABLE CONNECTIONS
Most welding applications run with the electrode being
positive (+). For those applications, connect the electrode cable between the wire feeder and the positive
(+) output stud on the power source (located beneath
the spring loaded output cover near the bottom of the
case front).
One control cable is connected from the Power Wave
455 output receptacle to the input receptacle on the
back of the Wire Drive.
See CONTROL AND ELECTRODE CABLE INSTALLATION for cable installation instructions.
CONTROL CABLE SPECIFICATIONS
It is recommended that only genuine Lincoln control
cables be used at all times. Lincoln cables are specifically designed for the communication and power
needs of the Power Wave 455 / Power Feed system.
The use of non-standard cables, especially in lengths
greater than 25 feet(7.6 meters), can lead to communication problems (system shutdowns), poor motor
acceleration (poor arc starting) and low wire driving
force (wire feeding problems).
Lincoln control cables are copper 5 conductor cable in
a SO-type rubber jacket. There is one 20 gauge twisted pair for network communications. This pair has an
impedance of approximately 120 ohms and a propagation delay per foot of less than 2.1 nanoseconds.
There are two 12 gauge conductors that are used to
supply the 40 VDC to the network. The fifth wire is 18
gauge and is used as an electrode sense lead.
For positive porosity application, a work lead must be
run from the negative (-) power source output stud to
the work piece. The work piece connection must be
firm and secure, especially if pulse welding is planned.
Excessive voltage drops at the work piece connection
often result in unsatisfactory pulse welding performance.
When negative electrode polarity is required, such as
in some Innershield™ applications, install as above,
except reverse the output connections at the power
source (electrode cable to the negative (-) stud, and
work cable to the positive (+) stud).
Change electrode polarity Dip Switch in Feed Head,
(see Dip Switch Setup Section).
POWER FEED 10
A-5
Connect the one end of the electrode cable, to the
power source output terminal of the desired polarity.
Connect the other end of the electrode cable to the
connection bar at the front of the wire drive feed plate
using the provided bolt and lockwasher. The electrode cable lug must be against the feed plate. Be
sure the cable, connection bar, and gun adapter bushing all make tight metal-to-metal electrical contact.
The Electrode cable should be sized according to the
specifications given in the work cable connections
section.
INSTALLATION
WORK CABLE CONNECTIONS
A-5
WIRE DRIVE GEAR RATIO (HIGH
OR LOW SPEED)
The speed range capability and drive torque of the
Power Feed 10 wire drive can be easily and quickly
changed by changing the external drive gear. The
Power Feed 10 is shipped with both a high speed and
a low speed gear. As shipped from the factory, the low
speed (high torque) gear is installed on the feeder. If
this is the desired gear ratio, no changes need to be
made.
Connect a work lead of sufficient size and length (per
the following table) between the proper output terminal on the power source and the work. Be sure the
connection to the work makes tight metal-to-metal
electrical contact.
To avoid interference problems with other equipment
and to achieve the best possible operation, route all
cables directly to the work or wire feeder. Avoid
excessive lengths, bundle the electrode and ground
cables together where practical, and do not coil
excess cable.
Minimum work and electrode cables sizes are as follows:
Current
60% Duty
Cycle
400 Amps
500 Amps
600 Amps
When using an inverter type power source, use the
largest welding (electrode and ground) cables that are
practical. At least 2/0 copper wire — even if the average output current would not normally require it.
When pulsing, the pulse current can reach very high
levels. Voltage drops can become excessive, leading
to poor welding characteristics, if undersized welding
cables are used.
Minimum Copper Work Cable Size, AWG
Up to 100 ft Length (30m)
2/0 (67 mm2)
3/0 (85 mm2)
3/0 (85 mm2)
SELECTING THE PROPER GEAR RATIO
See the Technical Specifications at the front of this
section for feed speed and wire size capabilities with
high and low speed gear ratios. To determine whether
you should be using the high or low speed ratio use
the following guidelines:
- If you need to operate at wire feed speeds above
800 IPM (20 m/m), you will need to install the high
speed gear (large 30 tooth, 1.6 inch(41mm) diameter
gear).
- If you do not need to run at wire feed speeds in
excess of 800 IPM (20 m/m), you should use the low
speed gear (small, 20 tooth, 1.1 inch(28mm) diameter gear). Using the low speed ratio will provide the
maximum available wire driving force.
If you are feeding only small diameter wires you
Note:
may, at your option, install the high speed ratio.
CHANGING THE WIRE DRIVE RATIO
Changing the ratio requires a gear change and a PC
board switch change. The Power Feed 10 is shipped
with both a high speed and a low speed gear. As
shipped from the factory, the low speed (high torque)
gear is installed on the feeder. For identification purposes, the low speed (high torque) gear has 20 teeth
and is 1.1 inches(28mm) in diameter. The high speed
gear has 30 teeth and is 1.6 inches(41mm) in diameter.
Power down the Power Feed by turning off its
companion Power Wave power source. For maximum safety, disconnect the control cable from the
Power Feed.
2) Remove the Phillips head screw retaining the pinion gear to be changed and remove the gear. If
the gear is not easily accessible or difficult to
remove, remove the feed plate from the gearbox.
To remove feed plate:
a) Loosen the clamping collar screw using a 3/16”
Allen wrench. The clamping collar screw is
accessed from the bottom of the feed plate. It is
the screw which is perpendicular to the feeding
direction.
b) Loosen the retaining screw, which is also
accessed from bottom of feeder, using a 3/16”
Allen wrench. Continue to loosen the screw until
the feed plate can be easily pulled off of the wire
feeder.
3) Loosen, but do not remove, the screw on the
lower right face of the feed plate with a 3/16”
Allen wrench.
head (2 screws).
b) Locate the 8-position DIP switch near the top
edge of the PC board, centered left to right.
The setting will be made on the right most
switch, S8.
c) Using a pencil or other small object, slide the
switch down, to the “0” position, when the low
speed gear is installed. Conversely, slide the
switch up, to the “1” position, when the high
speed gear is installed. Refer to Figure A.3.
d) Replace the cover and screws. The PC board
will “read” the switch at power up, automatically adjusting all control parameters for the
speed range selected.
4) Remove the screw on the left face of the feed
plate. If changing from high speed (larger gear) to
low speed (smaller gear), line the lower hole on
the left face of the feed plate with the threads on
the clamping collar. Line the upper hole with the
threads to install larger gear for high speed feeder. If feed plate does not rotate to allow holes to
line up, further loosen the screw on right face of
feed plate.
5) Remove the small gear from the output shaft.
Lightly cover the output shaft with engine oil or
equivalent. Install gear onto output shaft and
secure with flat washer, lock washer, and Phillips
head screw which were previously removed.
6) Tighten the screw on lower right face of feed
plate.
7) Re-attach feed plate to wire feeder if removed in
Step 2.
8) Feed plate will be rotated out-of-position due to
the gear change. Adjust the angle of the feed
plate per the instructions above.
9) Set the High/Low switch code on Wire Drive PC
board as follows:
a) Remove the cover from the back of the feed
POWER FEED 10
A-7
DIP SWITCH SETUP
INSTALLATION
ON
12 3456 78
S1
SETTING DIP SWITCHES IN THE
CONTROL BOX
There are two DIP switch banks on the mother board
of the Control Box. They are labeled S1 and S2 and
are located and oriented as shown in Figure A.3.
ON
12 3456 78
FIGURE A.3
S2
S2 DIP Switch Bank on Control Box Motherboard (For software version S24004-2 only)
SwitchOffOn
1Network Group ID, MSB (Assigns Control Box to a specific group) (Off is factory setting)
2Network Group ID, LSB (Assigns Control Box to a specific group ) (Off is factory setting)
3Spare
4Spare
5Spare
A-7
6Spare
7Spare
8Reserved
S1 DIP Switch Bank on Control Box Motherboard (For software version S24004-3 & up)
3Left Display is always preset WFSLeft Display is preset WFS when weld current is not flowing
CC modes override this switch regardless of position. Left Display is always preset weld current when weld current is not flowing and actual weld current when weld current is flowing
3Left Display is always preset WFSLeft Display is preset WFS when weld current is not flowing
Left Display is actual weld current when weld current is flowing
CC modes override this switch regardless of position. Left Display is always preset weld current when weld current is not flowing and actual weld current when weld current is flowing
If any option containing a Run-in setting is connected to the motherboard, it automatically
overrides this switch regardless of position.
5Spare
6Acceleration, MSB (Sets acceleration rate for wire drive) see below
7Acceleration (Sets acceleration rate for wire drive) see below
8Acceleration, LSB (Sets acceleration rate for wire drive) see below
Note: the factory shipped settings for all of the S1 and S2 switches is “OFF”.
MSB - Most Significant Bit or Byte. This is the bit in a binary number or DIP switch bank that is furthest to the left.
LSB - Least Significant Bit or Byte. This is the bit in a binary number or DIP switch bank that is furthest to the right.
POWER FEED 10
A-9
INSTALLATION
S1 DIP Switch Bank on Control Box Motherboard (For software version S24456)
3Left Display is always preset WFSLeft Display is preset WFS when weld current is not flowing
CC modes override this switch regardless of position. Left Display is always preset weld current when weld current is not flowing and actual weld current when weld current is flowing
If any option containing a Run-in setting is connected to the motherboard, it automatically
overrides this switch regardless of position.
5Memory change with trigger disabledMemory change with trigger enabled
6Acceleration, MSB (Sets acceleration rate for wire drive) see below
7Acceleration (Sets acceleration rate for wire drive) see below
8Acceleration, LSB (Sets acceleration rate for wire drive) see below
Note: the factory shipped settings for the S1 switches are as follows:
PF-10 (and Dual) Domestic - All switches “OFF”PF-10 (and Dual) European - switches 1 & 3-8 “OFF”, 2 “ON”
PF-11 Domestic - switches 2-8 “OFF”, 1 “ON”PF-11 European - switches 3-8 “OFF”, 1,2 “ON”
High speed gearbox limits adjustable
Left Display is actual weld current when weld current is flowing
S2 DIP Switch Bank on Control Box Motherboard (For software version S24456)
SwitchOffOn
1Network Group ID, MSB (Assigns Control Box to a specific group) (Off is factory setting)
2Network Group ID, LSB (Assigns Control Box to a specific group ) (Off is factory setting)
34-Step Domestic Configuration4-Step European Configuration
4Power Feed 10 / DualPower Feed 11
5Procedure Change with Trigger “OFF”Procedure Change with Trigger “ON”
6Set lower limits
7Set upper limits
8Must be on for all units (Permits selection of extended modes)
Note: the factory shipped settings for the S2 switches are as follows:
PF-10 (and Dual) Domestic - switches 1-7 “OFF”, 8 “ON”PF-10 (and Dual) European - switches 1,2,4-7 “OFF”, 3,8 “ON”
PF-11 Domestic - switches 1-3,5-7 “OFF”, 4,8 “ON”PF-11 European - switches 1,2,5-7 “OFF”, 3,4,8 “ON”
MSB - Most Significant Bit or Byte. This is the bit in a binary number or DIP switch bank that is furthest to the left.
LSB - Least Significant Bit or Byte. This is the bit in a binary number or DIP switch bank that is furthest to the right.
POWER FEED 10
A-10
INSTALLATION
A-10
Setting Wire Drive Acceleration Rate Using(All software versions)
DIP Switch S1 on the Control Box Motherboard
DIP SWITCH 6DIP SWITCH 7DIP SWITCH 8
Acceleration 1 (slow)Off Off On
Acceleration 2Off On Off
Acceleration 3Off On On
Acceleration 4On Off Off
Acceleration 5 (fast ) (factory setting)Off Off Off
SETTING DIP SWITCHES IN THE WIRE
DRIVE
There is one DIP switch bank on the control board of
the wire drive. Itʼs labeled S1 and is located and oriented as shown in Figure A.4.
ON
12 3456 78
S1
FIGURE A.4
S1 DIP Switch on Wire Drive Control Board (For software version S24029-All & S24467)
SwitchOffOn
1Network Group ID, MSB (Assigns Wire Drive to a specific group)
2Network Group ID, LSB (Assigns Wire Drive to a specific group )
3Network Feed Head ID, MSB (Assigns feed head number to wire drive)
4Network Feed Head ID (Assigns feed head number to wire drive)
5Network Feed Head ID, LSB (Assigns feed head number to wire drive)
6Spare
7Electrode Sense Polarity = Positive Electrode Sense Polarity = Negative
Switch position must match polarity of weld cable attached to feed plate.
8Gear Box Ratio = Low Gear Box Ratio = High
Switch position must match actual gear box ratio of wire drive.
Note: the factory shipped settings for all of the S1 switches is “OFF”.
POWER FEED 10
A-11
INSTALLATION
A-11
WIRE FEED DRIVE ROLL KITS
NOTE: The maximum rated solid and cored wire
sizes and selected drive ratios are shown on
the SPECIFICATIONS in the front of this section.
The electrode sizes that can be fed with each roll and
guide tube are stenciled on each part. Check the kit
for proper components. Kit specifications can be
found in the ACCESSORIES section.
PROCEDURE TO INSTALL DRIVE
ROLLS AND WIRE GUIDES
WARNING
ELECTRIC SHOCK can kill.
• Do not touch electrically live parts such
as output terminals or internal wiring.
When feeding without Power Feed 10 “Cold
•
Feed” feature, electrode and drive mechanism
are “hot” to work and ground and could remain
energized several seconds after the gun trigger
is released.
• Turn OFF input power at welding power
source before installation or changing drive
roll and/or guide tubes.
• Welding power source must be connected
to system ground per the National Electrical
Code or any applicable local codes.
• Only qualified personnel should
perform this installation.
Observe all additional Safety Guidelines detailed
throughout this manual.
Drive Roll Kit Installation (KP1505-[ ])
1) Turn OFF Welding Power Source.
2) Pull open Pressure Door to expose rolls and wire
guides.
shaft. (Do Not exceed maximum wire size rating of
the wire drive).
7) Install Outer Wire Guide by sliding over locating
pins and tightening in place.
8) Engage upper drive rolls if they are in the “open”
position and close Pressure Door.
TO SET DRIVE ROLL PRESSURE, see “Drive Roll
Pressure Setting” in OPERATION.
GUN AND CABLE ASSEMBLIES
WITH STANDARD CONNECTION
The Power Feed 10 wire feeder is equipped with a
factory installed K1500-2 gun connection Kit. This kit
is for guns having a Tweco™ #2-#4 connector. The
Power Feed 10 has been designed to make connecting a variety of guns easy and inexpensive with the
K1500 series of gun connection kits. Gun trigger and
dual procedure lead connections connect to the single
5 pin receptacle on the front of the feed head box.
See “Gun Adapters” in ACCESSORIES section.
GUN AND CABLE ASSEMBLIES
WITH FAST-MATE™ CONNECTION
(including the Magnum 450 Water Cooled gun)
A K489-7 adapter will install directly into the wire drive
feedplate, to provide for use of guns with Fast-Mate™
or European style gun connections. This K489-7 will
handle both standard Fast-Mate™and Dual Schedule
Fast-Mate™ guns.
Another way to connect a gun with a Fast-Mate™ or
European style gun connector to the Power Feed 10,
is to use the K489-2 Fast-Mate™ adapter kit.
Installation of this adapter also requires a K1500-1
gun connector. See “Gun Adapters” in ACCESSORIES section.
3) Remove Outer Wire Guide by turning knurled
thumb screws counter-clock-wise to unscrew them
from Feedplate.
4) Remove drive rolls, if any are installed, by pulling
straight off shaft. Remove inner guide.
5) Insert inner Wire Guide, groove side out, over the
two locating pins in the feedplate.
6) Install each drive roll by pushing over shaft until it
butts up against locating shoulder on the drive roll
POWER FEED 10
A-12
INSTALLATION
A-12
Magnum 200 / 300 / 400 Guns
The easiest and least expensive way to use Magnum
200/300/400 guns with the Power Feed 10 wire feeder
is to order them with the K466-10 connector kit, or to
buy a completely assembled Magnum gun having the
K466-10 connector (such as the K497-21 dedicated
Magnum 400).
Magnum 550 Guns
The easiest and least expensive way to use the
Magnum 550 guns with Power Feed 10 wire feeders
is to order the gun with the K613-7 connector kit, and
install a K1500-3 gun connection kit to the wire feeder.
Lincoln Innershield and Sub Arc Guns
All of these guns can be connected to the Power Feed
by using the K1500-1 Adapter Kit.
Lincoln Fume Extraction Guns
The K556 (250XA) and K566 (400XA) guns require
that a K489-2 Fast-Mate™ adapter kit be installed.
Installation of this adapter also requires a K1500-1
gun connector kit.
The K206, K289, and K309 require only the installation of a K1500-1 connector in the Power Feed wire
feeder.
Non-Lincoln Guns
Most competitive guns can be connected to the Power
Feed by using one of the K1500 series adapter kits,
See “Gun Adapters” in ACCESSORIES section.
GENERAL GUN CONNECTION
GUIDELINES
GUN CONNECTIONS - GENERAL
4-roll feed plates are equipped with a brass connector
bar at the gun-end of the feed plate to allow a bolted
brass-to-brass electrical connection to be made directly to either standard or Fast-mate gun adapter bushings. Use a 1/4 inch allen key on the factory-installed
socket head cap screw to insure that the connector
bar is securely tightened to the adapter bushing.
The instructions supplied with the gun and K1500
series gun adapter should be followed when installing
and configuring a gun. What follows are some general guidelines that are not intended to cover all guns.
a. Turn off input power at welding power source
before installation or changing of gun.
b. Check that the drive rolls and guide tubes are
proper for the electrode size and type being used.
If not, change them.
c. Lay the cable out straight. Insert the connector
on the welding conductor cable into the brass
conductor block on the front of the wire drive
head. Make sure it is all the way in and tighten
the hand clamp. Keep this connection clean and
bright. Connect the trigger control cable polarized
plug into the mating 5 cavity receptacle on the
front of the wire drive unit.
Note: for Fast-Mate and European connector style
guns, connect gun to gun connector making
sure all pins and gas tube line up with appropriate holes in connector. Tighten gun by turning
large nut on gun clockwise.
d. For GMA Gun Cables with separate gas fittings,
connect the 3/16” I.D. gas hose from the wire
drive unit to the gun cable barbed fitting.
e. For water cooled guns see WATER CONNEC-
TIONS in this section.
POWER FEED 10
A-13
INSTALLATION
A-13
GMAW SHIELDING GAS
WARNING
CYLINDER may explode if damaged.
• Keep cylinder upright and chained to
support.
• Keep cylinder away from areas where
it may be damaged.
• Never lift welder with cylinder attached.
• Never allow welding electrode to touch cylinder.
• Keep cylinder away from welding or other live electrical circuits.
BUILDUP OF SHIELDING GAS may
harm health or kill.
• Shut off shielding gas supply when not
in use.
SEE AMERICAN NATIONAL STANDARD Z-49.1,
“SAFETY IN WELDING AND CUTTING” PUBLISHED
BY THE AMERICAN WELDING SOCIETY.
Customer must provide a cylinder of shielding gas, a
pressure regulator, a flow control valve, and a hose
from the flow valve to the gas inlet fitting of the wire
drive unit.
The upper location must be used for 50-60 lb. ReadiReels, Spools and Coils.
For smaller coils (44lb, 30lb, 10lb, etc.), the spindle
can be placed in either the upper or lower location.
The goal is to make the wire path from the coil to the
wire drive an entry into the incoming guide tube that is
as straight as possible. This will optimize wire feeding
performance.
WATER CONNECTIONS (FOR
WATER COOLED GUNS)
If a water cooled gun is to be installed for use with the
Power Drive 10, a K590-5 Water connection kit can be
installed. Contained in the kit are the water lines and
quick connect water line fittings that install in the wire
feed head. Follow the installation instructions included in the kit. Water cooled guns can be damaged very
quickly if they are used even momentarily without
water flowing. To protect the gun, we recommended
that a water flow sense kit be installed. This will prevent wire feeding if no water flow is present.
Connect a supply hose from the gas cylinder flow
valve outlet to the 5/8-18 female inert gas fitting on the
back panel of the wire drive or, if used, on the inlet of
the Gas Guard regulator. (See Below).
Gas Guard Regulator - The Gas Guard Regulator is
an optional accessory (K659-1) on these models.
Install the 5/8-18 male outlet of the regulator to the
5/8-18 female gas inlet on the back panel of the wire
drive. Secure fitting with flow adjuster key at top.
Attach gas supply to 5/8-18 female inlet of regulator
per instructions above.
WIRE SPINDLE PLACEMENT
The reel stand provides two mounting locations for the
2 inch diameter wire reel spindle to accommodate various reel sizes. Each mounting location consists of a
tube in the center of the reel stand, and locating slots
on the outside of the reel stand. The bolt, used with a
plain washer and lock washer, slides through the tube
from the side of the reel stand. The bolt should be
threaded into the wire spindle such that the tabs on
the brake mechanism align with the locating slots,
then tighten.
WIRE FEED SHUT DOWN CIRCUIT
(OPTIONAL)
This circuit is intended to be used as a means of stopping wire feeding in the event that the water cooler
(for a water cooled gun) is not turned on. Water
cooled guns can be damaged very quickly if they are
used even momentarily without water flowing. A
Lincoln K1536-1 flow sensor kit is available for this
purpose.
The K1536-1 has two control leads coming from the
unit that become electrically common when water is
flowing. The .25 inch tab terminals of leads 570 and
572, inside the feed head case, are disconnected from
each other. Then the flow sensor control wires are
connected to leads 570 and 572. Refer to the instructions that come with flow sensor kit for detailed installation instructions.
POWER FEED 10
Loading...
+ 47 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.