This manual contains important instructions that should be followed during maintenance of your
Npower UPS and batteries.
WARNING
!
Exercise extreme care when handling UPS cabinets to avoid equipment damage or injury to
personnel. Refer to separate installation manual for equipment handling information and
installation procedures.
Follow all battery safety precautions in 4.0 - Maintenance when installing, charging, or
servicing batteries. In addition to the hazard of electric shock, gas produced by batteries can
be explosive and sulfuric acid can cause severe burns.
In case of fire involving electrical equipment, use only carbon dioxide fire extinguishers or
others approved for use in electrical fire fighting.
Extreme caution is required when performing maintenance.
Be constantly aware that the UPS contains high DC as well as AC voltages. With input power
off and the battery disconnected, high voltage at filter capacitors and power circuits should be
discharged within 30 seconds. However, if a power circuit failure has occurred, you should
assume that high voltage may still exist after shutdown. Check with a voltmeter before
making contact.
AC voltage will remain on the system bypass, the UPS output terminals and the static bypass
switch, unless associated external circuit breakers are opened.
Check for voltage with both AC and DC voltmeters prior to making contact.
When the UPS system is under power, both the operator and any test equipment must be
isolated from direct contact with earth ground and the UPS chassis frame by using rubber
mats.
Some components within the cabinets are not connected to chassis ground. Any contact
between floating circuits and the chassis is a lethal shock hazard. Exercise caution that the
test instrument exterior does not make contact either physically or electrically with earth
ground.
1
OVERVIEW OF MANUAL
The Npower manual is organized so that information can be found quickly. Each major topic is separated by sections, and there is a Table of Contents for each section. The names of the sections and
their contents are described below.
Section 1 - INTRODUCTION is a summary of the Npower Uninterruptible Power System (UPS). It
describes some of the unique features and benefits of the Npower UPS, as well as the design principles and standards that Liebert follows in the manufacture of each system. A description of the
Npower system and an overview of its functions are also included.
Section 2 - THEORY OF OPERATION is an explanation of the major circuit groups of the Npower
UPS. This section is for individuals who want to know both the basics and the specifics of each major
component. The text explains how the UPS handles electrical disturbances and interruptions.
Section 3 - OPERATION is written for facility personnel responsible for the operation of the system.
It details the procedures required to start-up the system, to transfer the load between the available
sources, and to shut down the system. Both manual and automatic operations are described. Operator
controls and displays, including the solid state liquid crystal display (LCD) screen, are illustrated and
explained for the UPS Module.
Section 4 - MAINTENANCE lists routine maintenance checks and helps the Operator pinpoint and
quickly resolve problems if they arise.
If you require assistance for any reason, call Liebert Global Services at 1-800-LIEBERT. For best service, please have the following information available:
Part Numbers:
Serial Numbers:
kVA Rating:
Date Purchased:
Date Installed:
Location:
Input Voltage:
Output Voltage:
Battery Reserve Time:
2
1.0INTRODUCTION
1.1System Description
The role of the UPS system is to supply uninterruptible, clean power to the critical load. It maintains
a full-voltage, low-distortion output, even if the utility source power sags or becomes distorted.
If there is an outage of the source power, the UPS maintains power to the load until an alternate
source of power is activated, or until the original power source is restored. If input AC power is not
restored, the UPS maintains the load (with the battery plant) long enough that the critical equipment
can be shut down in an orderly manner. The Npower UPS module displays the rate of battery discharge and calculates the amount of battery time remaining based on the actual connected load. The
time that the battery will maintain the load depends on the capacity of the battery backup plant and
the size of the load.
The system control logic automatically manages critical bus operation. System logic is resident in Digital Signal Processors (DSPs) for precise control and improved reliability.
If the critical load current exceeds the rated load of the Npower UPS system, the control logic determines the magnitude of the overload and reacts appropriately. Overloads are usually the result of
inrush current requirements. The UPS system supports loads that are 150% of the rated load for up
to 60 seconds, 125% of the rated load for up to ten minutes, and 104% of the rated load indefinitely.
If the load surpasses the overload capacity of the UPS, the load is automatically transferred to bypass
without interruption. When the load returns to within the UPS rating, it is either automatically or
manually returned (retransferred) to the UPS. How and when the load is returned to the UPS
depends on several factors: how long the overload lasted, how many overload conditions occurred
before transfer, whether there is an imminent failure of any part of the UPS, etc. In the unlikely
event of a fault within the UPS, the control logic, which continuously monitors all critical circuits
within the UPS system, transfers the load to bypass without interruption and simultaneously sets off
local and remote alarms. For a few specified faults, the UPS is shut down. The UPS can be manually
returned to service when the fault has been corrected.
Introduction
The Npower UPS display system provides precise monitoring of the UPS, fast alarm response, and
quick troubleshooting. For easy manual operations, menu-driven software provides access to several
step-by-step help screens. All operator functions are performed using menu-prompted displays and a
minimum number of operator controls. Available options include external communication capability
with both automatic dial-out and dial-in features for early warning and diagnosis of abnormal conditions.
The system software allows the operator or Liebert Global Services to enter application specific information. Overload, overvoltage, battery discharge, and shutdown limits can be set by the operator. In
effect, the software is tailored for each site.
The UPS system protects critical equipment from source power disturbances and outages, load faults,
and UPS malfunctions. This triple protection virtually eliminates computer and computing equipment downtime as a result of utility source power problems.
3
1.1.1Reliability
Reliability is the most important design goal for Uninterruptible Power Systems. All Liebert 3-Phase
UPS systems have demonstrated reliability by achieving a field-proven critical bus MTBF in excess of
one million hours. In addition, our Quality Assurance program is certified to the requirements of ISO
9001 standards.
Liebert UPS systems are ETL listed to the requirements of UL 1778, CSA Certified and (when applicable) CE marked. All equipment and components are manufactured to applicable UL, NEC, IEC,
EN, NEMA, ANSI, IEEE, EN50091-1, EN50091-2 and CSA standards and guidelines.
Designed For Success
The keys to reliability in the design of the UPS system are using conservatively rated components,
minimizing transfers to bypass, making operator controls understandable, and providing easy access
for maintenance and repair. Liebert UPS systems lead the industry in all these areas.
For example, the Npower can clear substantial overloads through the solid state static bypass switch
without transferring to the bypass source. By minimizing transfers to bypass, the Npower minimizes operation of electrical components and enhances system reliability.
As mentioned above, the system control logic has been packaged into Digital Signal Processors (DSPs)
to optimize system performance and eliminate the failure-prone discrete logic boards used in other
brands of UPS products. Furthermore, these DSPs are isolated from heat-generating components to
ensure optimal operating temperatures.
Factory Backup and Service Assistance
Introduction
Reliability depends on more than just UPS module design. Improper installation can cause any system to fail. To prevent this, service technicians from Liebert Global Services thoroughly inspect the
installation of all our systems to ensure they are installed properly and operating within performance
specifications.
Once a UPS is properly installed, you -- the on-site equipment operator -- are the most important factor in preventing critical bus failures or unplanned transfers to bypass. To make your task easier, the
UPS provides easy-to-follow, prompted instructions on its operator display screen.
If you ever need help, call your Liebert distributor or sales representative. Your attention to proper
installation, operation, and periodic maintenance will ensure that your mission-critical operations
receive the best possible protection from electrical disturbances and outages.
1.1.2Versatility
The Npower has a number of features and options that can be customized to your specific needs. See
1.5 - Options for details. Visit the battery manufacturer’s Web site for information on obtaining the
manual if you don’t already have it.
1.2Safety Precautions
Read this manual thoroughly, paying special attention to the sections that apply to you, before working with the UPS. Also read the battery manufacturer's manual before working on or near the battery.
Under typical operation and with all UPS doors closed, only normal safety precautions are necessary.
The area around the UPS system and battery should be kept free from puddles of water, excess moisture, or debris.
Special safety precautions are required for procedures involving handling, installation, and maintenance of the UPS system or the battery. Observe precautions in the separate Installation Manual
before handling or installing the UPS system. Observe precautions in 4.0 - Maintenance of this
manual before and during performance of all maintenance on the UPS or battery.
This equipment contains several circuits that are energized with high voltage. This is particularly
true for oscilloscopes. Always check with an AC and DC voltmeter to ensure safety before making contact or using tools. Even when the power is turned Off, dangerously high potentials may exist at the
capacitor banks. Observe all battery precautions when near the battery for any reason.
4
Introduction
ONLY qualified service personnel should perform maintenance on the UPS system. When performing
maintenance with any part of the equipment under power, service personnel and test equipment
should be standing on rubber mats. The service personnel should wear insulating shoes for isolation
from direct contact with the floor (earth ground).
Unless all power is removed from the equipment, one person should never work alone. A second person should be standing by to assist and summon help in case an accident should occur. This is particularly true when work is performed on the battery.
Three types of messages are used throughout the manual to stress important text. Carefully read the
text below each Warning, Caution, and Note and use professional skills and prudent care when performing the actions described by that text.
A Warning signals the presence of a possible serious, life-threatening condition. For example:
WARNING
!
Lethal voltages may be present within this unit even when it is apparently not operating.
Observe all cautions and warnings in this manual. Failure to do so could result in serious
injury or death. Do not work on or operate this equipment unless you are fully qualified to do
so! Never work alone.
A Caution indicates a condition that could seriously damage equipment and possibly injure personnel.
For example:
CAUTION
!
Make sure you understand the proper sequence before operating any circuit breaker.
Operating a Maintenance Bypass circuit breaker out of sequence could cut off power to the
critical load.
A Note emphasizes important text. If the note is not followed, equipment could be damaged or may
not operate properly. For example:
NOTE
If the UPS system has a blown fuse, the cause should be determined before you replace the fuse.
Contact Liebert Global Services.
1.3Modes Of Operation
Refer to 2.0 - Theory of Operation and 3.0 - Operation for more details.
1.3.1Normal (Load On UPS)
The utility AC source provides power to the rectifier/charger in the UPS module. The rectifier/charger
converts the utility AC power to DC and supplies DC power to the UPS module inverter while simultaneously float charging the battery plant. The UPS inverter converts DC to AC and furnishes AC
power to the critical bus.
1.3.2Input Power Failure
If the utility source power fails or is outside the acceptable range, the battery plant becomes the primary supplier of DC power to the inverter.
1.3.3Recharge
After the utility source power is restored, or an alternate power source becomes available, the rectifier/charger slowly walks-in to once again power the inverters and recharge the battery plant.
5
1.3.4Overload
Overloads in critical systems may be caused by inrush currents during connected equipment startup
or by faults in the critical load or distribution network. The Liebert Npower UPS system can maintain
full output voltage regulation while sustaining the following overloads:
• Up to 125% for 10 minutes
• Up to 150% for 1 minute
• Up to 200% for 10 cycles
For momentary faults above 200% of rated current, the static switch turns on for 10 cycles to supply
power from the bypass source. Up to 6,000 amps of current can be supplied for the first half cycle.
The critical load remains on the UPS module for the above conditions. If the UPS system overload
capacity is exceeded, an automatic transfer to bypass is initiated, which keeps the static switch on
and opens the inverter output contactor.
Whenever you have an overload condition, you should determine the cause of the overload.
1.3.5Bypass (Internal)
The UPS control logic initiates an automatic transfer to the bypass source if the overload-current-versus-time curve is exceeded or if specified UPS system faults occur. You can also manually transfer the
load to the bypass (without interruption) if you must take the UPS module out of service for maintenance.
With the rotary switch in the Bypass position, most key components and operating modes can be
checked without disturbing the critical bus. However, certain key power-carrying components will
require complete system shutdown or isolation through an external maintenance bypass cabinet for
100% service.
Introduction
1.3.6External Maintenance Bypass
The installation of an External Maintenance Bypass Cabinet or panel board is recommended to allow
you to totally isolate the UPS from all power sources. Use of the External Maintenance Bypass is
described in SIB External Maintenance Bypass on page 30.
1.3.7Off-Battery
The battery plant can be disconnected from the rectifier/charger by using an external Module Battery
Disconnect (MBD) circuit breaker. The UPS continues to function normally, though it does not have
power outage back-up capability until the battery plant is reconnected.
Figure 1UPS controls and display screen (with example of the monitor/mimic screen)
MIMIC DISPLAY
SS
RECT.
BATTERY
CHG
INV.
SYS. STATUS
LOAD
6
1.4Operator Controls
Liebert Npower UPS modules are equipped with a microprocessor-based Operator Display Screen and
Control Panel designed for convenient and reliable operation. The front panel location of the monitoring and control system enables the Operator to quickly identify the current status of the UPS and to
perform most of the manual operations.
The operator display screen is driven by an easy-to-follow menu-prompted software program that controls and monitors the UPS system.
Detailed instructions on how to interpret the displays and use the controls are in 3.0 - Operation.
1.5Options
A number of standard pre-designed options are available from Liebert for your UPS system.
Described below are the most frequently provided options. Note that the battery items (1 and 2) are
required to complete the UPS system. The remaining options provide improved system performance
or convenience.
1. Battery and Racks. The batteries provide power in the event of a power outage. The Liebert UPS
can use a variety of battery types, provided the battery plant is designed for the UPS DC voltage
range and the load requirements of your application.
2. Module Battery Disconnect. The UPS system utilizes a separate Module Battery Disconnect for
remotely located batteries. A sensing circuit in the UPS module, set at the battery low voltage
limit, trips the Module Battery Disconnect to safeguard the battery from excessive discharge. The
Module Battery Disconnect has an undervoltage release mechanism designed to ensure that
during any shutdown or failure mode all battery potential is removed from the UPS system.
3. Input Distortion Filter (Trap). This filter reduces input current reflected harmonic distortion to
less than 10% THD at full load. The filter is factory installed within the UPS. This filter also
improves the input power factor to better than 0.95 lagging.
4. Load Bus Synchronization (LBS). The Load Bus Sync (LBS) option keeps two independent UPS
modules (and therefore their critical load buses) in sync, even when the modules are operating on
batteries or asynchronous AC sources. This means that critical loads connected to both load buses
can switch seamlessly between the two.
5. SiteScan Central Monitoring System. Liebert manufactures a central monitoring system that
automatically displays key UPS measurements and alarms, as well as data from a variety of
sensors. This monitoring system signals alarms so corrective action can be taken. Events and
data can be printed in hard copy. Data can be logged for analysis. The SiteScan Interface port is
standard for the Npower.
6. Remote Alarm Status Panel. The UPS system may also be provided with an optional Remote
Alarm Status Panel. This Panel provides eight LED indicators and may be placed at a convenient
location near the critical load. A functional description of the Remote Alarm Status Panel is
provided in 3.5.3 - Remote Alarm Status Panel.
7. Open Comms - Discrete Output Option OC-DO (Programmable Relay Board). Each option has 8
channels. Up to two Programmable Relay options can be installed in the same UPS. Any alarm/
event can be programmed onto any channel or channels. Programming is performed through the
LCD display. Each relay channel has two sets of Form-C dry contacts rated 1 Amp @ 30 VDC or
250 mAmp @ 125 VAC.
8. Open Comms - Discrete Input Option OC-DI (Input Contact Isolator). Provides UPS module
interface for up to eight user relay inputs (normally open dry contacts) for user alarm messages.
The user through the LCD display can program the UPS alarm messages. The input alarm can
also be installed to trigger an Open Comms - Discrete Output Option channel. Each alarm can
have auto-dial, event log, and time delay (0 to 999.9 seconds).
9. Optional Power Supply (OPS). An additional control power supply is required when a Remote
Alarm Status Panel and/or three or more battery circuit breakers are present in the system.
10. Internal Modem. Provides a 2400-baud modem in the UPS capable of dialing out from the UPS or
accepting incoming calls and connecting to a remote terminal, computer or PC. A command set
allows the user to view the alarm status, event log status, history status and system settings. The
modem can also be configured to dial out two different telephone numbers, a primary and a
backup number as a result of a significant UPS event. The selection of dial-out events is
programmable by the Operator.
11. Network Interface Card - NIC. This option provides internal hardware and software to
communicate (via SNMP and HTTP) to any I.P.-based Ethernet network. Connection to the
network is made by a 10 baseT Ethernet cable provided by the user.
Introduction
7
2.0THEORYOF OPERATION
2.1General Component Description
The UPS system includes all of the equipment necessary to continuously provide computer- grade AC
power to a critical load, even when there is an interruption of the utility line power. It consists of the
UPS modules and a back-up battery plant. Refer to Figure 2.
2.1.1UPS Module
The UPS module consists of system controls, a rectifier/charger, an inverter, protective devices, and
other accessories.
System Controls: The system control logic automatically manages critical bus operation and monitors
performance of the UPS module. Microprocessor technology and dedicated firmware provide advanced
logic control and a comprehensive display of information. The UPS module status is displayed locally.
Optional ports permit communicating with external devices.
Rectifier/Charger: The rectifier/charger converts utility power from AC to DC to charge the battery
and provide the DC input to the inverter. Its design limits reflected harmonic current distortion to
source power and provides low-ripple DC power for charging batteries.
Inverter: The inverter converts DC power into the precise AC power required to supply a sensitive
critical load. The inverter converts DC power into a pulse-width-modulated (PWM) that is easily filtered into a clean sine wave output. The PWM also minimizes the harmonic voltage distortion caused
by typical switching power supplies and other nonlinear load components used in computers and
related electronics.
Theory of Operation
Static Bypass Switch: The static (solid-state) bypass switch immediately transfers the load from the
inverter to the bypass AC power source in the event of a severe overload on the system or a failure
within the UPS. This transfer takes place without any interruption of the power supplied to the load.
The system includes redundant circuits to detect and isolate shorted SCRs in the static switch.
Bypass Circuit: The bypass circuit consists of switches and associated synchronizing and control circuitry to transfer the load to/from the bypass source.
2.1.2Battery System
The battery is used as the alternate source of power to supply DC power to the inverter if the AC supply voltage is outside the acceptable range. The battery supplies power to the inverter until the utility
power is restored or until an alternate power source is available. If AC source power is not restored or
an alternate power source is not available, the battery can be sized to provide power long enough for
an orderly shutdown of the load.
8
2.2Detailed Component Descriptions
2.2.1Controls
Hardware
The Npower UPS operator interface display system is designed to provide all of the information that
is required for the operation of each UPS module. The following is a list of the hardware features:
1. The control logic performs automatic operations with minimal operator interface. The limited
number of manual controls are easy-to-use.
2. Each Npower UPS cabinet is equipped with an easy-to-read liquid crystal display (LCD) screen. It
presents information in a way that is easy to understand at an eye-level front panel location.
3. The display is controlled by a dedicated microprocessor with a non-volatile (EPROM) program
and a battery-backed event memory.
4. The Npower can be ordered with communication ports for:
a. Transmission of present status information to remote terminals via a resident auto-dial
communications program and an external or optional internal modem. This port also
responds to inquiries of the UPS and history from the remote terminal.
b. Reporting UPS and history information in response to inquiries from a local terminal (no
modem required).
c.Reporting information to a Liebert SiteScan Central Monitoring System.
d. Relaying selected alarm messages to a Liebert Remote Alarm Status Panel and to a separate
terminal board for customer use.
e.Reporting key systems information via SNMP interface to a network monitoring system.
Theory of Operation
NOTE
All external communication devices are optional equipment.
Firmware
The operator interface display system software enables the operator to monitor the UPS system status, to control the power flow through the UPS, to monitor all of the meter readings, to execute the
start-up, shutdown, and the load transfer procedures, to access the event history files, and to make
adjustments to the programmable parameters. The following is a list of the firmware features:
1. The menu-driven software prompts the operator for input.
2. Step-by-step instructions assist the operator during the start-up, shutdown, and the load transfer
procedures. This helps to eliminate operator errors.
3. Graphics-based mimic diagrams illustrate the position of internal switches and the power flow
through the UPS system.
4. The Present Status screen reports information about the system's present status. The History
Status screen chronicles the events leading up to and immediately after a fault. The Event
History screen lists all of the alarm messages that have been logged over a period of time.
Refer to 3.0 - Operation for a description of the controls and indicators located on the Operator Control Panel.
9
2.2.2Rectifier/Charger
The UPS module rectifier/charger consists of input fuses, AC current-limiting circuit, battery equalize
charge circuit, DC filter, battery charge-current-limiting circuit, and bridge rectifiers.
Operation
The rectifier/charger converts the AC input power to DC power. This conversion is accomplished by 3phase bridge rectifiers using SCRs. All phases are individually fused. For all modules, reflected input
current THD is less than 30% at full load (which may be reduced to less than 10% with optional filter).
The filtered output of the rectifier/charger provides regulated DC power to drive the inverter and
charge the battery.
Input
The input is sized to allow enough current to recharge the battery and supply a full-rated load at the
same time.
Input Current Limit
AC input current sensing transformers (CTs) are used to measure current levels. Control circuitry
monitors the CTs and restricts the AC current to less than 125% of the full input current rating by
reducing the battery charging voltage. This current limit is adjustable from 100 to 125% of the system
capacity measured in AMPS, with the default setting at 125% (maximum AMPS). An external dry
contact closure (field supplied) activates a reduced second level of the battery charge current limiting
circuit for use with a back-up generator.
Theory of Operation
Input Current Limit, Second Level
A second level of input current limit is initiated by an external contact closure (field supplied for use
with back-up generator), and is adjustable from 85 to 100% (factory set at 100%).
During a rectifier re-start following battery discharge, the current slowly ramps up (walks-in) from
20% of the rated input current to 100% over a 15 to 20 second period. The maximum rate of change of
the AC input current is 15% per second. The input current walk-in reduces the start-up surge distortion effects on all other equipment connected to the same source and prolongs the service life of internal components.
Input Current Inrush
The maximum sub-cycle of inrush current is typically less than 6-8 times normal.
Input Power Factor
The rated input power factor is no less than 0.80 lagging at the nominal input voltage and the full
rated UPS load. The optional input filter will improve the power factor to better than 0.92 lagging at
full load. Refer to drawings for your specific model.
2.2.3Battery Charging Circuit
The UPS module charging circuit is capable of recharging the battery plant to 95% of full capacity
within 10 times the discharge time. Recharging the last 5% takes longer because of characteristics
inherent in the battery. DC ripple voltage is limited to 0.5% RMS to preserve battery life during longterm float charging while the UPS system is operating on utility source power.
Operation After Discharge
When commercial power is interrupted, the battery continues to supply DC power to the inverter
without interruption to the critical load. If the AC source power is restored before the battery has
fully discharged, the rectifier automatically restarts and resumes carrying the inverter and battery
recharge load requirements.
10
Theory of Operation
Operation After End-of-discharge
The battery time screen displayed on the control panel enables you to estimate when battery shutdown will occur. You will have enough time to energize an alternate AC power source or to initiate an
orderly shutdown of the critical load. If the battery plant discharges to the shutdown point during an
outage, the UPS automatically disconnects the load, the AC input, and the battery. After AC input
power is restored, the rectifier can be manually restarted by the Operator.
Battery Disconnect
The module battery disconnect (MBD) circuit breaker is used to isolate the UPS module from the battery during maintenance, and to automatically disconnect the battery from the inverter at the end of
battery discharge. The MBD circuit breaker must be closed manually unless you have the optional
motorized battery breaker. (See 3.3.8 - Auto Restart).
Battery Charge Current Limiting
The battery recharge current, after a battery discharge, is limited to between 1 and 25% (adjustable)
of the full load maximum discharge current stated in AMPS. This regulates the amount of current
that flows from the power source to the battery while the battery is recharging.
The battery charge current limit is factory set at one-half of maximum or 12.5% for normal operation
and at 1% for alternate power source recharge operation.
Battery Equalize Charge Circuit
The battery equalize charge feature can be manually initiated or it can be programmed to operate
automatically. Either can be selected from the battery equalize screen displayed on the control panel.
The automatic battery equalizing charge circuit increases the rectifier/charger output voltage to
charge the battery anytime there is a power outage of 30 seconds or longer. The equalizing voltage is
slightly higher than the float voltage. This helps all the batteries in a string to reach a uniform state
of charge.
2.2.4Inverter
The inverter is a solid state device that converts the DC output of the rectifier/charger or the battery
to AC power.
Operation
The inverter converts DC power from either the battery or the rectifier/charger into three pulsewidth-modulated/six-step waveforms. These waveforms are filtered into low-distortion sine wave
power. The inverter is controlled by a Digital Signal Processor (DSP). This DSP controls the precise
synchronization, amplitude, and frequency of the output voltage.
In addition to the inverter efficiently supplying a regulated AC output from a DC source, the inverter
output provides isolation between the critical load bus and the commercial source power. The inverter
is configured to handle most critical load inrush surges. It maintains output voltage Total Harmonic
Distortion (THD) within specifications even when handling nonlinear computer loads.
NOTE
The manufacturers of the valve-regulated batteries supplied with Liebert’s standard battery
cabinets recommend that when first installed the batteries be equalize charged. After that
initial equalize charge, they recommend no further equalize charging for their batteries. Other
manufacturers may have different recommendations for their products. Consult the battery
manufacturer’s manual for specific information about equalize charging.
Output Regulation and Overload Performance
The inverter is capable of sustaining full output voltage (±1% of the nominal voltage) for up to 150%
overload at the output for as long as 60 seconds without reducing the output voltage. It can also handle at least 125% of the rated current for up to 10 minutes. If an overload exceeds the system capacity
and a bypass source is available, the critical load is transferred to the bypass source and the inverter
is disconnected from the load.
11
Nonlinear Load Characteristics
Computers and computer equipment with switching power supplies generate nonlinear currents rich
in fifth and seventh harmonics.
The inverter pulse-width-modulated waveform, coupled with the output filter, provides a natural
path for reducing the fifth and seventh harmonic currents produced by the load. The inverter/filter
limits the output voltage THD to less than 3% with up to 100% typical electronic data processing
(EDP) loads. EDP equipment characteristically includes both nonlinear and linear load components.
Unbalanced Load Characteristics
Unbalanced loads are actively regulated. The phase-to-phase voltage balance is maintained to within
2%, even with a 50% load imbalance.
2.2.5Static Bypass Switch
A static bypass switch is an integral part of the UPS. An automatic transfer control circuit senses the
status of the operator controls, UPS logic signals and alarm messages, and critical bus operating conditions. If the inverter output can no longer supply the critical load, the static bypass switch automatically transfers the critical load to the bypass source without interruption.
Static Switch Backfeed Protection
The static bypass system is equipped with redundant disconnect circuits that prevent backfeed of
lethal voltage to the bypass input in the event of a shorted static switch SCR. If a shorted SCR is
detected, the static bypass switch is isolated and an alarm is annunciated at the UPS control panel,
while the critical load remains on UPS output power.
Theory of Operation
Pulsed Parallel Operation
When an overload condition such as magnetic inrush current or a branch load circuit fault exceeds
200% of the full-load current rating, the static bypass switch pulses on for 10 cycles. This allows up to
6000 amperes from the bypass line to clear the overload without a complete transfer to bypass (a Liebert design exclusive). The bypass source is in parallel with the UPS system, permitting the bypass
source to carry the initial overload current. If the overload clears before 10 cycles, a load transfer to
bypass is not made. If the overload condition continues to exceed the inverter capacity, the automatic
transfer is made (maintaining the load voltage within the specified limits).
Load Transfers
Transfers to (transfer) or from (retransfer) the bypass may be performed automatically or manually in
a make-before-break (MBB) sequence.
Manual load transfers and retransfers are initiated by the Operator from the UPS Control Panel.
Automatic transfers are initiated by the UPS system control logic when an overload is beyond the
specified capabilities of the UPS inverter or when a fault occurs within the UPS module. An automatic retransfer is initiated if this function is enabled and if system conditions for a retransfer are
present.
12
Theory of Operation
Transfer and Retransfer Conditions
1. Automatic Transfers to Bypass:
Critical bus conditions that will initiate an automatic transfer of the critical load from the UPS
inverter output to the bypass source are:
a. Output Overload: overcurrent condition in excess of the current-versus-time overload capacity
curve.
b. Over/Under Voltage (OV/UV): critical bus voltage is outside the allowable tolerance.
c.Inverter Inoperative: inverter diagnostic circuitry senses an imminent inverter output OV/UV
condition:
d. Battery discharged to the shutdown voltage.
e.Inverter or rectifier fault condition (power, logic, or over-temperature) present or imminent.
f.Failure of system logic or logic power.
2. Manual Transfers:
Manual transfers may be initiated at any time provided no transfer inhibition conditions are
present.
3. Transfer Inhibited:
A manual transfer to the bypass source will be inhibited if any of the following conditions exist:
a. Bypass frequency deviates ±0.5 Hz from the nominal.
b. UPS system to bypass voltage difference (DV) exceeds a predetermined percentage (normally
10%).
c.OK to Transfer signal from the control logic is not present.
4. Automatic Retransfers to UPS:
Critical bus conditions that must be present to initiate an automatic retransfer (Auto-Rexfer) of
the critical load from the bypass source to the UPS system are:
a. The number of Auto-Rexfer Attempts selected must be greater than zero (0). If zero (0) is
selected, no automatic retransfer will occur.
b. Critical load was initially transferred to the bypass source due to a system overload only.
c.Overload has since been eliminated (the load has dropped below 100% of the rated load).
d. Both the Input contactor and Battery (MBD) circuit breakers have remained closed since the
overload transfer.
e.OK to Transfer signal received from the control logic for at least 10 seconds, within 5 minutes
of the overload transfer. (A manually initiated retransfer from bypass is required for
overloads lasting 5 minutes or more.)
f.Cyclic-type system overloads, which occur up to five (select range is 0 to 5) times in 60
minutes, are automatically returned to the UPS system for each event including the Nth
overload. A manually initiated retransfer from bypass is required for the N+1 overload.
5. Manual Retransfers:
Manual retransfers may be initiated at any time provided no retransfer inhibition conditions are
present.
6. Retransfer Inhibited:
A retransfer (automatic or manual) from the bypass source to the UPS system shall be inhibited if
any of the following conditions exist:
a. Retransfer Inhibitions:
1. Bypass frequency exceeds ±0.5 Hz of the nominal.
2. UPS system-to-bypass voltage difference (DV) exceeds a predetermined percentage
(normally 10%).
3. OK-to-Transfer signal from the control logic is not present.
4. Inverter or rectifier fault.
b. Automatic Retransfer Inhibitions (in addition to those above):
1. The load transfer to bypass was not caused by an output overload.
2. Excessive cyclical overloads within a one-hour period.
3. Retransfer conditions are not satisfied within 5 minutes of the initial transfer.
13
3.0OPERATION
3.1Operator Controls
The Npower operator controls and indicators are located on the UPS Module Cabinet door and inside
the cabinet. See Figure 2. The Operator Control Panel is located in the upper lefthand corner of the
door, enabling the Operator to quickly identify the current status of the UPS system and to perform
most of the manual operations. The operator display screen is driven by an easy-to-follow menuprompted software program. The internal control system executes programs which generate messages on this display screen. Screen messages instruct the Operator during start up, operation, and
shutdown. The screen also displays status information upon request. Operating the UPS consists of
watching the indicators on the operator control panel and making appropriate responses. Further
UPS monitoring and testing is achieved by navigating through a series of menu selections on the display screen.
Figure 280 kVA UPS outside and inside views
Operation
1
2
3
Table 1Key locations on UPS
ItemDescriptionFunction
1Operator Control PanelContains Display screen, Navigation buttons and Emergency Power OFF button.
2Rotary SwitchProvides manual selection of Normal, Bypass and Service modes.
3Fuse BlocksContain fuses for UPS control power.
14
Figure 3Operator control panel
1
2
Table 2Key locations on operator control panel
ItemDescriptionFunction
1Emergency Power Off ButtonTurns power off in an emergency situation.
2Display ScreenEnables Operator to monitor power flow and meter readings, receive
3Navigation ButtonsEnables Operator to access menu screens and make selections.
Operation
3
reports, and execute operational procedures.
15
3.1.1Operator Control Panel
A
The Operator Control Panel enables the operator to perform the following tasks:
• Obtain a quick indication of operational status:
• Is the critical bus OK?
• Is the UPS system OK?
• Is the battery available?
• Is the bypass line available?
• Monitor the power flow through the UPS system and monitor all meter readings:
• Is the critical load being supplied power from the UPS system or bypass?
• Are input, battery, and output voltage, frequency, and current readings at nominal levels?
• How much battery time is still available during an outage?
• Is the battery recharging after discharge?
• Execute operational procedures:
• Perform critical bus transfer/retransfer between the UPS and the bypass line.
• Start-up and shutdown the UPS.
• Shutdown the system instantly in the event of an emergency.
• Access status reports and history files:
• Obtain a complete listing of the present status of the UPS including input, output, and battery voltage, frequency, and current readings, and any alarms that may be present.
• Review a complete history report of all events leading up to and immediately after a fault condition.
• Examine an archive listing of all alarm conditions that have occurred over a period of time.
• Make adjustments to programmable parameters (access limited by Security Access function):
• Set the date and the time functions.
• Change the auto-dial phone number and the modem options.
• Select the number of auto-retransfer attempts.
• Make adjustments to the UPS output voltage before performing a manual load transfer.
Operation
3.1.2Navigation Buttons
The Navigation Buttons are located below the Display Screen.
Figure 4Navigation buttons
STARTUP / SHUTDOWN
STATUS REPORTS
CONFIGURATION
SELECT
UP
MAIN MENU
DOWN
MANUAL TRANSFER
BATTERY MANAGEMENT
ALARM
RESET
LARM
SILENCE
ESCAPE
16
The SELECT button is used to select a particular item from the options on the screen. When you
press this button, the screen that is selected will be immediately displayed.
The UP and DOWN buttons are used to move the cursor around the screen in order to highlight
appropriate selections.
The ALARM SILENCE button silences the audible alarm and discontinues the flashing of the alarm
messages.
The ALARM RESET button clears a latching alarm after the alarm condition is corrected.
The ESCAPE button is used to exit the screen and return to the Mimic Display.
3.1.3Rotary Switch
The Rotary Switch is located on the lower right side of the panel inside the cabinet. This switch provides single-point control of the UPS.
NOTE
Improper positioning of the rotary switch can result in unwanted actions. Therefore it is
important to read the complete instructions before using this switch, and to follow Operator
prompts on the display screen.
Figure 5Rotary switch
Operation
The Rotary Switch has 3 positions:
• NORMAL: The Normal switch position is used under most operational conditions.
• BYPASS: The Bypass switch position directs the power flow through the Internal Bypass Circuit.
The UPS module may be either on or off. If the UPS module is on and the batteries require charging, charging will take place.
• SERVICE: The Service switch position directs the load to the Internal Bypass Circuit so the UPS
can be serviced.
NOTE
For purposes of this manual, assume that the rotary switch will always be in the NORMAL
position.
NOTE
If the position of the rotary switch must be changed, as in servicing, it is imperative that the
Operator observe the light in the corner of the Rotary Switch panel before making any change.
The switch position may be changed only if the light is green. Never move the switch if the light
is red. Instead, call the Liebert Global Services technician.
NOTE
The LED light is positioned in the lower left-hand corner.
17
3.2Security Access and Passwords
Password protection is provided in the Npower UPS system to protect you from any unauthorized configuration of the system. A default password is installed on your system when you receive it.The
default password is NPWR. It is important, however, that you enter your own secure password as
soon as possible. The following procedure will enable you to do this.
1. From the MAIN MENU on the Display Screen, navigate to the primary CONFIGURATION
Screen. It will look like the figure below.
Figure 6Configuration screen
CONFIGURATION
SYSTEM RATINGS
SYSTEM SETTINGS
FACTORY SETTINGS
ALARM MASK
CUSTOMER ALARM INTERFACE
Operation
EXIT
2. Highlight USER SETTINGS using arrow keys, and press SELECT.
3. The USER SETTINGS screen will come up.
4. Bracket NEXT using arrow keys and press SELECT five times. This will take you to the sixth
page of the USER SETTINGS screen.
Figure 7User settings screen, page 6
USER SETTINGS
AUTO RESTART SETTING SYSTEM
ACTIVE FILTER ENABLE ENABLED
TEMPERATURE BATT. CB TRIP NO
CHANGE PASSWORD
INTERRUPTED TRANSFER ENABLE DISABLE
PREV.
Highlight CHANGE PASSWORD. This action will bring up the PASSWORD screen. You must know
the current password in order to change it. Next, you will be prompted to enter a new 4-digit password. The new password may contain letters from A through Z and/or digits from 1 through 9.
5. You now have 5 minutes to examine and configure password-protected screens.
6. After five minutes you must re-enter the password in order to unlock further password-protected
screens.
CANCEL
SAVE & EXIT
NOTE
eac
The TIME and DATE of all password changes are logged in the event log.
18
3.3Display Screens and Procedures
g
y
y
y
y Cy
g
g
g
y
y
y
y
The Operator Interface Display System of the Npower allows quick access to any screen the operator
chooses. The default screen is the Mimic Display Screen.
MENU TREE
The figure below shows the primary screens that you can access through the Operator Interface Display System.
Figure 8Menu tree
Operation
Main MenuMain MenuMain MenuMain Menu
Bypass
Input
Status
(Dual
Input
Only)
Input
Status
Output
Load
Status
Battery
Status
System
Faults/
Alarms
Mimic /
Display
Manual Transf.
/ Retransfer
Auto
Startup
Manual
Startup
User
Shut
Down
Startup /
Shutdown
Instructions
InstructionsInstructionsInstructions
Battery
Mgmt.
Battery
Batter
Te st
Te st
Batter
Equilizer
Battery
Te mp
Compensation
Charge
Batter
cle
Monitor
Batter
Time
Remaining
Status
Reports
Confi
CalibrationCalibration
Event
Log
Histor
Log 1
Histor
Log 2
stem
S
Status
Clear
Histor
Logs
Clear
Event
Log
uration
System
Ratings
System
Settin
User
Settin
Factory
Settin
Alarm Mask
Customer
Alarm
Interface
s
s
s
NOTE
Any screens where changes in configuring, settings or data can be made (including all the
Configuration screens) are password-protected.
19
Operation
Primary Screens
The Main Menu has eight primary screens. Please note that some screens have multiple pages
because not all the information can fit on one page. To access the next page, highlight NEXT and
press SELECT. To access the previous page, highlight PREV and press SELECT.
• Mimic Display. This graphic portrays the power flow through the UPS. Switch indications, system
status, and alarm messages are all displayed on this screen. Detail screens can display input voltage and current readings, battery status, and load characteristics and alarm info.
• Status Reports. This display consists of three sub-menu selections: present status, history log and
event log. These screens display data on the system's present and past performance. They also
display information about any faults that have occurred in the system. Total operating hours are
displayed here.
• Configuration. This screen displays the current configuration of the UPS system. It also enables
the operator to reset the date, time, dial-out phone numbers and System Options. System Options
include Temperature-Compensated Charging, Customer Alarm Definitions and Battery Load
Test. The operator can view, but can not change, any of the settings unless the password is
entered. See 3.2 - Security Access and Passwords for more information.
• Manual Transfer. This screen specifies all of the steps required to manually transfer the critical
load between the UPS and the bypass source. Comparisons of the voltage, frequency, and phase
synchronization of the UPS output and the bypass line are also illustrated to aid in the transfer or
retransfer procedure.
• Startup and Shutdown Procedures. These screens list step-by-step procedures to start up UPS or
to shut it down for maintenance or repairs. Screens include the following: Auto Startup, Manual
Startup, and two types of Operator Shutdown procedures.
• Battery Management. These screens display information on battery self tests, battery equalization, and battery compensated charging. This enables the operator to immediately see the effects
of load shedding on time remaining and to accurately assess his power resources. The battery
equalize screen lets the operator change the battery equalize recharging mode from manual to
automatic, and to observe or change the equalize time. Battery equalize charge voltage is higher
than battery float (constant) charge voltage.
NOTE
The manufacturers of the valve-regulated batteries supplied with Liebert’s standard battery
cabinets recommend that when first installed the batteries be equalize charged. After that
initial equalize charge, they recommend no further equalize charging for their batteries. Other
manufacturers may have different recommendations for their products. Consult the battery
manufacturer’s manual for specific information about equalize charging.
Secondary Screens
The secondary screens show detailed information relating to the primary screens. These screens are
illustrated below under each primary screen. Like the primary screens, the secondary screens may
also consist of multiple pages. To get to the next page, highlight and Select the word NEXT. To return
to the previous screen, highlight and Select the word PREV.
STATUS INFORMATION
Module status information is available on the display screen when the Control Power is ON, even
when the UPS module is not operating. The same system status information is also available at local
and remote terminals. See 3.3.4 - Status Reports for information on status reports and 3.5 - Com-munication Interfaces for information on Operator communication interfaces.
If a module display screen is blank, either power is not available, the Rectifier Input (RIB) circuit
breaker (external to the UPS module) is open, or the Control Power is OFF. If power is available and
a display is blank, contact Liebert Global Services (1-800-Liebert, or 1-800-543-2378).
20
Main Menu Screen
The Main Menu contains the primary menu selections that monitor and control the operation of the
UPS. To access one of these screens, use the NAVIGATIONAL BUTTONS beneath the screen.
First, press the UP or DOWN button until the desired screen is highlighted. Then press the SELECT
button.
From any screen, pushing the Escape button once will return you to the Mimic Screen.
Figure 9Main menu screen
STARTUP / SHUTDOWN
STATUS REPORTS
CONFIGURATION
Operation
MAIN MENU
MANUAL TRANSFER
BATTERY MANAGEMENT
3.3.1Mimic Display Screen
From Main Menu move the highlighted cursor to MIMIC DISPLAY and press the Select button. This
brings up the Mimic Display Screen.
The Mimic Display screen is the default screen on the Operator Display. It is a simplified block diagram showing an overall view of the power flow through the UPS system. Solid lines indicate power
flow; white lines with thin black edges indicate that power is not flowing in that area. The following
examples illustrate power flow under different conditions.
Figure 10 Monitor / mimic display screen example: normal power flow
MIMIC DISPLAY
SS
RECT.
BATTERY
CHG
INV.
LOAD
SYS. STATUS
21
In this example, power is available from the normal and bypass sources, as well as from the battery.
Notice that the switching devices are all closed except for the bypass switch at the top. The load is
operating on conditioned power from the inverter. The battery is being charged by the rectifier. The
static switch is operative and ready to respond to momentary demands for overload current.
In this example, we see that a utility failure has shut down both the normal and bypass power
sources. The battery is connected and supplying power to the load.
MAIN MENU
MANUAL TRANSFER
STARTUP / SHUTDOWN
STATUS REPORTS
CONFIGURATION
Figure 12 Mimic display screen example: load on bypass, UPS module on and charging battery
BATTERY MANAGEMENT
MIMIC DISPLAY
SS
RECT.
BATTERY
CHARGE
22
BP
INV.
FAULTS / ALARMS
LOAD
Loading...
+ 82 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.