To insure safe operations please read the following statements and understand their meaning. Also
refer to your equipment manufacturer's manual for other important safety information. This manual
contains safety precautions which are explained below . Please read carefully.
WARNING
Warning is used to indicate the presence of a hazard that can cause severe personal injury, death,
or substantial property damage if the warning is ignored.
CAUTION
Caution is used to indicate the presence of a hazard that will or can cause minor personal injury or
property damage if the caution is ignored.
CV11-16
Section 1
1
NOTE
Note is used to notify people of installation, operation, or maintenance information that is important
but not hazard-related.
For Y our Safety!
These precautions should be followed at all times. Failure to follow these precautions could result in
injury to yourself and others.
WARNING
Accidental Starts can cause
severe injury or death.
Disconnect and ground spark plug
leads before servicing.
Accidental St arts!
Disabling engine. Accidental
starting can cause severe injury
or death. Before working on the
engine or equipment, disable the
engine as follows: 1) Disconnect the
spark plug lead(s). 2) Disconnect
negative (-) battery cable from
battery .
WARNING
Rotating Parts can cause severe
injury.
Stay away while engine is in
operation.
Rotating Part s!
Keep hands, feet, hair, and
clothing away from all moving
parts to prevent injury. Never
operate the engine with covers,
shrouds, or guards removed.
Hot Parts can cause severe burns.
Do not touch engine while operating
or just after stopping.
Hot Parts!
Engine components can get
extremely hot from operation. To
prevent severe burns, do not
touch these areas while the
engine is running—or immediately
after it is turned off. Never operate
the engine with heat shields or
guards removed.
WARNING
1.1
Section 1
Safety and General Information
WARNING
Explosive Fuel can cause fires and
severe burns.
Stop engine before filling fuel tank.
Explosive Fuel!
Gasoline is extremely flammable
and its vapors can explode if
ignited. Store gasoline only in
approved containers, in well
ventilated, unoccupied buildings,
away from sparks or flames. Do not
fill the fuel tank while the engine is
hot or running, since spilled fuel
could ignite if it comes in contact
with hot parts or sparks from
ignition. Do not start the engine
near spilled fuel. Never use
gasoline as a cleaning agent.
WARNING
WARNING
Carbon Monoxide can cause
severe nausea, fainting or death.
Do not operate engine in closed or
confined area.
Lethal Exhaust Gases!
Engine exhaust gases contain
poisonous carbon monoxide.
Carbon monoxide is odorless,
colorless, and can cause death if
inhaled. Avoid inhaling exhaust
fumes, and never run the engine
in a closed building or confined
area.
WARNING
Uncoiling Spring can cause severe
injury.
Wear safety goggles or face
protection when servicing retractable
starter.
WARNING
Explosive Gas can cause fires and
severe acid burns.
Charge battery only in a well
ventilated area. Keep sources of
ignition away.
Explosive Gas!
Batteries produce explosive
hydrogen gas while being
charged. To prevent a fire or
explosion, charge batteries only in
well ventilated areas. Keep
sparks, open flames, and other
sources of ignition away from the
battery at all times. Keep batteries
out of the reach of children.
Remove all jewelry when servicing
batteries.
Before disconnecting the negative
(-) ground cable, make sure all
switches are OFF. If ON, a spark
will occur at the ground cable
terminal which could cause an
explosion if hydrogen gas or
gasoline vapors are present.
Cleaning Solvents can cause
severe injury or death.
Use only in well ventilated areas
away from ignition sources.
Flammable Solvents!
Carburetor cleaners and solvents
are extremely flammable. Keep
sparks, flames, and other sources
of ignition away from the area.
Follow the cleaner manufacturer’s
warnings and instructions on its
proper and safe use. Never use
gasoline as a cleaning agent.
1.2
Spring Under T ension!
Retractable starters contain a
powerful, recoil spring that is under
tension. Always wear safety
goggles when servicing retractable
starters and carefully follow
instructions in "Retractable Starter"
Section 7 for relieving spring
tension.
CAUTION
Electrical Shock can cause injury.
Do not touch wires while engine is
running.
Electrical Shock!
Never touch electrical wires or
components while the engine is
running. They can be sources of
electrical shock.
Engine Identification Numbers
When ordering parts, or in any communication
involving an engine, always give the Model,Specification, and Serial Numbers of the engine.
The engine identification numbers appear a on decal
(or decals) affixed to the engine shrouding. See Figure
1-1. An explanation of these numbers is shown in
Figure 1-2.
Section 1
Safety and General Information
1
Identification Decal
Figure 1-1. Engine Identification Decal Location.
A. Model No.
Command Engine
Vertical Crankshaf t
Displacement (cc)
Figure 1-2. Explanation of Engine Identification Numbers.
C V 12.5 ST
or
1203
Variation of
Basic Engine
2105810334
Horsepower
11 = 11 HP
12.5 = 12.5 HP
13 = 13 HP
14 = 14 HP
15 = 15 HP
16 = 16 HP
MODEL NO.
SPEC. NO.
SERIAL NO.
REFER TO OWNER'S MANUAL FOR
SAFETY, MAINTENANCE SPECS
AND ADJUSTMENTS. FOR SALES
AND SERVICE IN US/CANADA
CALL: 1-800-544-2444.
Factory Code
Version Code
S = Electric Start
T = Retractable S tart
ST = Electric/Retractable S tart
CV12.5ST
1203
2105810334
www.kohlerengines.com
KOHLER CO. KOHLER, WI USA
A
B
C
1.3
Section 1
Safety and General Information
Oil Recommendations
Using the proper type and weight of oil in the
crankcase is extremely important, as is checking oil
daily , and changing oil regularly. Failure to use the
correct oil, or using dirty oil, causes premature engine
wear and failure. Synthetic oil is recommended for
use in LPG-fueled engines because there is less
oxidation or thickening, and deposit accumulation on
intake valves is substantially reduced.
Oil T ype
Use high-quality detergent oil of API (American
Petroleum Institute) service class SG, SH, SJ or
higher. Select the viscosity based on the air
temperature at the time of operation as shown below.
**
*
Fuel Recommendations
WARNING: Explosive Fuel!
Gasoline is extremely flammable and its vapors can
explode if ignited. Store gasoline only in approved
containers, in well ventilated, unoccupied buildings,
away from sparks or flames. Do not fill the fuel tank
while the engine is hot or running, since spilled fuel
could ignite if it comes in contact with hot parts or
sparks from ignition. Do not start the engine near
spilled fuel. Never use gasoline as a cleaning agent.
General Recommendations
Purchase gasoline in small quantities and store in
clean, approved containers. A cont ainer with a capacity
of 2 gallons or less with a pouring spout is
recommended. Such a container is easier to handle
and helps eliminate spillage during refueling.
Do not use gasoline left over from the previous
season, to minimize gum deposits in your fuel system
and to insure easy starting.
Do not add oil to the gasoline.
*Use of synthetic oil having 5W-20 or 5W-30 rating is
acceptable, up to 4°C (40°F).
**Synthetic oils will provide better starting in extreme cold
below -23°C (-10°F).
NOTE: Using other than service class SG, SH, SJ or
higher oil, or extending oil change intervals
longer than recommended, can cause engine
damage.
A logo or symbol on oil cont ainers identifies the API
service class and SAE viscosity grade. See Figure 1-3.
Figure 1-3. Oil Container Logo.
Refer to Section 6 - “Lubrication System” for detailed
oil check, oil change, and oil filter change procedures.
Do not overfill the fuel tank. Leave room for the fuel to
expand.
Fuel Type
For best results, use only clean, fresh, unleaded
gasoline with a pump sticker octane rating of 87 or
higher. In countries using the Research method, it
should be 90 octane minimum.
Unleaded gasoline is recommended, as it leaves less
combustion chamber deposits. Leaded gasoline may
be used in areas where unleaded is not available and
exhaust emissions are not regulated. Be aware
however, that the cylinder head will require more
frequent service.
Gasoline/Alcohol blends
Gasohol (up to 10% ethyl alcohol, 90% unleaded
gasoline by volume) is approved as a fuel for Kohler
engines. Other gasoline/alcohol blends are not
approved.
Gasoline/Ether blends
Methyl Tertiary Butyl Ether (MTBE) and unleaded
gasoline blends (up to maximum of 15% MTBE by
volume) are approved as a fuel for Kohler engines.
Other gasoline/ether blends are not approved.
1.4
Periodic Maintenance
Section 1
Safety and General Information
WARNING: Accident al Starts!
Disabling engine. Accidental starting can cause severe injury or death. Before working on the engine or
equipment, disable the engine as follows: 1) Disconnect the spark plug lead(s). 2) Disconnect negative (-)
battery cable from battery .
Maintenance Schedule
These required maintenance procedures should be performed at the frequency stated in the table. They should
also be included as part of any seasonal tune-up.
Frequency
• Fill fuel tank.
Daily or Before
Starting Engine
Every 25 Hours
Every
100 Hours
Every
200 Hours
Annually or
Every
500 Hours
1
Perform these maintenance procedures more frequently under extremely dusty , dirty conditions.
2
Have a Kohler Engine Service Dealer perform this service. Not necessary on Delco Starters.
• Check oil level.
• Check air cleaner for dirty1, loose, or damaged parts.
• Check air intake and cooling areas, clean as necessary1.
• Service precleaner element1.
• Replace air cleaner element1.
• Change oil1.
• Remove cooling shrouds and clean cooling areas1.
• Change oil filter1.
• Check spark plug condition and gap.
• Have bendix starter drive serviced2.
• Have solenoid shift starter disassembled and cleaned2.
Maintenance Required
Refer to:
Section 5
Section 6
Section 4
Section 4
Section 4
Section 4
Section 6
Section 4
Section 6
Section 8
Section 8
Section 8
1
Storage
If the engine will be out of service for two months or
more, use the following storage procedure.
1. Clean the exterior surfaces of the engine.
2. Change the oil and oil filter while the engine is still
warm from operation. See “Change Oil and Oil
Filter” in Section 6.
3. The fuel system must be completely emptied, or
the gasoline must be treated with a stabilizer to
prevent deterioration. If you choose to use a
stabilizer , follow the manufacturers
recommendations, and add the correct amount
for the capacity of the fuel system. Fill the fuel
tank with clean, fresh gasoline. Run the engine for
2-3 minutes to get stabilized fuel into the
carburetor.
To empty the system, run the engine until the tank
and system are empty .
4. Remove the spark plug. Add one tablespoon of
engine oil into the spark plug hole. Install the plug,
but do not connect the plug lead. Crank the
engine two or three revolutions.
5. Remove the spark plug. Cover the spark plug
hole with your thumb, and turn the engine over
until the piston is at the top of its stroke. (Pressure
against thumb is greatest.) Reinstall the plug, but
do not connect the plug lead.
N·m = in. lb. x 0.1 13
N·m = ft. lb. x 1.356
in. lb. = N·m x 8.85
ft. lb. = N·m x 0.737
Noncritical
Fasteners
Into Aluminum
Torque
1.14
Section 2
Go Back
Section 2
CV11-16
CV460-465, CV490-495
Special Tools
Special Tools
Kohler Special Service Tools
Kohler Co. has made an agreement with the Service
Tools Div . of SPX Corp. (a subsidiary of Owatonna
Tool Corp.) to handle our special service tools. The
intent of this program is to provide you with a single
source for all Kohler special tools, and to make it easy
and convenient to obtain those tools, at reasonable
cost. Tool orders can be placed with SPX by any of
three methods. Mail orders should be sent to:
OTC/SPX Corp., 655 Eisenhower Dr., Owatonna, MN
55060. You can also fax the order to (800) 578-7375
(USA and Canada) or (507) 455-7063 (International).
Finally , you can order by phone at (800) 533-0492
(USA and Canada) or (507) 455-7223 (International).
Repair Tools
These quality tools are designed to help you perform
specific disassembly , repair, and reassembly
procedures. By using tools designed for the job, you
can service engines easier, faster, and safer! In
addition, you’ll increase your service capabilities and
customer satisfaction by decreasing engine down time.
COMMAND Tool Kit No. KO3213– This kit is designed
for the current Kohler Engine Service Dealer already
having the KO3211A basic tool kit. This kit includes all
additional tools necessary to service current
Command series engines.
COMMAND Tool Kit No. KO3214–This kit is for the
new Kohler Dealer servicing the Command series
engines only.
RTV Silicone Sealant
RTV silicone sealant is used as a gasket between the
crankcase and closure plate, and between the valve
cover and head. The recommended sealant is Loctite
5900, available under Kohler Part No. 25 597 07-S.
Prepare the sealing surfaces of the crankcase and
closure plate as directed by the sealant manufacturer
or refer to Service Bulletin 252.
2
®
T ool Kit No. KO3211A–This basic tool kit includes
tools necessary to service Kohler K-Series and
Magnum engines.
2.1
Section 2
Special Tools
Diagnostic and Repair Tools
The tools listed in the following table are used for specific diagnosis or repair procedures, as described. Order
from SPX Corp.
DescriptionSPX Part No.
Hydraulic Lifter Tool
Designed to remove and install hydraulic liftersKO1044
Ignition T ester
Used for testing output on capacitive discharge (CD) ignition systemsKO1046
Ignition T ester
Used for testing ouput on all other systems, except CDKO1047
Water Manometer
Used for testing crankcase vacuum and exhaust back pressureKO1048
Inductive T achometer
Used for checking the operating speed (RPM) of an engineKO3216
Ammeter Set
Used for checking current flow in charging and cranking circuitsKO3218
Cylinder Leakdown T ester
Used for checking combustion retention and if cylinder, piston, rings, or valves are wornKO3219
Oil Pressure T est Kit
Used to test/verify oil pressure on pressure lubricated enginesKO3220
Electric Starter Service Kit
Used to service all electric starters, including solenoid shiftKO3226
Electric Starter Service Kit
Used to remove and reinstall drive retainers on most inertia drive startersKO1049
Rectifier-Regulator T ester
Used for testing rectifier-regulatorsKO3221
Spark Advance Module Tester
Used to test the SAM on engines with Smart SparkKO3222
Vacuum/Pressure Tester
Used like the water manometer but easier to operate, transport, and maintainKO3223
Spanner W rench
Used for installing push rods or rotating crankshaftOEM6200
Engine Analysis Kit
Used for testing running conditions of Kohler engines in applicationsKO1000A
2.2
Section 2
Special Tools
Special Tools You Can Make
Flywheel Holding Tool
Flywheel removal and reinstallation becomes a “snap”
using a handy holding tool you can make out of a
piece of an old “junk” flywheel ring gear as shown in
Figure 2-1. Using an abrasive cut-off wheel, cut out a
six tooth segment of the ring gear as shown. Grind off
any burrs or sharp edges. The segment can be used in
place of a strap wrench. Invert the segment and place
it between the ignition module bosses on the
crankcase, so the tool teeth engage the ring gear teeth
on the flywheel. The bosses will “lock” the tool and
flywheel in position for loosening, tightening or
removing with a puller.
Rocker Arm/Crankshaft Tool
If you don’t have a spanner wrench to lift the rocker
arms or to turn the crankshaft, you can make a tool for
doing this out of an old junk connecting rod.
Find a used connecting rod from a 10 HP or larger
engine. Remove and discard the rod cap. If it is a
Posi-Lock rod, you will also need to remove the studs.
If it is a Command rod, you will need to grind off the
aligning steps, so the joint surface is flat. Find a 1"
long capscrew with the correct thread size to match
the threads in the connecting rod. Obtain a flat washer
with the correct I.D. to slip on the capscrew and an
O.D. of approximately 1". Kohler Part No. 12 468 05-S
can be used if you don’t have the right size on hand.
Assemble the capscrew and washer to the joint
surface of the rod, as shown in Figure 2-2.
2
Figure 2-1. Flywheel Holding T ool.
Figure 2-2. Rocker Arm/Crankshaft Tool.
2.3
Section 2
Special Tools
2.4
Section 3
Go Back
Troubleshooting
Troubleshooting Guide
When troubles occur, be sure to check the simple
causes which, at first, may seem too obvious to be
considered. For example, a starting problem could be
caused by an empty fuel tank.
Some common causes of engine troubles are listed
below. Use these to locate the causing factors.
Engine Cranks But Will Not Start
1. Empty fuel tank.
2. Fuel shut-off valve closed.
3. Dirt or water in the fuel system.
4. Clogged fuel line.
5. Sp ark plug lead disconnected.
6. Key switch or kill switch in ‘‘off’’ position.
7. Faulty spark plug.
8. Faulty ignition module.
Engine Start s But Does Not Keep Running
1. Restricted fuel tank cap vent.
2. Dirt or water in the fuel system.
3. Faulty choke or throttle controls.
4. Loose wires or connections that short the kill
terminal of ignition module to ground.
5. Faulty carburetor.
6. Faulty cylinder head gasket.
Engine Start s Hard
1. PTO drive is engaged.
2. Dirt or water in the fuel system.
3. Clogged fuel line.
4. Loose or faulty wires or connections.
5. Faulty choke or throttle controls.
6. Faulty spark plug.
7. Low compression.
8. Faulty ACR mechanism.
Section 3
CV11-16
CV460-465, CV490-495
Engine Will Not Crank
1. PTO drive is engaged.
2. Battery (if equipped) is discharged.
3. Safety interlock switch is engaged.
4. Loose or faulty wires or connections.
5. Faulty key switch or ignition switch.
6. Faulty electric starter (if equipped).
7. Retractable starter not engaging in drive cup.
8. Seized internal engine components.
Engine Runs But Misses
1. Dirt or water in the fuel system.
2. Spark plug lead disconnected.
3. Loose wires or connections that intermittently
short the kill terminal of ignition module to ground.
4. Engine overheated.
5. Faulty ignition module.
Engine Will Not Idle
1. Restricted fuel tank cap vent.
2. Dirt or water in the fuel system.
3. Faulty spark plug.
4. Idle fuel adjusting needle improperly set.
5. Idle speed adjusting screw improperly set.
6. Low compression.
7. Stale fuel and/or gum in carburetor.
Engine Overheats
1. Air intake/grass screen, cooling fins, or cooling
shrouds clogged.
2. Excessive engine load.
3. Low crankcase oil level.
4. High crankcase oil level.
5. Faulty carburetor.
Engine Knocks
1. Excessive engine load.
2. Low crankcase oil level.
3. Old/improper fuel.
4. Internal wear or damage.
Troubleshooting
3
3.1
Section 3
Troubleshooting
Engine Loses Power
1. Low crankcase oil level.
2. High crankcase oil level.
3. Dirty air cleaner element.
4. Dirt or water in the fuel system.
5. Excessive engine load.
6. Engine overheated.
7. Faulty spark plug.
8. Low compression.
9. Exhaust restriction.
Engine Uses Excessive Amount Of Oil
1. Incorrect oil viscosity/type.
2. Clogged or improperly-assembled breather.
3. Crankcase being overfilled.
4. Worn or broken piston rings.
5. Worn cylinder bore.
6. Worn valve stems/valve guides.
External Engine Inspection
Before cleaning or disassembling the engine, make a
thorough inspection of its external appearance and
condition. This inspection can give clues to what might
be found inside the engine (and the cause) when it is
disassembled.
•Check for buildup of dirt and debris on the
crankcase, cooling fins, grass screen and other
external surfaces. Dirt or debris on these areas
are causes of overheating.
•Check for obvious oil leaks, and damaged
components. Excessive oil leakage can indicate a
clogged or improperly-assembled breather, worn
or damaged seals and gaskets, or loose or
improperly-torqued fasteners.
•Check the air cleaner cover and base for damage
or indications of improper fit and seal.
•Check the air cleaner element. Look for holes,
tears, cracked or damaged sealing surfaces, or
other damage that could allow unfiltered air into
the engine. Also note if the element is dirty or
clogged. These could indicate that the engine has
been underserviced.
•Check the carburetor throat for dirt. Dirt in the
throat is further indication that the air cleaner is
not functioning properly .
•Check the oil level. Note if the oil level is within
the operating range on the dipstick, or if it is low
or overfilled.
•Check the condition of the oil. Drain the oil into a
container - the oil should flow freely. Check for
metal chips and other foreign particles.
Sludge is a natural by-product of combustion; a small
accumulation is normal. Excessive sludge deposits
could indicate the oil has not been changed at the
recommended intervals, incorrect type or weight of oil
was used, overrich carburetion, or weak ignition, to
name a few.
NOTE: It is good practice to drain oil at a location
away from the workbench. Be sure to allow
ample time for complete drainage.
Cleaning the Engine
After inspecting the external condition of the engine,
clean the engine thoroughly before disassembling it.
Also clean individual components as the engine is
disassembled. Only clean parts can be accurately
inspected and gauged for wear or damage. There are
many commercially available cleaners that will quickly
remove grease, oil, and grime from engine parts.
When such a cleaner is used, follow the
manufacturer’s instructions and safety precautions
carefully.
Make sure all traces of the cleaner are removed
before the engine is reassembled and placed into
operation. Even small amounts of these cleaners can
quickly break down the lubricating properties of engine
oil.
3.2
Section 3
Troubleshooting
Basic Engine Tests
Crankcase Vacuum Test
A p artial vacuum should be present in the crankcase
when the engine is operating at normal temperatures.
Pressure in the crankcase (normally caused by a
clogged or improperly-assembled breather) can cause
oil to be forced out at oil seals, gaskets, or other
available spots.
Crankcase vacuum is best measured with a water
manometer or vacuum/pressure test gauge. See
Section 2. Complete instructions are provided with the
testers.
Test the crankcase vacuum with the manometer as
follows:
1. Insert the rubber stopper into the oil fill hole. Be
sure the pinch clamp is installed on the hose and
use the tapered adapters to connect the hose
between the stopper and one of the manometer
tubes. Leave the other tube open to the
atmosphere. Check that the water level in the
manometer is at the "0" line. Make sure the pinch
clamp is closed.
2. Start the engine and run at no-load, high idle
speed (3200 to 3750 RPM).
3. Open the clamp and note the water level in the
tube.
The level in the engine side should be a minimum
of 10.2 cm (4 in.) above the level in the open side.
If the level in the engine side is the same as the
open side (no vacuum), or the level in the engine
side is lower than the level in the open side
(pressure), check for the conditions in the table
below.
4. Close the shut-off clamp before stopping the
engine.
To perform the test with the vacuum/pressure
gauge, insert the stopper as in step 1. Insert the
barbed gauge fitting into the hole in the stopper.
Be sure the gauge needle is at "0". Run the
engine, as in step 2, and observe the gauge
reading. Needle movement to the left of "0" is a
vacuum, and movement to the right indicates a
pressure.
3
Incorrect Vacuum in Crankcase
Possible CauseSolution
1. Crankcase breather clogged or inoperative.
2. Seals and/or gaskets leaking. Loose or
improperly torqued fasteners.
3. Piston blowby or leaky valves. Confirm with
cylinder leakdown test.
4. Restricted exhaust.
1. Disassemble breather, clean p arts thoroughly ,
reassemble, and recheck pressure.
2. Replace all worn or damaged seals and
gaskets. Make sure all fasteners are tightened
securely . Use appropriate torque values and
sequences when necessary .
3. Recondition piston, rings, cylinder bore, valves,
and valve guides.
These engines are equipped with an automatic
compression release (ACR) mechanism. Because of
the ACR mechanism, it is dif ficult to obt ain an accurate
compression reading. As an alternate, use the
leakdown test described below.
Cylinder Leakdown T est
A cylinder leakdown test can be a valuable alternative
to a compression test. By pressurizing the combustion
chamber from an external air source you can
determine if the valves or rings are leaking, and how
badly .
The tester listed on page 2.2 is a relatively simple,
inexpensive leakdown tester for small engines. The
tester includes a quick disconnect for attaching the
adapter hose and a holding tool.
Leakdown T est Instructions
1. Run engine for 3-5 minutes to warm it up.
2. Remove spark plug(s) and air filter from the
engine.
onto the crankshaft, align the slot/hole with one of
mounting hold on the PTO face, and tighten it
onto the crankshaft. Install a 3/8" breaker bar into
the slot or square hole of the holding tool, so it is
perpendicular to both the holding tool and
crankshaft PTO, or insert a shoulder bolt through
the slot and thread it into the mounting hole. If the
flywheel end is more accessible, you can use a
breaker bar and socket on the flywheel nut/screw
to hold it in position. You may need an assistant to
hold the breaker bar during testing. If the engine
is mounted in a piece of equipment, you may be
able to hold it by clamping or wedging a driven
component. Just be certain that the engine cannot
rotate off of TDC in either direction.
4. Install the adapter into the spark plug hole, but do
not attach it to the tester at this time.
5. Connect an adequate air source to the tester.
6. Turn the regulator knob in the increase
(clockwise) direction until the gauge needle is in
the yellow ‘‘set’’ area at the low end of the scale.
3. Rotate the crankshaft until the piston is at top
dead center (TDC) of the compression stroke.
Y ou will need to hold the engine in this position
while testing. The holding tool supplied with the
tester can be used if the PTO end of the
crankshaft is accessible. Slide the holding tool
Leakdown T est Results
Air escaping from crankcase breather .......................................... Defective rings or worn cylinder walls.
Air escaping from exhaust system................................................Defective exhaust valve.
Air escaping from carburetor ........................................................ Defective intake valve.
Gauge reading in ‘‘low’’ (green) zone............................................ Piston rings and cylinder in good condition.
Gauge reading in ‘‘moderate’’ (yellow) zone.................................. Engine is still usable, but there is some wear
Gauge reading in ‘‘high’’ (red) zone .............................................. Rings and/or cylinder have considerable wear .
7. Connect tester quick-disconnect to the adapter.
Note the gauge reading and listen for escaping air
at the carburetor intake, exhaust outlet, and
crankcase breather.
8. Check your test results against the table below:
present. Customer should start planning for
overhaul or replacement.
Engine should be reconditioned or replaced.
3.4
Air Cleaner and Air Intake System
Go Back
CV460-465, CV490-495
Section 4
Air Cleaner and Air Intake System
CV11-16
Section 4
Air Cleaner
These engines are equipped with a replaceable, high
density paper air cleaner element and most also have
the optional oiled, foam precleaner which surrounds the
paper element.
Two basic types of air cleaners are used. The original
configuration is shown in Figure 4-1 and the later
configuration in Figure 4-2. On the original style, air is
drawn through a duct from the blower housing and from
the outside slot. The later type uses a flat base plate
with the enclosure provided by the cover.
Air Cleaner Cover Knob
Air Cleaner Cover
Optional
Foam
Precleaner
Wing nut
Optional Foam
Precleaner
Paper Element
(Extra Capacity
Shown)
Knob (Part
of Cover)
Air Cleaner
Cover
Air Duct
4
Wing Nut
Covered Air
Cleaner Element
Hex. Flange Screw (2)
Gasket
Bushing
Base
Figure 4-1. Original Air Cleaner Assembly Exploded View.
Rubber Seal
(Sleeve)
Stud
Inner Air
Cleaner Seal
Stud
Air Cleaner
Base Seal
Gasket
Closed BaseOpen Base
Figure 4-2. Later Style Air Cleaner Assemblies Exploded View.
4.1
Section 4
Air Cleaner and Air Intake System
On these, air is drawn in around the bottom of the
cover, or from the blower housing, rather than from
slots. The flat base allows debris to be brushed away
before the paper element is removed. All types can
use either the standard size element or a higher , extra
capacity paper element.
The original type uses a separate cover retaining knob
which has to be turned completely off to remove the
cover. With the later style, the knob snap s into the
cover and is turned counterclockwise until it
disengages the stud. Other differences are pointed out
in the exploded views.
Service
Check the air cleaner daily or before starting the
engine. Check for and correct any buildup of dirt and
debris, and loose or damaged components.
NOTE: Operating the engine with loose or damaged
air cleaner components could allow unfiltered
air into the engine, causing premature wear
and failure.
Precleaner Service
If so equipped, wash and reoil the precleaner every 25
hours of operation (more often under extremely dusty
or dirty conditions).
1. Remove the precleaner from the paper element.
2. Wash the precleaner in warm water with
detergent. Rinse the precleaner thoroughly until
all traces of detergent are eliminated. Squeeze
out excess water (do not wring). Allow the
precleaner to air dry .
3. Gently tap the flat side of the paper element to
dislodge dirt. Do not wash the paper element or
use pressurized air, as this will damage the
element. Replace a dirty , bent, or damaged
element with a genuine Kohler element. Handle
new elements carefully; do not use if the sealing
surfaces are bent or damaged.
4. Inspect the rubber seal (sleeve) on the stud. If it is
worn, damaged, or questionable, replace it. A new
seal comes packed with each replacement
element.
5. Reinstall the precleaner, p aper element, wing nut,
and air cleaner cover. Make sure the knob is
tightened securely .
Inspect Air Cleaner Components
Whenever the air cleaner cover is removed, or the
paper element or precleaner are serviced, check the
following areas/components:
Air Cleaner Base - Make sure the base is secured
and not cracked or damaged. Since the air cleaner
base and carburetor are secured to the intake port with
common hardware, it is extremely important that the
nuts securing these components are tight at all times.
Before reinstalling an air cleaner base that has been
removed, make sure the metal bushings in the base
mounting holes are present. See Figure 4-3. The
bushings prevent damage to the base and maintain
the proper mounting torque.
3. Saturate the precleaner with new engine oil.
Squeeze out all excess oil.
4. Reinstall the precleaner over the paper element.
5. Reinstall air cleaner cover and tighten the
retaining knob.
Paper Element Service
Every 100 hours of operation (more often under
extremely dusty or dirty conditions), check the paper
element. Clean or replace the element as necessary .
1. Remove the wing nut and air cleaner element.
2. Remove the precleaner (if so equipped) from the
paper element.
4.2
Bushings
Figure 4-3. Bushings in Air Cleaner Base.
Breather T ube - Make sure the tube is att ached to
both the air cleaner base and valve cover.
Section 4
Air Cleaner and Air Intake System
NOTE: Damaged, worn, or loose air cleaner
components can allow unfiltered air into the
engine causing premature wear and failure.
Tighten or replace all loose or damaged
components.
Disassembly
The following procedure is for complete disassembly
of all air cleaner components.
1. Loosen the air cleaner cover retaining knob and
remove the air cleaner cover.
2. Remove the wing nut and air cleaner element.
3. If so equipped, remove the precleaner from the
paper element.
4. Disconnect the breather hose from the air cleaner
base.
5. Remove the air cleaner base mounting nuts, air
cleaner base, and gasket.
6. If necessary, remove the self-t apping screws and
stud from the air cleaner base.
Reassembly
The following procedure is for complete assembly of
all air cleaner components.
1. Install the stud and self-tapping screws to the air
cleaner base.
2. Install the gasket, air cleaner base, and base
mounting nuts. Torque the nuts to 9.9 N·m(88 in. lb.).
3. Connect the breather hose to the air cleaner base
and valve cover. Secure with hose clamps.
Air Intake/Cooling System
Clean Air Intake/Cooling Areas
To ensure proper cooling, make sure the grass screen,
cooling fins, and other external surfaces of the engine
are kept clean at all times.
Every 100 hours of operation (more often under
extremely dusty , dirty conditions), remove the blower
housing and other cooling shrouds. Clean the cooling
fins and external surfaces as necessary. Make sure
the cooling shrouds are reinstalled.
NOTE: Operating the engine with a blocked grass
screen, dirty or plugged cooling fins, and/or
cooling shrouds removed, will cause engine
damage due to overheating.
Air Intake Filter (Optional)
Some engines used under extremely dusty conditions
such as floor buffer applications are equipped with a
foam air filter which fits over the retractable starter.
The filter is held in place by velcro studs affixed to the
starter cover. This filter must be checked daily before
each start and frequently during operation. It should be
serviced whenever wax, dust, or dirt builds up on its
surface. If it becomes clogged, the engine can not
receive sufficient cooling air and will overheat.
To service, peel the filter loose from the velstuds, lift
the filter and carefully work the recoil starter handle
through the hole in filter. Clean the filter in soap and
warm water, rinse, squeeze out excess water and
allow it to air dry . If time will not permit air drying, keep
a spare filter on hand (Kohler Part No. 12 050 02-S).
When reinstalling, make sure the foam filter seals
against the blower housing around its base and is
securely attached to the velstuds.
4
4. If so equipped, install the precleaner (washed and
oiled) over the paper element.
5. Install the air cleaner element and wing nut.
Thread the wing nut on the stud until it contacts
the metal cap on the element, then tighten an
additional 1/2-1 turn.
6. Install the air cleaner cover . Tighten the knob
securely.
4.3
Section 4
Air Cleaner and Air Intake System
4.4
CV460-465, CV490-495
Go Back
Fuel System and Governor
Section 5
Fuel System and Governor
CV11-16
Section 5
Gasoline fuel systems are covered in the first part of
this section. LPG (liquefied propane gas) systems and
the Kohler Emission Sentry™ LPG system are covered
starting on page 5.11. The governor systems start on
page 5.14.
Fuel Recommendations (Gasoline)
WARNING: Explosive Fuel!
Gasoline is extremely flammable and its vapors can
explode if ignited. Store gasoline only in approved
containers, in well ventilated, unoccupied buildings,
away from sparks or flames. Do not fill the fuel tank
while the engine is hot or running, since spilled fuel
could ignite if it comes in contact with hot parts or
sparks from ignition. Do not start the engine near
spilled fuel. Never use gasoline as a cleaning agent.
General Recommendations (Gasoline)
Purchase gasoline in small quantities and store in
clean, approved containers. A cont ainer with a capacity
of 2 gallons or less with a pouring spout is
recommended. Such a container is easier to handle
and helps eliminate spillage during refueling.
Do not use gasoline left over from the previous
season, to minimize gum deposits in your fuel system
and to insure easy starting.
Do not add oil to the gasoline.
Unleaded gasoline is recommended, as it leaves less
combustion chamber deposits. Leaded gasoline may
be used in areas where unleaded is not available and
exhaust emissions are not regulated. Be aware
however, that the cylinder head will require more
frequent service.
5
Gasoline/Alcohol blends
Gasohol (up to 10% ethyl alcohol, 90% unleaded
gasoline by volume) is approved as a fuel for Kohler
engines. Other gasoline/alcohol blends are not
approved.
Gasoline/Ether blends
Methyl Tertiary Butyl Ether (MTBE) and unleaded
gasoline blends (up to a maximum of 15% MTBE by
volume) are approved as a fuel for Kohler engines.
Other gasoline/ether blends are not approved.
Fuel System (Gasoline)
The typical fuel system includes the fuel tank, in-line
fuel filter, fuel pump, carburetor, and fuel lines. Some
applications use gravity feed without a fuel pump.
Operation
The fuel from the tank is moved through the in-line
filter and fuel lines by the fuel pump. On engines not
equipped with a fuel pump, the fuel tank outlet is
located above the carburetor inlet and gravity moves
the fuel.
Do not overfill the fuel tank. Leave room for the fuel to
expand.
Fuel T ype (Gasoline)
For best results, use only clean, fresh, unleaded
gasoline with a pump sticker octane rating of 87 or
higher. In countries using the Research method, it
should be 90 octane minimum.
Fuel then enters the carburetor float bowl and is
moved into the carburetor body . There, the fuel is
mixed with air. This fuel-air mixture is then burned in
the engine combustion chamber.
Troubleshooting
Use the following procedure to check for a suspected
fuel delivery problem.
5.1
Section 5
Fuel System and Governor
Fuel System T roubleshooting Guide (Gasoline)
T estConclusion
1. Check for the following:
a. Make sure the fuel tank contains clean, fresh,
proper fuel.
b. Make sure the vent in fuel cap is open.
c. Make sure the fuel valve is open.
2. Check for fuel in the combustion chamber.
a. Disconnect and ground spark plug lead.
b. Close the choke on the carburetor.
c. Crank the engine several times.
d. Remove the spark plug and check for fuel at
the tip.
3. Check for fuel flow from the tank to the fuel pump.
a. Remove the fuel line from the inlet fitting of
the fuel pump.
b. Hold the line below the bottom of the tank.
Open the shutoff valve (if so equipped) and
observe flow.
4. Check the operation of fuel pump.
a. Remove the fuel line from the inlet fitting of
the carburetor.
b. Crank the engine several times and observe
flow.
2. If there is fuel at the tip of the spark plug, fuel is
reaching the combustion chamber.
If there is no fuel at the tip of the spark plug, check
for fuel flow from the fuel tank (Test 3).
3. If fuel does flow from the line, reconnect line and
check for faulty fuel pump (Test 4).
If fuel does not flow from the line, check for
clogged fuel tank vent, fuel pickup screen, shutoff
valve, and fuel lines.
4. If fuel does flow from the line, check for faulty
carburetor. (Refer to the "Carburetor" portions of
this section.)
If fuel does not flow from the line, check for
clogged fuel line. If the fuel line is unobstructed, the
fuel pump is faulty and must be replaced.
Fuel Filter
Some engines are equipped with an in-line fuel filter.
Visually inspect the filter periodically , and replace when
dirty with a genuine Kohler filter.
Fuel Pump
Some engines are equipped with an optional
mechanical fuel pump.
The fuel pump body is constructed of nylon. The nylon
body insulates the fuel from the engine crankcase.
This prevents the fuel from vaporizing inside the pump.
Operation
The mechanical pump is operated by a lever which
rides on the engine camshaft. The lever transmits a
pumping action to the diaphragm inside the pump
body . On the downward stroke of the diaphragm, fuel
is drawn in through the inlet check valve. On the
upward stroke of the diaphragm, fuel is forced out
through the outlet check valve. See Figure 5-1.
Outlet Check Valve
Camshaft
Fuel Pump
Lever
Diaphragm
Inlet Check Valve
Figure 5-1. Cutaway - Typical Fuel Pump.
5.2
Section 5
Fuel System and Governor
Repair
Nylon-bodied fuel pumps are not serviceable and must
be replaced when faulty . Replacement pumps are
available in kits that include the pump and mounting
gasket.
Removal
1. Disconnect the fuel lines from the inlet and outlet
fittings of the pump.
2. Remove the hex. flange screws, fuel pump, and
gasket.
3. If necessary , remove the fittings from the pump
body .
Installation
1. Fittings - Apply a small amount of Permatex
Aviation Perm-A-Gasket (or equivalent) gasoline
resistant thread sealant to the threads of the
fittings. Turn the fittings into the pump 5 fullturns; continue turning the fittings in the same
direction until the desired position is reached.
2. Install new gasket, fuel pump, and hex. flange
screws.
®
3. Torque the hex. flange screws as follows:
Into new as-cast hole–9.0 N·m (80 in. lb.).
Into used hole–4.2-5.1 N·m (37-45 in. lb.).
4. Connect the fuel lines to the inlet and outlet
fittings.
Carburetor (Gasoline)
These engines are equipped with one of two basic
types of fixed main jet carburetors–Walbro or Nikki.
See Figure 5-3.
Walbro carburetors have a low idle speed screw and a
low idle fuel adjusting needle. Nikki carburetors only
have a low idle speed screw. Certified carburetors will
have fixed idle fuel or a limiter cap on the idle fuel
adjusting needle.
Walbro
Low Idle Speed
Adjustment Screw
5
NOTE: Make sure the fuel pump lever is
positioned to the right of the camshaft
(when looking at fuel pump mounting
pad). Damage to the fuel pump, and
severe engine damage, could result if the
lever is positioned to the left of the
camshaft.
Hex. Flange Screw (2)
Fuel Pump
Fuel Fittings
Figure 5-2. Installing Fuel Pump.
Low Idle Fuel
Adjustment Needle
Nikki
Low Idle Speed
Adjustment Screw
Gasket
Figure 5-3. Carburetor Adjustment.
WARNING: Explosive Fuel!
Gasoline is extremely flammable and its vapors can
explode if ignited. Store gasoline only in approved
containers, in well ventilated, unoccupied buildings,
away from sparks or flames. Do not fill the fuel tank
while the engine is hot or running, since spilled fuel
could ignite if it comes in contact with hot parts or
sparks from ignition. Do not start the engine near
spilled fuel. Never use gasoline as a cleaning agent.
5.3
Section 5
Fuel System and Governor
T roubleshooting - Gasoline Systems
If engine troubles are experienced that appear to be
fuel system related, check the following areas before
adjusting or disassembling the carburetor .
•Make sure the fuel tank is filled with clean, fresh
gasoline.
•Make sure the fuel tank cap vent is not blocked
and that it is operating properly .
•Make sure fuel is reaching the carburetor. This
includes checking the fuel shut-off valve, fuel tank
filter screen, in-line fuel filter, fuel lines, and fuel
pump for restrictions or faulty components as
necessary.
•Make sure the air cleaner base and carburetor
are securely fastened to the engine using gaskets
in good condition.
•Make sure the air cleaner element is clean and all
air cleaner components are fastened securely.
•Make sure the ignition system, governor system,
exhaust system, and throttle and choke controls
are operating properly .
If, after checking the items listed above, starting
problems or conditions similar to those listed in the
following table exist, it may be necessary to adjust or
service the carburetor.
Troubleshooting - Gasoline Fuel Systems Carburetor
Condition
1. Engine starts hard, runs roughly or
stalls at idle speed.
2. Engine runs rich. (Indicated by
black, sooty exhaust smoke,
misfiring, loss of speed and power,
governor hunting, or excessive
throttle opening).
3. Engine runs lean. (Indicated by
misfiring, loss of speed and power,
governor hunting, or excessive
throttle opening).
4. Fuel leaks from carburetor.4a. Float level set too high. See Remedy 2c.
1. Low idle fuel mixture/speed improperly adjusted. Adjust the low idle
speed screw, then adjust the low idle fuel needle.
2a. Choke partially closed during operation. Check the choke lever/
linkage to ensure choke is operating properly .
b. Low idle fuel mixture is improperly adjusted. Adjust low idle fuel
needle.
c. Float level is set too high. With fuel bowl removed and carburetor
inverted, the exposed surface of float must be parallel with the
bowl gasket surface of the carburetor body .
d. Dirt under fuel inlet needle. Remove needle; clean needle and
seat and blow with compressed air.
e. Bowl vent or air bleeds plugged. Remove fuel bowl, low idle fuel
adjusting needle, and welch plugs. Clean vent, ports, and air
bleeds. Blow out all passages with compressed air .
f. Fuel bowl gasket leaks. Remove fuel bowl and replace gasket.
g. Leaky , cracked, or damaged float. Submerge float to check for
b. Float level is set too low. With fuel bowl removed and carburetor
inverted, the exposed surface of float must be parallel with the
bowl gasket surface of the carburetor body .
c. Idle holes plugged; dirt in fuel delivery channels. Remove fuel
bowl, low idle fuel adjusting needle, and welch plugs. Clean main
fuel jet and all passages; blow out with compressed air .
b. Dirt under fuel inlet needle. See Remedy 2d.
c. Bowl vent plugged. Remove fuel bowl and clean bowl vent. Blow
out with compressed air.
d. Float is cracked or damaged. Replace float.
e. Bowl retaining screw gasket damaged. Replace gasket.
f. Bowl retaining screw loose. Torque screw to specifications.
Possible Cause/Probable Remedy
5.4
Section 5
Fuel System and Governor
Adjustment
NOTE: Carburetor adjustments should be made only
after the engine has warmed up.
The carburetor is designed to deliver the correct fuelto-air mixture to the engine under all operating
conditions. The main fuel jet is calibrated at the factory
and is not adjustable*. The idle fuel adjusting needle is
also set at the factory and normally does not need
adjustment.
*NOTE: Engines operating at altitudes above
approximately 1830 m (6000 ft.) may require
a special ‘‘high altitude’’ main jet. Refer to
‘‘High Altitude Operation’ ’ later in this section.
If, however, the engine is hard-st arting or does not
operate properly , it may be necessary to adjust or
service the carburetor.
Low Idle
Speed Screw
Now turn the adjusting needle in (clockwise). The
engine speed may increase, then it will decrease
as the needle is turned in (lean). Note the position
of the needle.
Set the adjusting needle midway between the rich
and lean settings. See Figure 5-5.
Lean
Adjust to Midpoint
Rich
5
Figure 5-5. Optimum Low Idle Fuel Setting.
Nikki Carburetor Adjustment
NOTE: Certified engines have the idle mixture preset
and sealed at the factory . No adjustment is
possible.
Low Idle
Fuel Needle
Figure 5-4. Fixed Main Jet Carburetor.
Walbro Carburetor Adjustment
NOTE: Certified engines may have a fixed idle or
limiter cap on the idle fuel adjusting needle.
Step 2 can only be performed within the limit s
allowed by the cap.
1. Start the engine and run at half throttle for 5 to 10
minutes to warm up. The engine must be warm
before doing step 2.
2. Low Idle Fuel Needle Setting: Place the throttle
into the "idle" or "slow" position.
Turn the low idle fuel adjusting needle out
(counterclockwise) from the preliminary setting
until engine speed decreases (rich). Note the
position of the needle.
Low Idle Speed Setting
1. Start the engine and run at half throttle for 5 to 10
minutes to warm up. The engine must be warm
before doing step 2.
2. Low Idle Speed Setting: Place the throttle
control into the "idle" or "slow" position. Set the
low idle speed to 1200 RPM* (±75 RPM) by
turning the low idle speed adjusting screw in orout. Check the speed using a tachometer .
*NOTE: The actual low idle speed depends on
the application–refer to equipment
manufacturer's recommendations. The
recommended low idle speed for basic
engines is 1200 RPM. To ensure best
results when setting the low idle fuel
needle, the low idle speed must not
exceed 1200 RPM (±75 RPM).
5.5
Section 5
Fuel System and Governor
Disassembly
Throttle Lever and Shaft
Dust Seal
Throttle Plate Screw(s)
Throttle Plate
Low Idle Speed Adjusting
Screw and Spring
Low Idle Fuel Adjusting
Needle and Spring (may not
be present or may have
limiter cap on certified
engines)
Fuel Inlet Seat
Fuel Inlet Needle
Choke Lever and Shaft
Choke Return Spring
Choke Plate
Float
Float Shaft
Bowl Gasket
Fuel Bowl
Fuel Shut-off Solenoid
Figure 5-6. Carburetor - Exploded View.
1. Remove the bowl retaining screw , retaining screw
gasket, and fuel bowl.
2. Remove the bowl gasket, float shaft, float, and fuel
inlet needle.
3. Remove the low idle speed screw and spring. If
there is a low fuel adjusting needle without a limiter
cap, remove the needle and spring. Do not
attempt to remove the needle if it has a limiter cap.
Further disassembly to remove the welch plugs,
main fuel jet, fuel inlet seat, throttle plate and shaft,
and choke plate and shaft is recommended only if
these parts are to be cleaned or replaced.
5.6
Bowl Retaining Screw Gasket
or
Welch Plug Removal–Walbro Carburetors
In order to clean the idle ports and bowl vent
thoroughly , remove the welch plugs covering these
areas.
Use T ool No. KO1018 and the following procedure to
remove the welch plugs. See Figure 5-7.
1. Pierce the welch plug with the tip of the tool.
NOTE: To prevent damage to the carburetor , do
not allow the tool to strike the carburetor
body .
2. Pry out the welch plug with the tip of the tool.
Bowl Retaining Screw
Tool No. KO1018
Section 5
Fuel System and Governor
Choke Plate
Do Not Allow
Tip to Strike
Carburetor Body
Figure 5-7. Removing Welch Plug.
Main Fuel Jet Removal
The main jet on Walbro carburetors is pressed into the
side of the tower portion of the body . Removal is not
recommended, unless a high-altitude kit is being
installed, in which case the removal instructions will be
included in the kit.
The main jet on Nikki carburetors is threaded into the
tip of the fuel shut-off solenoid. It can be removed for
inspection or cleaning.
Fuel Inlet Seat Removal
The fuel inlet seat is pressed into the carburetor body,
do not attempt to remove it. If necessary, clean it in
place with aerosol carburetor cleaner.
Pierce Plug with Tip
Pry Out Plug
Welch Plug
Carburetor Body
Figure 5-8. Marking Choke Plate and
Carburetor Body.
2. Some carburetors have the choke plate inserted
into a slot in the choke shaft. Grasp the choke
plate with a pliers and pull it out of the slot. See
Figure 5-9. Other carburetors will have the choke
plate fastened to the shaft with screws. Carefully
remove the screws and separate the plate from
the shaft. Use a fine-toothed file to remove any
burrs from the shaft.
Choke Plate
5
Choke Shaft Removal (Non-Self-Relieving)
1. Because the edges of the choke plate are
beveled, mark the choke plate and carburetor
body to ensure correct reassembly . See Figure
5-8.
Also take note of the choke plate position in bore,
and the position of the choke lever and choke
return spring.
Figure 5-9. Removing Choke Plate.
3. Remove the choke shaft and choke return spring.
Choke Shaft Removal (Self-Relieving)
The self-relieving choke, used on some carburetors is
shown in cutaway Figure 5-10. Use the following
procedure to replace the self-relieving choke
components using Choke Repair Kit No. 12 757 11-S.
1. Remove the black dust cover. This cover snap s
on and off.
Cleaning
WARNING: Flammable Solvent s!
Carburetor cleaners and solvents are extremely
flammable. Keep sparks, flames, and other sources of
ignition away from the area. Follow the cleaner
manufacturer’s warnings and instructions on its proper
and safe use. Never use gasoline as a cleaning agent.
All parts should be cleaned thoroughly using a
commercial carburetor cleaner. Make sure all gum
deposits are removed from the following areas.
•Carburetor body and bore; especially the areas
where the throttle plate, choke plate and shafts
are seated.
•Idle fuel and idle ports in carburetor bore,
main jet, bowl vent, and fuel inlet needle
and seat.
•Float and float hinge.
•Fuel bowl.
•Throttle plate, choke plate, throttle shaft, and
choke shaft.
2. Remove and discard the two screws fastening the
choke plate to the choke shaft.
3. Remove and discard the choke plate and choke
shaft from the carburetor.
4. Remove the upper brass bushing using one of the
following procedures:
a. Use a slide hammer type bearing puller.
b. Use a #3 (for 5/32 dia. hole) screw extractor.
Secure extractor in a vise. Turn carburetor on
to the extractor. While pulling on the
carburetor, lightly t ap the carburetor casting
with a hammer or use a size 12-28 tap if a #3
screw extractor is not available.
Throttle Shaft Removal
Do not attempt to remove the throttle shaft, as repair
kits are not available. Throttle shaft wear is normally
accompanied by corresponding wear to the carburetor
body , making it impractical to attempt a cost-ef fective
repair. Replace the entire carburetor if the throttle shaf t
is worn.
NOTE: Do not submerge the carburetor in
cleaner or solvent when fiber, rubber, or
foam seals or gaskets are installed. The
cleaner may damage these components.
Inspection
Carefully inspect all components and replace those
that are worn or damaged.
•Inspect the carburetor body for cracks, holes, and
other wear or damage.
•Inspect the float for cracks, holes, and missing or
damaged float tabs. Check the float hinge and pin
for wear or damage.
•Inspect the fuel inlet needle and seat for wear or
damage.
•Inspect the tip of the low idle fuel adjusting needle
for wear or grooves.
•Inspect the throttle and choke shaft and plate
assemblies for wear or excessive play .
5.8
Section 5
Fuel System and Governor
Repair
Always use new gaskets when servicing or reinstalling
carburetors. Repair kits are available which include
new gaskets and other components. Always refer to
the Parts Manual for the engine being serviced to
ensure the correct repair kits are ordered.
Reassembly
Choke Shaft Installation (Non-Self-Relieving)
1. Install the choke return spring to the choke shaft.
2. Insert the choke shaft with return spring into the
carburetor body .
3. Rotate the choke lever approximately 1/2 turn
counterclockwise. Make sure the choke return
spring hooks on the carburetor body .
4. Position the choke plate as marked during
disassembly . Insert the choke plate into the slot in
the choke shaft. Make sure the choke shaft is
locked between the tabs on the choke plate. If the
choke plate was attached with screws, loosely
attach the plate to the shaft. Close the choke and
center the choke plate in the bore. Tighten, but do
not over-tighten the screws. Check that the choke
moves freely and that the plate does not bind in
the bore.
T op View Showing
Spring Position
Figure 5-11. Choke Lever with Cap Removed.
4. Loosely attach the choke plate to the choke shaft
using the two screws provided in the choke repair
kit. Apply Loctite® No. 609 to the threads of the
choke plate retaining screws. Secure these
screws ONL Y af ter the choke plate is properly
aligned in the choke bore. To align choke plate,
insert a .010 in. shim between the top right edge
of the choke plate and bore. See Figure 5-12.
Then while pushing down on the top of the choke
shaft, tighten screws securely .
Figure 5-12. Measuring Clearance.
Bottom of
Spring in
Position 2
5
Choke Shaft Installation (Self-Relieving)
WARNING: Prevent Eye Injury!
Suitable eye protection (safety glasses, goggles, or
face shield) should be worn for any procedure
involving the use of compressed air, punches,
hammers, chisels, drills, or grinding tools.
1. Before installing kit parts, thoroughly clean the
carburetor body with compressed air.
2. Install the new bushing through the new lever and
align the slot in the bottom of the lever over the
lever stop pin. To ensure the proper alignment of
the upper bushing and the lower shaft hole use a
3/16 diameter drill blank to align the bushing as it
is pressed into the casting.
3. Install choke shaft and spring assembly with the
lower spring tang installed in the second notch
from the right. See Figure 5-1 1.
5. Check choke shaft and choke plate for freedom of
movement by performing the following:
a. Using the choke lever, close the choke plate.
The choke lever and choke plate should
move in unison.
b. While holding the choke lever in the closed
position, push on the long side of the choke
plate. The choke plate should open and
spring closed freely .
c. While holding the choke lever in the wide
open position, the choke plate should be
against the wide open choke plate stop pin.
6. Install new dust cover by pushing it down until it
snaps into place.
7. After the carburetor is reinstalled on the engine,
recheck choke system for freedom of movement
by moving the wire link in the direction to close
the choke and releasing it. The link should move
freely in both directions.
5.9
Section 5
Fuel System and Governor
Welch Plug Installation–W albro Carburetors
Use Tool No. KO1017 and install new plugs as follows:
1. Position the carburetor body with the welch plug
cavities to the top.
2. Place a new welch plug into the cavity with the
raised surface up.
3. Use the end of the tool that is about the same
size as the plug and flatten the plug. Do not force
the plug below the surface of the cavity . See
Figure 5-13.
Tool No. KO1017
Carburetor BodyNew Welch Plug
4. Insert the fuel inlet needle into the float. Lower
the float/needle into the carburetor body. See
Figure 5-14.
Install the float shaft.
Float
Fuel Inlet Needle
Figure 5-14. Installing Float and Fuel Inlet Needle.
5. Install the bowl gasket, fuel bowl, bowl retaining
screw gasket, and bowl retaining screw or fuel
solenoid.
Figure 5-13. Installing Welch Plugs.
4. After the plugs are installed, seal them with
Glyptal™ (or an equivalent sealant). Allow the
sealant to dry .
NOTE: If a commercial sealant is not available,
fingernail polish can be used.
Carburetor Reassembly
1. Install the low idle speed adjusting screw and
spring.
2. If removed during disassembly , install the low idle
fuel adjusting needle and spring. Turn the
adjusting needle in (clockwise) until it bottoms
lightly.
NOTE: The tip of the idle fuel adjusting needle is
tapered to critical dimensions. Damage
to the needle and the seat will result if
the needle is forced.
3. Turn the low idle fuel adjusting needle out
(counterclockwise) 1 turn.
Torque the bowl retaining screw to 5.1-6.2 N·m
(45-55 in. lb.).
High Altitude Operation
When operating the engine at altitudes of 1830 m
(6000 ft.) and above, the main fuel mixture tends to get
overrich. An overrich mixture can cause conditions
such as black, sooty exhaust smoke, misfiring, loss of
speed and power, poor fuel economy, and poor or slow
governor response.
To compensate for the effects of high altitude, a
special high altitude main fuel jet can be installed. High
altitude jets are sold in kits which include the jet and
necessary gaskets. Refer to the Parts Manual for the
engine being serviced for the correct kit number.
Fuel Shut-off Solenoid (Optional)
Some gasoline-fueled engines are equipped with the
optional fuel shut-off solenoid, which is installed in
place of the bowl retaining screw , to eliminate
backfiring when the engine is shut down. If a solenoidequipped engine will not start, check whether sufficient
voltage is reaching the solenoid. A minimum of 7.3
volts DC is required to activate the solenoid. Also
check to see that the ground lead from the carburetor
body to the air cleaner base mounting stud is properly
connected.
5.10
Section 5
Fuel System and Governor
If these check out, the solenoid should be removed for
bench testing. Remember to shut off fuel supply and
catch any fuel spilling from the carburetor as the
solenoid is removed.
Bench test the solenoid by grounding the solenoid
case and applying 12 volt DC to the spade terminal. If
the plunger does not retract in this test, the solenoid is
faulty and must be replaced. Always use a new fuel
bowl gasket whenever the solenoid is installed. Refer
to the appropriate wiring diagram in Section 8 for
connecting the fuel shut-off solenoid.
LPG Systems
Components of a typical LPG (liquefied propane gas)
system are shown in Figure 5-15. This subsection
covers standard systems as shown in Figure 5-15 and
engines equipped with the Kohler Emission Sentry
System.
™
Fuel Recommendations (LPG)
WARNING: Pressurized LPG!
Fuel tanks are filled under pressure and should be
handled with care. T o prevent t ank damage which
could endanger the safety of the operator or persons
in the area, do not drop or drag tanks on any surface.
Use a hand truck when moving, or tilt the tank on its
footring in a position slightly off vertical and roll it.
WARNING: Explosive Fuel!
LPG is extremely flammable and is heavier than air
and tends to settle in low areas where a spark or flame
could ignite the gas. Do not start or operate this engine
in a poorly ventilated area where leaking gas could
accumulate and endanger the safety of persons in the
area.
LPG fuel consists primarily of propane, although the
fuel supplier may sometimes mix other gases with
propane.
Fuel tanks must be filled only by persons qualified in
the handling of LPG. Tanks are filled by weight and
should not be overfilled (never to more than 80% of
total capacity). An air sp ace must be present in the
tank to allow fuel to expand.
Tanks must be removed from equipment before filling.
5
Avoid personal contact with LPG fuel to prevent
frostbite. See a physician if frostbite occurs.
LP Carburetor
Vacuum* Lines
Fuel
Delivery
Line
Dry Gas Regulator
Automatic Shut-off
*On some applications the vacuum
line goes directly into the intake
side of the cylinder head.
Figure 5-15. Schematic Showing Components of Typical LPG System.
Valve (Vacuum Lockoff,
maybe part of regulator)
High Pressure Lines
Dry Gas Filter
Propane Supply Tank
(Vapor Withdrawal)
5.11
Section 5
Fuel System and Governor
T roubleshooting - LPG Systems
If engine troubles are experienced that appear to be
caused by the carburetor, check the following areas
before adjusting the carburetor.
•Make sure the air cleaner element is clean and all
air cleaner components are fastened securely.
This is especially critical on propane-fueled
engines.
•Check for a loose or kinked vacuum line, causing
regulator not to open.
•Check to make sure the fuel valve on the LPG
tank is fully opened.
•Check gauge on LPG tank to make sure there is
sufficient fuel present.
If, after checking the items listed above, adjust or
service the carburetor as follows.
Adjust Carburetor
1. With the engine stopped, reset the main fuel
setting by closing the adjusting screw until it
bottoms then turn it 2 1/4 to 2 1/2 turns open
(see Figure 5-16).*
Vacuum Line
Fuel Inlet from
Main Fuel Set
2 1/4 to 2-1/2
T urns Open
Figure 5-16. LPG Main Fuel Setting.*
*NOTE: Engines equipped with Kohler Emission
Sentry™ controls have a fixed main jet
carburetor.
Regulators
Adjustable T ype Only
3 Way Catalytic
Muffler (Not Shown)
DC Stepper Motor
Oxygen Sensor
Coupling
LPG Carburetor
Shown with
Self-Relieving
Choke
Figure 5-17. Main Components of Kohler Emission Sentry™ System.
Fuel Metering
Valve Body
Adjustable
Load Screw
To Unit
Wiring Harness
(12 V olt Source)
Electronic
Control Unit
5.12
Section 5
Fuel System and Governor
Kohler Emission Sentry™ System
Some Kohler Command engines are equipped with the
Emission Sentry™ System. Emission Sentry™ is a
feature which assures the operator that the exhaust
emission levels of the engine are well within safe
exposure limits. The system does not require any
additional daily maintenance beyond the schedule
normally specified for Command engines.
Principle of Operation
The Emission Sentry™ System can be broken down
into two functions. One function is to control the ratio
of air and fuel entering the engine. The second
function is treating the exhaust gas, utilizing a 3-way
catalytic converter .
The function of air/fuel ratio control is carried out by an
oxygen sensor placed in the exhaust stream, an
electronic control unit, a stepper motor, and a fuel
metering valve. The oxygen sensor indirectly
measures the oxygen level in the exhaust stream. An
abundance of oxygen indicates a lean condition and a
lack of oxygen indicates a rich condition. The sensor
sends an electrical signal to the electronic control unit
where the signal is analyzed. The electronic control
unit then sends a signal to the stepper motor which
adjusts the fuel metering valve, thus controlling the
amount of fuel entering the engine. The air/fuel ratio is
maintained within a set band under all operating
conditions. By maintaining the air/fuel ratio at peak
performance levels, maximum efficiency is also
realized from the 3-way catalytic converter to further
reduce emissions.
The oxygen sensor continually monitors the emission
levels in the exhaust while the unit is running. If the
emission levels exceed a predetermined level, a fault
detection circuit will be activated in the electronic
control unit. Once activated, the fault detection circuit
will continue to monitor the signal from the oxygen
sensor for the next 45-60 seconds. If the emission
levels remain at an unsafe level, the fault circuit will
ground the ignition to kill the engine and illuminate a
red LED lamp on the dash panel of the unit. The fault
circuit will reset itself automatically in about 2-3
minutes. If the fault circuit is triggered repeatedly , one
of the components is malfunctioning or faulty , and the
unit should be serviced by an authorized dealer. The
fault circuit will not allow the engine to operate more
than 45-60 seconds with emissions above the
predetermined level.
5
Troubleshooting the Emission
Sentry™ System
If the fault circuit is triggered repeatedly during
operation, a fault should be suspected in one of the
following areas:
a. Electrical wires for stepper motor, oxygen sensor,
battery cable, or ground cable have been
disconnected.
b. Stepper motor.
c. Fuel adjusting screw in control valve is binding.
d. Oxygen sensor.
Operating with Emission Sentry
The equipment has a 12-volt battery and the engine
has an integral electric starter and charging system.
St arting is accomplished by simply setting the throttle/
choke control and activating the key switch on the
dash panel of the unit. When the engine starts, a
green, light emitting diode (LED) will illuminate, to
indicate that the Emission Sentry™ is on. It will require
a warm-up period of about sixty seconds to allow the
oxygen sensor to heat up, and the fuel metering valve
to stabilize. When first started, the engine will be
running rich and may sound rough. As the oxygen
sensor heats up and the system stabilizes, however ,
operation should become progressively smoother.
After the system has stabilized (about 1 minute),
operation of the equipment can begin.
™
e. Electronic control unit.
If the fault circuit is triggered when the engine is idling:
a. The idle mixture screw on the gas regulator may
be improperly adjusted.
To determine where the fault lies, proceed as follows:
1. Check all electrical connections and leads from
oxygen sensor, stepper motor, electronic control
unit and battery cables. It is best to disconnect
wire connectors from oxygen sensor, stepper
motor and engine functions and check for
corrosion. Reconnect and observe if fault occurs
again.
5.13
Section 5
Fuel System and Governor
2. The stepper motor, electronic control unit
(ECU) and oxygen sensor can all be checked with
the Kohler Emission Sentry™ Tester (Kohler Part
No. 12 761 07-S).
a. Separate the plug connector between the
electronic control unit (ECU) and the stepper
motor. Plug the separated connectors into
the mating connectors on the Emission
Sentry™ Tester . Connect the single black lead
to battery negative or a good ground on the
engine/unit. Turn the key switch on the dash
to the ‘‘run’’ position, and push the small
toggle switch on the tester to the ‘‘open’’
position. Observe the red LED’s for the ECU
and the bicolor LED’s for the stepper motor .
The red LED’s should flash in sequence, the
bicolor LED’s should alternate colors, and
you should hear the stepper motor turning.
Now push the toggle switch to the ‘‘close’’
position and repeat your observations. The
red LED’s should flash in the reverse
sequence, the bicolor LED’s should again
alternate, and you should again hear the
stepper motor turning. If any or all of the red
LED’s are not flashing, the ECU is faulty . If
the bicolor LED’s are not alternating and/or
the stepper motor is not running, the stepper
motor is faulty .
b. Allow the toggle switch on the tester to return
to the ‘‘monitor’’ position, start the engine,
and place the throttle between midrange and
fast. Observe the LED’s on the tester . The
red and bicolor LED’s should flash as in the
previous test. The green LED (oxygen
sensor) will be off initially, unless the muffler
is still hot from prior running. As the oxygen
sensor reaches operating temperature, the
green LED should begin to flash on and off. If
it stays on or off, or the interval between
flashes is more than 25-30 seconds, the
oxygen sensor could be faulty or the load
adjusting screw in the fuel metering valve
may be stuck or binding. Proceed to step 3.
3. Remove the stepper motor/fuel metering valve
assembly from the engine. Remove the four small
socket head screws and separate the fuel
metering valve from the stepper motor. Try to turn
the load adjusting screw with the blade of a small
screwdriver (see inset in Figure 5-17). If the screw
turns freely and easily , the oxygen sensor was
faulty (step 2b).
If the screw is stuck or binding, remove it from the
valve body , clean the threads with solvent, and
reinstall. Check it again for binding. Do not use
any type of lubricant on the threads of the load
adjusting screw.
NOTE: If the oxygen sensor is removed from the
exhaust manifold for any reason, a high
temperature anti-seize compound
(Loctite® No. 767) should be applied to
the threads. A new replacement sensor
already has a dry anti-seize compound
on the threads; additional compound is
not required.
4. If the fault circuit triggers while the engine is
idling, but not during normal operation, the idle
mixture screw on the regulator is probably out of
adjustment. Turn the screw 1/2 turn clockwise,
start the engine, and run it at idle for
approximately two minutes. If the fault circuit does
not trigger, the problem has been corrected. If the
fault circuit is triggered and the engine shuts off
before two minutes, turn the screw an additional
1/4 turn clockwise and test again for two minutes.
Governor
These engines are equipped with a centrifugal
flyweight mechanical governor. It is designed to hold
the engine speed nearly constant under changing load
conditions. The governor gear/flyweight mechanism is
mounted inside the crankcase and is driven off the
gear on the balance shaft.
Operation
As the governor gear rotates, centrifugal force causes
the flyweights to move outward as speed increases. As
the flyweights move outward, they cause the regulating
pin to move outward.
The regulating pin contacts the tab on the cross shaft,
causing the shaft to rotate when the engine speed
changes. One end of the cross shaft protrudes through
the side of the crankcase. Through external linkage
attached to the cross shaft, the rotating action is
transmitted to the throttle lever of the carburetor.
5.14
Section 5
Fuel System and Governor
When the engine is at rest, and the throttle is in the
‘‘fast’’ position, the tension of the governor spring holds
the throttle plate open. When the engine is operating
(the governor gear assembly is rotating), the force
applied by the regulating pin against the cross shaft
tends to close the throttle plate. The governor spring
tension and the force applied by the regulating pin are
in ‘‘equilibrium‘‘ during operation, holding the engine
speed nearly constant.
When load is applied and the engine speed (and
governor gear speed) decreases, the governor spring
tension moves the governor arm to open the throttle
plate wider. This allows more fuel into the engine;
increasing engine speed. This action takes place very
rapidly , so a reduction in speed is hardly noticed. As
the speed reaches the governed setting, the governor
spring tension and the force applied by the regulating
pin will again be in equilibrium. This maintains the
engine speed at a relatively constant level.
The governed speed setting is determined by the
position of the throttle control. It can be variable or
constant, depending on the application.
Initial Adjustment
Make this initial adjustment whenever the governor
arm is loosened or removed from the cross shaft. To
ensure proper setting, make sure the throttle linkage is
connected to the governor arm and the throttle lever
on the carburetor. See Figure 5-18.
1. With the governor lever loose on the cross shaft,
pull the lever towards the carburetor (wide open
throttle).
2. Grasp the cross shaft with a pliers, or insert a nail
into the hole in the end of the cross shaft. Rotate
the shaft counterclockwise as far as it will turn,
then tighten hex. nut securely .
3. Torque the hex. nut to 9.9 N·m (88 in. lb.).
Unitized Throttle and Choke Control
Some engines are equipped with a ‘‘unitized’’ throttle
and choke control bracket assembly . This assembly
controls the choke and engine speed with a single
lever.
Throttle Cable Adjustment
1. Loosen the throttle control cable clamp. See
Figure 5-19.
Throttle Control Cable
Speed
Control
Bracket
Throttle
Lever
Clamp
Sight
Hole
5
Governor Lever
Cross ShaftHex. Nut
Figure 5-18. Initial Governor Adjustment.
NOTE: Air cleaner removed to show linkage.
Adjustment should be made with air cleaner
base installed.
Alignment Holes
Figure 5-19. Speed Control Bracket Assembly.
2. Place the throttle control lever of the equipment
into the “fast” or high idle position.
NOTE: The choke is placed “on” by moving the
throttle control slightly past the “fast”
position. If the throttle control does not
have a designated choke “on” position,
be sure to leave sufficient throttle control
travel past the “fast” position. This will
enable the choke to be placed “on”. See
Figure 5-20.
Choke Adjusting
Screw
5.15
Section 5
Fuel System and Governor
Cold Engine
Figure 5-20. T ypical Throttle/Choke Controls.
Warm Engine
1. Make sure the throttle cable is adjusted properly
(see ‘‘Throttle Cable Adjustment").
2. Start the engine and allow it to warm up. Place the
throttle control lever into the ‘‘fast’’ or high idle
position.
3. Align the hole in the throttle lever with the hole in
the speed control bracket by inserting a pencil or
6.35 mm (1/4 in.) drill bit. See Figure 5-21.
4. Loosen the speed control bracket mounting
screws. Move the bracket up or down until the
desired high idle speed is reached. See Figure
5-22. Check the speed with a tachometer .
3. Align the hole in the throttle lever with the hole in
the speed control bracket by inserting a pencil or
6.35 mm (1/4 in.) drill bit. See Figure 5-21.
Choke Adjusting
Screw
Choke Lever
Speed Control
Bracket
Throttle Lever
Figure 5-21. Aligning Holes in Speed Control
Bracket and Throttle Lever.
4. Pull up on the outer shield of the throttle control
cable to remove any slack. Tighten the cable
clamp securely .
High Idle Speed Adjustment
The recommended maximum no-load high idle speed
for most of these engines is 3750 RPM. The actual
high idle speed depends on the application. Refer to
the equipment manufacturer’s instructions for specific
information.
Speed Control
Bracket
Mounting
Screws
Choke Adjusting
Decrease Speeds
Figure 5-22. Adjusting High Idle Speed.
To increase the high idle speed - move thebracket up (towards flywheel).
To decrease the high idle speed - move the
bracket down (towards PTO).
5. Tighten the speed control bracket mounting
screws. Recheck the speed with a tachometer
and readjust if necessary .
Torque the mounting screws as follows:
Into new as-cast hole–10.7 N·m (95 in. lb.).
Into used hole–7.3 N·m (65 in. lb.).
Screw
Increase
Speed
Sight
Hole
WARNING: Overspeed is Hazardous!
Do not tamper with the governor setting. Overspeed is
hazardous and could cause personal injury .
5.16
6. Adjust the choke (see ‘‘Choke Adjustment’ ’ which
follows).
Choke Adjustment
This procedure must follow the "High Idle Speed
Adjustment" just described. If not already completed,
perform that operation first.
1. Turn the choke adjusting screw out
(counterclockwise), until it no longer contacts the
choke lever. Then turn it back in (clockwise), until
it just makes contact.
2. While observing the choke link, move the throttle
control lever to the low idle (slow) position, then
back to full throttle (fast). The choke link should
not move as the throttle moves through the
normal range. If it does, back the adjusting screw
out until it no longer moves.
3. Move the throttle control lever to the choke
position. Check if the choke has fully closed by
placing your finger behind (right side) the link loop
and applying pressure toward the carburetor. If
the controls have been properly set, the link
should not move.
Sensitivity Adjustment
Governor sensitivity is adjusted by repositioning the
governor spring in the holes in the governor arm. If
speed surging occurs with a change in load, the
governor is set too sensitive. If a big drop in speed
occurs when normal load is applied, the governor
should be set for greater sensitivity .
Section 5
Fuel System and Governor
Governor Lever
Figure 5-23. Governor Spring Location.
Speed Control Bracket Service
The only serviceable components of the speed control
bracket assembly are the choke adjusting screw and
spring, choke return spring, and throttle cable clamp
and screw. Inst all the choke return spring as shown.
See Figure 5-24.
Replace the assembly if other parts are worn or
damaged.
Throttle Cable
Clamp and
Screw
Governor Spring
Speed
Control
Bracket
Assembly
5
The position of the governor spring in the governor
arm depends on the high idle, no load speed setting
(see Figure 5-23):
If the high idle, no load speed is 3600 RPM or less use the #2 hole (count outward from cross shaft).
If the high idle speed is greater than 3600 RPM use the #3 hole (count outward from cross shaft).
Choke
Return
Choke Adjusting
Screw and Spring
Figure 5-24. Speed Control Bracket Assembly.
Spring
Separate Throttle and Choke Control
Some engines are equipped with separate throttle and
choke controls. This allows you to adjust the choke
and throttle controls individually .
Install Separate Control Cables (See Figure 5-25).
Throttle Control
1. Loosen the 2-cable clamp screws on the engine
control plate.
5.17
Section 5
Fuel System and Governor
2. Position the application throttle control in the full
(fast) throttle position. Then move the throttle
lever back 3/16" or 4.75 mm. Insert the cable
boden wire into the throttle control lever on the
control plate.
3. Position the throttle cable under the cable clamp.
4. Pull on the throttle cable until it stops, hold it, and
tighten the cable clamp screw.
5. Move application throttle lever to the slow position
then to full throttle. Check the engine control to
assure it stops against the stop screw, which
means it is properly set.
Choke Control
1. Insert the choke cable boden wire into the engine
choke control lever on the control plate.
HIGH IDLE
Turn Screw Inward to
decrease RPM.
Turn Screw Outward to
Increase RPM.
Lock Nut
2. Position the choke cable under the cable clamp.
3. Push the choke (knob/handle) in the application
panel until it bottoms, then pull it back
approximately 1/16".
4. Push on the choke cable, above the clamp on the
engine control plate, until the choke lever stops.
Then tighten the cable clamp screw.
5. Pull the choke knob/handle until it stops, check to
assure the choke link cannot be moved towards
the carburetor by applying finger pressure on the
link loop behind the engine control plate. If the
choke link moves, adjust by following steps 3
and 4.
6. Push the choke knob/handle in until it bottoms.
The choke control link should be free so the
engine does not run on partial choke.
High Idle Speed
Screw
Tighten Lock Nut When
Desired RPM Is Obtained.
High Idle RPM
Control Stop Pad
Position-4
Choke
Throttle
Choke
Position-3
Throttle
Figure 5-25. Separate Choke and Throttle Cable Control (4 Positions Shown).
Throttle
Choke
Throttle
Choke
Position-1
Position-2
5.18
Section 5
Fuel System and Governor
Starting an Engine Equipped with Sep arate
Control Cables
1. Place the throttle control midway between the
"slow" and "fast" positions. Place the choke
control into the "on" position.
2. St art the engine.
3. For a Cold Engine – Gradually return the choke
control to the "off" position after the engine starts
and warms up.
The engine/equipment may be operated during
the warm up period, but it may be necessary to
leave the choke partially on until the engine
warms up.
4. For a Warm Engine – Return choke to "off"
position as soon as engine starts.
Changing the High Idle RPM on Engines with
Separate Controls
(Increase or Decrease RPM)
See Figure 5-25 on page 5.18.
1. Loosen the high idle stop screw retaining nut (top
side of control plate).
2. St art the engine, move the application throttle
lever to full throttle/fast, loosen the throttle cable
clamp screw on the engine control plate.
3. To increase the RPM: Turn high idle stop screw
outward (counterclockwise) and pull on the
throttle control cable until the desired RPM is
obtained.
4. Tighten the throttle cable clamp screw and the
high idle stop screw retaining nut.
5. To assure that the RPM has been obtained, move
the throttle lever to low idle/slow then back to full
throttle/fast and check the RPM with a
tachometer.
6. To decrease the RPM: Follow step s 1 and 2.
Then push the throttle cable in toward the control
bracket assembly to decrease the RPM (check
with a tachometer) until the desired RPM is
obtained. T ighten the cable clamp screw.
7. Turn the high idle stop screw inward (clockwise)
until it stops against the throttle control lever .
Then tighten the stop screw retaining nut.
8. Recheck high idle RPM to assure the required
RPM has been obtained.
Setting the Low Idle RPM
1. Move the application control to slow position.
2. Using a tachometer, check the RPM. Then, using
a screwdriver, turn the low idle stop screw
(located at the top of the carburetor) inward
(clockwise) to increase the RPM and outward
(counterclockwise) to lower the RPM.
Governed Idle Adjustment
A new governed idle control system is now being
supplied on some CV Single Cylinder engines. The
purpose of the new system is to maintain a desired idle
speed regardless of ambient conditions (temperature,
parasitic load, etc.) that often change.
The new system requires an additional procedure for
setting the idle speed. If speed adjustments are
required proceed as follows.
1. Make any necessary speed or control
adjustments following the appropriate instructions
already covered in this section.
2. Move the throttle control to the idle position. Hold
the governor lever away from the carburetor, so
the throttle lever is tight against the idle speed
adjusting screw. Check the speed with a
tachometer and adjust it to 900-1000 RPM. Turn
the screw clockwise to increase the speed and
counterclockwise to decrease the speed.
3. Release the governor lever and allow the engine
to return to the governed idle speed. Check it with
a tachometer against the equipment
manufacturers recommended idle speed. If
adjustment is necessary , use the governed idle
adjusting screw on the speed control assembly
(see Figure 5-26). Turn the screw clockwise to
increase the governed idle speed and
counterclockwise to decrease it.
5
5.19
Section 5
Fuel System and Governor
Governed Idle
Adjusting Screw
Figure 5-26. Location of Governed Idle Adjusting
Screw.
5.20
Section 6
Go Back
Lubrication System
Oil Recommendations
Using the proper type and weight of oil in the
crankcase is extremely important. So is checking oil
daily and changing oil regularly . Failure to use the
correct oil, or using dirty oil, causes premature engine
wear and failure. Synthetic oil is recommended for
use in LPG-fueled engines because there is less
oxidation or thickening, and deposit accumulation on
intake valves is substantially reduced.
Section 6
CV11-16
Lubrication System
CV460-465, CV490-495
Oil Type
Use high-quality detergent oil of API (American
Petroleum Institute) service class SG, SH, SJ or
higher. Select the viscosity based on the air
temperature at the time of operation as shown in the
following table.
**
*Use of synthetic oil having 5W-20 or 5W-30 rating is
acceptable, up to 40
**Synthetic oils will provide better starting in extreme cold
(below -10
Figure 6-1. Viscosity Grades Table.
NOTE: Using other than service class SG, SH, SJ or
°F).
higher oil or extending oil change intervals
longer than recommended can cause engine
damage.
*
°F.
6
Figure 6-2. Oil Container Logo.
Check Oil Level
The importance of checking and maintaining the
proper oil level in the crankcase cannot be
overemphasized. Check oil BEFORE EACH USE as
follows:
1. Make sure the engine is stopped, level, and is
cool so the oil has had time to drain into the
sump.
2. To keep dirt, grass clippings, etc., out of the
engine, clean the area around the oil fill cap/
dipstick before removing it.
3. Unthread and remove the oil fill cap/dipstick; wipe
oil off. Reinsert the dipstick into the tube and rest
the oil fill cap on the tube. Do not thread the cap
onto the tube. See Figure 6-3.
A logo or symbol on oil cont ainers identifies the API
service class and SAE viscosity grade. See Figure 6-2.
6.1
Section 6
Lubrication System
Oil Fill Cap/Dipstick
Oil Fill Tube
Optional Oil
Filter Drain Plug
Oil Filter
Oil Drain Plug
(Carburetor Side)
Figure 6-3. Checking Oil Level.
4. Remove the dipstick and check the oil level. The
oil level should be up to, but not over the ‘‘F’’ mark
on the dipstick. See Figure 6-4.
Operating
Range
Figure 6-4. Oil Level Dipstick.
5. If the level is low, add oil of the proper type, up to
the ‘‘F’’ mark on the dip stick. Always check the
level with the dipstick before adding more oil.
Optional Oil Sentry™ Pressure Switch
Oil Filter
Oil Drain Plug
Optional Oil Sentry
™
Pressure Switch
NOTE: To prevent extensive engine wear or
damage, always maintain the proper oil
level in the crankcase. Never operate the
engine with the oil level below the ‘‘L ’’
mark or over the ‘‘F’’ mark on the
dipstick.
Change Oil and Oil Filter
Change Oil
Change oil after every 100 hours of operation.
Change the oil while the engine is still warm. The oil
will flow more freely and carry away more impurities.
Make sure the engine is level when filling or checking
oil. Change the oil as follows (see Figure 6-5):
1. Remove the oil drain plug and oil fill cap/dipstick.
Be sure to allow ample time for complete
drainage.
2. Reinstall the drain plug. Make sure it is tightened
to 13.6 N·m (10 ft. lb.) torque.
3. Fill the crankcase, with new oil of the proper type,
to the ‘‘F’’ mark on the dipstick. Always check the
level with the dipstick before adding more oil.
Section 6
Lubrication System
4. Reinstall the oil fill cap/dipstick and tighten
securely.
NOTE: To prevent extensive engine wear or
damage, always maintain the proper oil
level in the crankcase. Never operate the
engine with the oil level below the ‘‘L ’’
mark or over the ‘‘F’’ mark on the dipstick.
Change Oil Filter
Replace the oil filter every other oil change (every
200 hours of operation). Always use a genuine
Kohler oil filter.
Replace the oil filter as follows:
1. Drain the oil from the engine crankcase.
2. Remove the oil filter drain plug (where applicable)
located at the base of the oil filter adapter. Allow
the oil filter to drain.
3. Remove the old filter and wipe off the filter
adapter. Reinstall the oil filter drain plug. Torque
the drain plug to 7.3-9.0 N·m (65-80 in. lb.).
4. Place a new replacement filter in a shallow pan
with the open end up. Pour new oil, of the proper
type, in through the threaded center hole. Stop
pouring when the oil reaches the bottom of the
threads. Allow a minute or two for the oil to be
absorbed by the filter material.
Full-Pressure Lubrication System
Operation
This engine uses a full-pressure lubrication system.
This system delivers oil, under pressure, to the
crankshaft, camshaft, balance shaft, and connecting
rod bearing surfaces. In addition to lubricating the
bearing surfaces, the lubrication system feeds oil to
the hydraulic valve lifters.
A high ef ficiency Gerotor™ oil pump is located in the oil
pan and is driven by the balance shaft. A pressure
relief valve in the oil pan limits the maximum pressure
of the system.
Service
The oil pump rotors can be serviced without removing
the oil pan. Remove the oil pump cover on the PTO
side of oil pan to service the rotors.
The oil pan must be removed to service the oil pickup
and oil pressure relief valve.
See Figures 6-6 through 6-8. Also refer to the
‘‘Disassembly’’ and ‘‘Reassembly’ ’ sections for
lubrication system components removal and
installation procedures.
6
5. Put a drop of oil on your fingertip and wipe it on
the rubber gasket.
6. Install the replacement oil filter to the filter
adapter. Turn the oil filter clockwise until the
rubber gasket contacts the filter adapter, then
tighten the filter an additional 2/3 to 1 turn.
7. Fill the crankcase with new oil, of the proper type,
to the "F" mark on the dipstick.
8. Test run the engine to check for leaks. S top the
engine, allow a minute for the oil to drain down,
and recheck the level on the dipstick. Add more
oil, as necessary , so the oil level is up to but not
over the "F" mark on the dipstick.
Inner
Rotor
Outer Rotor
Outer Rotor
Inner
Rotor
Balance Shaft
Figure 6-6. Gerotor™ Oil Pump.
6.3
Section 6
Lubrication System
Figure 6-7. Oil Pickup.
Oil Pressure
Relief Valve
Oil Pressure
Relief Valve
Figure 6-9. Engine Mounted Oil Filter.
Oil Sentry
Some engines are equipped with an optional Oil
Sentry™ oil pressure monitor. If the oil pressure get s
low, Oil Sentry™ will either shut off the engine or
activate a warning signal, depending on the
application.
Operation
The pressure switch is designed to break contact as
the oil pressure increases and make contact as the oil
pressure decreases. At oil pressure above
approximately 2 to 5 psi, the switch contacts open. At
oil pressures below approximately 2 to 5 psi, the
switch contacts close.
On stationary or unattended applications (pumps,
generators, etc.), the pressure switch can be used to
ground the ignition module to stop the engine. On
vehicular applications (lawn tractors, mowers, etc.),
the pressure switch can be used to activate a ‘‘low oil’’
warning light.
™
Figure 6-8. Oil Pressure Relief Valve S tyles.
Oil Filter
These engines are equipped with a full-flow oil filter.
See Figure 6-9.
The oil filter helps remove sludge and other
combustion by-products from the oil. It also extends
the oil change interval and cools the oil.
6.4
NOTE: Make sure the oil level is checked BEFORE
EACH USE and is maintained up to the ‘‘F’’
mark on the dipstick. This includes engines
equipped with Oil Sentry™.
Section 6
Lubrication System
Installation
The pressure switch is installed in the oil filter adapter ,
in one of the main oil galleries of the oil pan. See
Figure 6-10. On engines not equipped with Oil
Sentry™, the installation hole is sealed with a 1/8-27
N.P.T.F. pipe plug.
Figure 6-10. Oil Sentry™ Pressure Switch.*
*NOTE: Some engines use adapter without oil drain
plugs or provision for Oil Sentry™.
To install the Oil Sentry™ switch to the oil filter adapter
of oil pan:
1. Apply Loctite® No. 59241 pipe sealant with
Teflon® (or equivalent) to the threads of the
switch.
2. Install the switch into the tapped hole in oil filter
adapter.
Torque the switch to 6.8 N·m (60 in. lb.).
T esting the Oil Sentry™ Switch
The Oil Sentry™ pressure monitor is a normally-closed
switch. It is calibrated to open (break contact) with
increasing pressure and close (make contact) with
decreasing pressure, within the range of 2.0/5.0 psi.
Compressed air, a pressure regulator, pressure gauge,
and a continuity tester are required to test the switch.
1. Connect the continuity tester across the blade
terminal and the metal case of the switch. With
0 psi pressure applied to the switch, the tester
should indicate continuity (switch closed).
2. Gradually increase the pressure to the switch.
The tester should indicate a change to nocontinuity (switch open) as the pressure
increases through the range of 2.0/5.0 psi.
The switch should remain open as the pressure is
increased to 90 psi maximum.
6
3. Gradually decrease the pressure to the switch.
The tester should indicate a change to continuity(switch closed) as the pressure decreases
through the range of 2.0/5.0 psi.
If the switch does not operate as specified,
replace the switch.
Testing Oil Pressure
The engine oil pressure can be tested using the oil
pressure tester described in Section 2. Follow the
instructions included with the tester. The pressure can
be tested by removing the oil filter and installing the
tester adapter on the filter pad, or by removing the Oil
Sentry™ pressure switch (or pipe plug) and threading
the tester hose directly into the hole. See Figure 6-10.
6.5
Section 6
Lubrication System
6.6
CV11-16
Go Back
Section 7
CV460-465, CV490-495
Retractable Starter
Section 7
Retractable Starter
WARNING: S pring Under Tension!
Retractable starters contain a powerful recoil spring that is under tension. Always wear safety goggles when
servicing retractable starters and carefully follow instructions in this section for relieving spring tension.
Hex.
Flange
Screws
Spring and
Keeper
Pulley
Brake Washer
Brake Spring
Center Screw
Starter Housing
Handle with
Rope Retainer
Rope
Pawl Springs
Pawls
Pawl Retainer
Plain Washer
Drive Cup
To Remove Starter
1. Remove the five hex. flange screws securing the
starter to the blower housing.
2. Remove the starter .
To Install Starter
1. Install the retractable starter and five hex. flange
screws to blower housing. Leave the screws
slightly loose.
2. Pull the starter handle out until the pawls engage
the drive cup. Hold the handle in this position and
tighten the screws securely. See Figure 7-2.
7
Figure 7-1. Retractable Starter–Exploded V iew .
Figure 7-2. Installing Retractable St arter.
7.1
Section 7
Retractable Starter
Rope Replacement
The rope can be replaced without complete starter
disassembly .
1. Remove the starter from the engine blower
housing.
2. Pull the rope out approximately 12" and tie a
temporary (slip) knot in it to keep it from retracting
into the starter . See Figure 7-3.
Slip Knot
Handle
Knot
Rope Retainer
Figure 7-3. Removing Starter Handle.
3. Remove the rope retainer from inside the starter
handle. Untie the single knot and remove the rope
retainer and handle.
4. Hold the pulley firmly and untie the slip knot. Allow
the pulley to rotate slowly as the spring tension is
released.
5. When all spring tension on the starter pulley is
released, remove the rope from the pulley .
6. Tie a single knot in one end of the new rope.
7. Rotate the pulley counterclockwise (when viewed
from pawl side of pulley) until the spring is tight.
(Approximately 6 full turns of pulley .)
8. Rotate the pulley clockwise until the rope hole in
pulley is aligned with rope guide bushing of starter
housing.
NOTE: Do not allow the pulley/spring to unwind.
Enlist the aid of a helper if necessary , or
use a C-clamp to hold the pulley in
position.
9. Insert the new rope through the rope hole in
starter pulley and rope guide bushing of housing.
See Figure 7-4.
Keep Pulley
from Rotating
Figure 7-4. Installing Rope.
10. Tie a slip knot approximately 12" from the free
end of rope. Hold the pulley firmly and allow it to
rotate slowly until the slip knot reaches the guide
bushing of housing.
1 1. Slip the handle and rope retainer onto the rope.
Tie a single knot at the end of the rope. Install the
rope retainer into the starter handle.
12. Untie the slip knot and pull on the handle until the
rope is fully extended. Slowly retract the rope into
the starter .
When the spring is properly tensioned, the rope
will retract fully and the handle will stop against
the starter housing.
Rope Guide
Bushing
Rope Hole
in Pulley
Pawls (Dogs) Replacement
The starter must be disassembled to replace the
starter pawls. A pawl repair kit is available which
includes the following components:
Pawl Repair Kit
Qty.
1
1
2
1
2
1
1
Pawl Retainer
Center Screw
Pawl (Dog) Spring
Brake Spring
Starter Pawl (Dog)
Brake Washer
Washer
Description
7.2
Section 7
Retractable Starter
Disassembly
CAUTION: Spring Under T ension!
Do not remove the center screw from the starter until
the spring tension is released. Removing the center
screw before releasing spring tension, or improper
starter disassembly , can cause the sudden and
potentially dangerous release of the spring. Follow
these instructions carefully to ensure personal safety
and proper starter disassembly. Make sure adequate
eye and face protection is worn by all persons in the
area.
1. Release spring tension and remove the handle
and starter rope. (Refer to ‘‘Rope Replacement,’’
steps 2 through 5 on page 7.2.)
2. Remove the center screw, washer, and pawl
retainer. See Figure 7-5.
Center Screw and
Washer
Pawl Retainer
4. Carefully note the positions of the pawls and pawl
springs before removing them.
Remove the pawls and pawl springs from the
starter pulley .
5. Rotate the pulley clockwise 2 full turns. This will
ensure the spring is disengaged from the starter
housing.
6. Hold the pulley into the starter housing. Invert the
pulley/housing so the pulley is away from your
face, and away from others in the area.
7. Rotate the pulley slightly from side to side and
carefully separate the pulley from the housing.
See Figure 7-7.
If the pulley and the housing do not separate
easily, the spring could be engaged in the st arter
housing, or there is still tension on the spring.
Return the pulley to the housing and repeat step 5
before separating the pulley and housing.
Figure 7-5. Center Screw, Washer and Pawl Ret ainer.
3. Remove the brake spring and brake washer. See
Figure 7-6.
Brake Spring and
Brake Washer
Pawl
Spring
Pawls
7
Housing
Pulley
Figure 7-7. Removing Pulley from Housing.
8. Note the position of the spring and keeper
assembly in the pulley . See Figure 7-8.
Remove the spring and keeper assembly from the
pulley as a package.
CAUTION: Spring Under T ension!
Do not remove the spring from the keeper. Severe
personal injury could result from the sudden uncoiling
of the spring.
Figure 7-6. Brake Spring and Washer, Pawls, and
Pawl Springs.
7.3
Section 7
Retractable Starter
Inspection and Service
1. Carefully inspect the rope, pawls, housing, center
screw, and other component s for wear or
damage.
2. Replace all worn or damaged components. Use
only genuine Kohler replacement parts as
specified in the Parts Manual. All component s
shown in Figure 7-1 are available as service
parts. Do not use nonstandard parts.
3. Do not attempt to rewind a spring that has come
out of the keeper. Order and inst all a new spring
and keeper assembly .
4. Clean all old grease and dirt from the starter
components. Generously lubricate the spring and
center shaft with any commercially available
bearing grease.
Pulley & Spring
Housing
Figure 7-9. Installing Pulley and Spring into
Housing.
3. Install the pawl springs and pawls into the starter
pulley . See Figure 7-10.
Reassembly
1. Make sure the spring is well lubricated with
grease. Place the spring and keeper assembly
inside the pulley (with spring toward pulley). See
Figure 7-8.
Rope Hole
Outer Spring Hook
Figure 7-8. Position of Spring and Keeper in Pulley .
2. Install the pulley and spring into the starter
housing. See Figure 7-9.
Make sure the pulley is fully seated against the
starter housing. Do not wind the pulley and recoil
spring at this time.
in Pulley
Spring &
Keeper
Pawl
Pawl Spring
Figure 7-10. Installing Pawls and Pawl Springs.
4. Place the brake washer in the recess in starter
pulley , over the center shaft.
5. Lubricate the brake spring sparingly with grease.
Place the spring on the plain washer. (Make sure
the threads in center shaft remain clean, dry, and
free of grease and oil.)
6. Apply a small amount of Loctite® No. 271 to the
threads of the center screw. Inst all the center
screw, with washer and retainer, to the center
shaft. Torque the screw to 7.4-8.5 N·m
(65-75 in. lb.).
7.4
7. Tension the spring and install the rope and
handle, as instructed in steps 6 through 12 under
‘‘Rope Replacement’’ on p age 7.2.
8. Install the starter to the engine blower housing.
CV11-16
Go Back
Section 8
Electrical System and Components
CV460-465, CV490-495
Section 8
Electrical System and Components
This section covers the operation, service, and repair of the electrical system and electrical system components.
Major electrical systems and components covered in this section include the ignition system, battery, battery
charging systems, and electric starters.
WARNING: Electrical Shock
Never touch electrical wires or components while the engine is running. They can be sources of electrical shock.
Spark Plug
Engine misfire or starting problems are often caused by
a spark plug that is in poor condition or has an improper
gap setting.
These engines are equipped with one of the following
spark plugs:
Type: The st andard spark plug is a Champion
RC12YC (Kohler Part No. 12 132 02-S). A
high-performance spark plug, Champion
Premium Gold 2071 (used on Pro Series
engines, Kohler Part No. 12 132 06-S) is also
available. Equivalent alternate brand plugs can
also be used.
Gap: CV1 1-15,CV460-465,490-495 1.02 mm (0.040 in.)
CV1 1-14 LP,CV16 0.76 mm (0.030 in.)
Thread Size: 14 mm
Reach: 19.1 mm (3/4 in.)
Hex. Size: 15.9 mm (5/8 in.)
®
®
2. Remove the plug and check its condition. Replace
the plug if worn or reuse is questionable. (See
figures on page 8.2.)
NOTE: Do not clean the spark plug in a machine
using abrasive grit. Some grit could
remain in the spark plug and enter the
engine, causing extensive wear and
damage.
3. Check the gap using a wire feeler gauge. Adjust
the gap by carefully bending the ground electrode.
See Figure 8-1.
Wire Gauge
Spark Plug
8
Spark Plug Service
Every 200 hours of operation, remove the spark plug,
check its condition, and reset the gap or replace with a
new plug as necessary .
1. Before removing the spark plug, clean the area
around the base of the plug to keep dirt and debris
out of the engine. Due to the deep recess around
the spark plug, blowing out the cavity with
compressed air is usually the most effective
method for cleaning.
Ground Electrode
Figure 8-1. Servicing Spark Plug.
8.1
Section 8
Electrical System and Components
4. Reinstall the spark plug into the cylinder head.
Torque the spark plug to 24.4-29.8 N·m
(18-22 ft. lb.).
Inspection
Inspect the spark plug as soon as it is removed from
the cylinder head. The deposits on the tip are an
indication of the general condition of the piston rings,
valves, and carburetor.
Normal and fouled plugs are shown in the following
photos.
Chalky White Deposits: Chalky white-colored
deposits indicate overheating. This condition is usually
accompanied by excessive gap erosion. A clogged
grass screen, clogged cooling fins, and lean
carburetion are some causes of overheating.
Normal: A plug taken from an engine operating under
normal conditions will have light tan or gray colored
deposits. If the center electrode is not worn, a plug in
this condition could be regapped and reused.
Worn: On a worn plug, the center electrode will be
rounded and the gap will be eroded .010" or more
beyond the correct gap. Replace a worn spark plug
immediately.
Carbon Fouled: Soft, sooty , black deposits indicate
incomplete combustion. Incomplete combustion is
usually caused by overrich carburetion, weak ignition,
or poor compression.
Wet Fouled: A wet plug is caused by excess fuel, or
oil in the combustion chamber. Excess fuel could be
caused by operating the engine with too much choke
or a dirty air filter. Oil in the combustion chamber is
usually caused by worn piston rings or valve guides.
CV1 1-15, CV460-465, CV490-495 engines are
equipped with a dependable electronic magneto
ignition system. The system consists of the following
components:
•A magnet assembly which is permanently affixed
to the flywheel.
•An electronic magneto ignition module which
mounts on the engine crankcase.
•A kill switch (or key switch) which grounds the
module to stop the engine.
•A sp ark plug.
Operation
As the flywheel rotates and the magnet assembly
moves past the ignition module, a low voltage is
induced in the primary windings of the module. When
the primary voltage is precisely at its peak, the primary
circuit is interrupted, inducing a high voltage in the
secondary windings. This high voltage creates a spark
at the tip of the spark plug, which ignites the fuel-air
mixture in the combustion chamber.
The timing of the spark is automatically controlled by
the module. Therefore, other than periodically
checking/replacing the spark plug, no maintenance,
timing, or adjustments are necessary or possible with
this system.
Lamination (A)
Kill T erminal (B)
8
8.3
Section 8
Electrical System and Components
Magneto Ignition System Troubleshooting Guide
The following guide will help locate and correct ignition system problems.
ProblemTest
1. Make sure the spark plug lead is connected
to the spark plug.
Engine
Will
Not
Start
2. Check the condition of spark plug. Make
sure gap is set correctly . See page 8.1.
3. a.Test for spark with ignition tester, Part
No. KO1047. Disconnect spark plug
lead and connect it to the post terminal
of the tester. See Figure 8-3. Connect
the clip to a good ground, not the
spark plug.
NOTE: To maintain engine speeds
normally obtained during
cranking, do not remove the
engine spark plug.
b. Make sure the engine ignition switch,
kill switch, or key switch is in the ‘‘run’’
position.
c. Crank the engine and observe the
test plug. Visible and audible sparks
should be produced.
4. Measure the resistance of module
secondary using an ohmmeter (see Figures
8-2 and 8-4):
Zero ohmmeter before testing. Connect
one ohmmeter lead to laminations (A).
Connect the other lead to the spark plug
terminal (C) of high-terminal lead. With the
ohmmeter leads connected in this manner,
the resistance of secondary should be
7,900 to 18,400 ohms.
NOTE: This test cannot be performed
unless module has been fired at
least once.
2. If plug is in good condition, check/adjust
gap and reinstall.
3. If visible and audible sparks are produced,
the ignition module is OK.
If visible and audible sparks are not
produced:
a. Make sure the engine ignition switch,
b. Check wires and terminals of ignition
4. If the resistance is low or 0 ohms, the
module secondary is shorted. Replace the
module*.
If the resistance is high or infinity ohms,
the module secondary is open. Replace the
module*.
If the resistance is within the specified
range, the module secondary is OK.
*Refer to the Disassembly and Reassembly
Sections for complete ignition module
removal and installation procedures.
Conclusion
kill switch, or key switch is in the ‘‘run’’
position.
module and other components for
accidental grounding and damaged
insulation.
c. If wires and terminals are OK, the
ignition module is probably faulty and
should be replaced. Test module
further using an ohmmeter (Test 4).
Figure 8-3. Ignition T ester, Part No. KO1047.Figure 8-4. Testing Module Secondary.
8.4
Electrical System and Components
Electronic Ignition System with Spark Advance (Smart Spark™), CV16 Engines
12 V olt Battery
Kill Switch or Off
Position of Key Switch
Spark Advance Module
Spark Plug
Air Gap
(0.2/0.3 mm)
0.008/0.012 in.
Ignition Module
Section 8
Flywheel
Figure 8-5. Capacitive Discharge Ignition System with Spark Advance.
The CV16 engines are equipped with an electronic
capacitive discharge ignition system with electronic
spark advance. A typical application (Figures 8-5 and
8-6) consists of the following components.
•A magnet assembly which is permanently af fixed
to the flywheel.
•An electronic, capacitive discharge ignition
module which mounts on the engine crankcase.
•A sp ark advance module which mounts to the
engine shrouding.
•A 12 volt battery which supplies current to the
spark advance module.
•A kill switch (or key switch) which grounds the
spark advance module to stop the engine.
Figure 8-6. Smart Spark™ Components.
Magnet
8
•A spark plug.
8.5
Section 8
Electrical System and Components
Operation
As the flywheel rotates, the magnet grouping passes
the input coil (L1) of the ignition module, inducing
energy in the coil. The resultant pulse is rectified by
diode (D1) and charges capacitor (C1). Current from
the same pulse also travels through the brown lead to
the spark advance module (SAM), and enters the
input of the conditioning circuit. The conditioning
circuit shapes this pulse, putting it in a useable form
for the other circuits. The ‘‘conditioned’ ’ pulse st art s
the charge pump, which charges a capacitor in linear
fashion, directly related to engine speed. The pulse
also resets the delay circuit. The comparator is off
during this period.
When the flywheel magnet group has passed the input
coil, and the original pulse drops back to zero, the
capacitor in the delay circuit begins to charge off of the
power source. When the charge on the delay
capacitor exceeds the charge pump capacitor , the
comparator changes state and activates the pulse
generator, The ‘‘generated’ ’ pulse returns to the ignition
module through the yellow lead and turns ‘‘on’’ the
semiconductor switch (SCS), completing the circuits
between the charging capacitor (C1) and the
transformer (T1). The charging capacitor discharges
into the transformer primary (P), inducing a highvoltage pulse in the transformer secondary (S). The
high-voltage pulse arcs across the spark plug gap,
igniting the fuel-air mixture in the combustion chamber.
The longer it takes the delay circuit to surpass the
reference voltage in the charge pump capacitor , the
later the trigger pulse will occur, retarding the timing
accordingly.
The trigger pulse exiting the SAM activates the reset
circuit, discharging the capacitor and resetting the
circuits for the next cycle.
Green or
Black
Brown
L
1
From
Input
Coil
Brown
Spark
Advance
Module
(SAM)
Conditioning
Circuit
D1
Yellow
R1
Charge
Pump
SCS
Delay
Circuit
Comparator
V+ (7.2 V)
Reset
Circuit
C1
Power
Source
Pulse
Generator
T1
PS
B+ (12 VDC)
Red
Yellow
To SemiConductor
Switch
Spark
Plug
Figure 8-7.
8.6
Section 8
Electrical System and Components
Troubleshooting CD Ignition Systems
The CD ignition system is designed to be trouble-free
for the life of the engine. Other than periodically
checking/replacing the spark plug, no maintenance or
timing adjustment is necessary or possible.
Mechanical systems do occasionally fail or break
down, however, so the following troubleshooting
information is provided to help you get to the root of a
reported problem.
Reported ignition problems are most often due to poor
connections. Before beginning the test procedure,
check all external wiring. Be certain all ignition-related
wires are connected, including the spark plug lead. Be
certain all terminal connections fit snugly . Make sure
the ignition switch is in the run position.
NOTE: The CD ignition systems are sensitive to
excessive load on the kill lead. If a customer
complains of hard starting, low power , or
misfire under load, it may be due to excessive
draw on the kill circuit. Disconnect any
auxiliary kill wires or safety switches
connected to the kill circuit and operate the
engine to determine if the reported problem is
gone.
NOTE: The spark advance module (SAM), used with
Smart Sp ark™, requires an external power
source of at least 7.2 volts DC. If you are
installing a replacement battery on a unit that
has an engine with Smart Spark™, be certain
the battery is fully charged prior to installation.
Testing of Smart Spark™ Ignition Systems
on CV16 Engines
The following procedure is provided for troubleshooting
ignition problems on CV16 engines. It will allow you to
pinpoint the failed components.
Special T ools Required:
*NOTE: Ignition tester KO1046 must be used to test
Smart Sp ark
can result in inaccurate findings. Battery on
unit must be fully charged and properly
connected before making any of these tests.
Be sure drive is in neutral and all external
loads are disconnected.
Preliminary T est
To be certain the reported problem is in the engine
ignition system, it should be isolated from the unit,
as follows.
1. Locate the plug connectors where the wiring
harnesses from the engine and unit are joined.
Separate the connectors and remove the white
‘‘kill’’ lead from the engine connector. Rejoin the
connectors, and position or insulate the kill lead
terminal so it cannot touch ground. Try to start the
engine to verify whether the reported problem is
still present.
a. If the problem is gone, the electrical system
on the unit is suspect. Check the key switch,
wires, connections, safety interlocks, etc.
b. If the problem persists, continue with the
following troubleshooting procedure. Leave
the kill lead isolated until all testing is
completed.
™
ignition. Use of any other tester
Troubleshooting Procedure
1. Disconnect spark plug lead and attach it to tester
KO1046. Attach tester clip to a good ground, not
to the spark plug.
2. Crank the engine and observe tester for spark. Do
not touch tester while cranking.
3. If no spark is observed, verify that spark advance
module (SAM) is getting proper voltage.
8
•Tester KO1046*
•Multi-meter (digital)
Specifications Required:
•Sp ark plug gap 0.030"
•Ignition module air gap 0.008-0.012" (0.010")
a. Return to the connector where the engine
and unit wiring harnesses are joined and find
the double red lead in the back of the engine
connector. Using a DC voltmeter with a
probe lead, test the voltage at the terminal on
the double red lead with the key switch in
both the ‘‘start’’ and ‘ ‘run’ ’ positions. At least
7.2 volts must be present. If voltage is low ,
proceed to step 4. If voltage is above 7.2,
proceed to step 5.
8.7
Section 8
Electrical System and Components
4. Remove the blower housing from the engine.
a. Trace the black ground lead from the SAM
and check that the ground tab and terminal
connections are all tight. Recheck voltage at
engine connector. If voltage is still low, check
battery , key switch, and wiring on unit.
b. When you are certain there is proper voltage
at the connector, retest for spark. If there is
still no spark, proceed to step 5.
5. If you skipped step 4, remove the blower housing
at this time. Check all leads and connections from
the SAM to the wiring harness and from the SAM
to the ignition module. Pay special attention to the
connection in the red lead, as the connectors can
be misaligned in a way that the terminals don't
make contact. Correct any problems found with
the wiring or connections and retest for spark. If
no wiring problems were found, or there is still no
spark, proceed to step 6.
6. Zero ohmmeter and perform the following
resistance checks on the ignition module. Module
should be at room temperature (70° F).
a. Remove the brown lead and test resistance
from the wide tab to the laminations.
Resistance should be 145-160 ohms.
b. Remove the yellow lead and test resistance
from the narrow tab to the laminations.
Resistance should be 900-1000 ohms.
c. Test resistance from the spark plug lead
terminal to the laminations. Resistance
should be 3800-4400 ohms.
If the battery charge is not sufficient to crank the
engine, recharge the battery.
Battery Charging
WARNING: Explosive Gases!
Batteries produce explosive hydrogen gas while being
charged. T o prevent a fire or explosion, charge
batteries only in well ventilated areas. Keep sparks,
open flames, and other sources of ignition away from
the battery at all times. Keep batteries out of the reach
of children. Remove all jewelry when servicing
batteries.
Before disconnecting the negative (-) ground cable,
make sure all switches are OFF. If ON, a spark will
occur at the ground cable terminal which could cause
an explosion if hydrogen gas or gasoline vapors are
present.
Battery Maintenance
Regular maintenance will ensure the battery will
accept and hold a charge.
1. Regularly check the level of electrolyte. Add
distilled water as necessary to maintain the
recommended level.
NOTE: Do not overfill the battery . Poor
performance or early failure due to loss
of electrolyte will result.
2. Keep the cables, terminals, and external surfaces
of battery clean. A build-up of corrosive acid or
grime on the external surfaces can self-discharge
the battery . Self-discharging happens rapidly
when moisture is present.
If any of the resistance readings are outside of the
specified ranges, replace the ignition module. If the
resistance readings are all good, replace the SAM.
Battery
A 12 volt battery with a minimum current rating of 250
cold cranking amps is recommended. The requirement
depends on engine size, applications and starting
temperatures. Cranking requirements increase as
temperatures decrease and at the same time battery
capacity shrinks. Refer to the operating instructions of
the equipment this engine powers for specific battery
requirements.
8.8
3. Wash the cables, terminals, and external surfaces
with a baking soda and water solution. Rinse
thoroughly with clear water.
NOTE: Do not allow the baking soda solution to
enter the cells as this will destroy the
electrolyte.
Section 8
Electrical System and Components
Battery Test
Test the battery voltage by connecting DC voltmeter
across the battery terminals - crank the engine. If the
battery drops below 9 volts while cranking, the battery
is discharged or faulty . Refer to Figure 8-8.
DC
Voltmeter
Battery
Figure 8-8. Checking Battery V oltage.
Electrical Systems Wiring Diagrams and
Battery Charging Systems
Most engines are equipped with 15 amp regulated
battery charging systems. Some have 3 amp
unregulated systems with optional 70 watt lighting circuit.
Refer to the following wiring diagrams and
troubleshooting guides to test and service system.
3 Amp
Charging
Stator
Lighting
Lead (Yellow)
Lighting Stator
Charging
Lead (Black)
Figure 8-9. 3 amp/70 Watt St ator.
1. Make sure the battery polarity is correct. A
negative (-) ground system is used.
2. Disconnect the battery cables (negative (-) cable
first), before doing electric welding on the
equipment powered by the engine.
3. Prevent the stator (AC) leads from touching or
shorting while the engine is running. This could
damage the stator .
NOTE:Zero ohmmeteres on each scale to ensure accurate readings. Voltage tests should be made with engine
running at 3400 RPM - no load. Battery must be fully charged.
Problem
No
Charge
To
Battery
Test
1. With engine running at 3400 RPM,
measure voltage across battery
terminals using a DC voltmeter.
2. Disconnect the charging lead (black) from
the wiring harness.
With engine running at 3400 RPM,
measure voltage from charging lead to
ground using a DC voltmeter.
3. With charging lead disconnected from
battery and engine stopped, measure
resistance from charging lead to ground
using an ohmmeter. Note reading.
Reverse the leads and measure resistance
again.
In one direction, the resistance should be
infinity ohms (open circuit). With the leads
reversed, some resistance should be
measured (about midscale on Rx1 range).
4. Disconnect the lighting lead (yellow) from
the wiring harness.
Conclusion
1. If voltage is more than 12.5 volts, charging
system is OK.
If voltage is 12.5 volts or less, the stator or
diode are probably faulty . Test the stator and
diode (Test 2,3, and 4).
2. If voltage is 5 volts or more, stator winding
is OK.
If voltage is less than 5 volts, test stator
using an ohmmeter (Tests 3 and 4).
3. If resistance is low in both directions, the
diode is shorted. Replace the diode.
If resistance is high in both directions, the
diode or stator winding is open.
(Use Test 4.)
4. If resistance is approximately 0.15 ohms,
stator winding is OK.
8.12
No
Lights
Measure the resistance from the lighting
lead to ground using an ohmmeter.
1. Make sure lights are not burned out.
2. Disconnect the lighting lead (yellow) from
the wiring harness.
With engine running at 3400 RPM,
measure voltage from lighting lead to
ground using an AC voltmeter.
3. With engine stopped, measure the
resistance of stator from lighting lead to
ground using an ohmmeter.
If resistance is 0 ohms, stator winding is
shorted. Replace stator .
If resistance is infinity ohms, stator winding
or lead is open. Replace stator .
1. Replace burned out lights.
2. If voltage is 13 volts or more, stator is OK.
Check for loose connections or shorts in
wiring harness.
If voltage is less than 13 volts, test stator
using an ohmmeter (Test 3).
3. If resistance is approximately 0.15 ohms,
stator is OK.
If resistance is 0 ohms, stator is shorted.
Replace stator .
If resistance is infinity ohms, stator or
lighting lead is open. Replace stator .
Section 8
Electrical System and Components
Problem
No
Lights
Or
Battery
Charging
(Braking
System
Test)
Test
1. Make sure lights are not burned out.
2. Disconnect the braking lead (green) from
the wiring harness.
With engine running at 3400 RPM,
measure voltage from braking lead to
ground using an AC voltmeter.
3. With the engine stopped, measure the
resistance from braking lead to ground
using an ohmmeter.
Conclusion
1. Replace burned out lights.
2. If voltage is 35 volts or more, stator is
OK. Circuitry on unit that grounds braking
lead is shorted.
If voltage is less than 35 volts, test
stator using an ohmmeter (Test 3).
3. If resistance is approximately
0.2-0.4 ohms, stator is OK.
If resistance is 0 ohms, stator is shorted.
Replace stator .
If resistance is infinity ohms, stator or
lighting lead is open. Replace stator .
8
8.13
Section 8
Electrical System and Components
CV11-15, CV460-465, CV490-495 Electric Start Engines 15 amp Battery Charging System
Ground-to-Kill Lead (White)
(Violet)
A
R
M
GND
Key Switch
Optional
Fuse
S
B
(Blue)
(Red)
Rectifier
Regulator
B+
Ignition
Module
AC
AC
Spark
Plug
Flywheel
Stator
Optional Oil
Optional Oil
Sentry™
Switch
(Shutdown)
Figure 8-12. CV11-15, CV460-465, CV490-495 Electric S t art Engines/15 amp Regulated Battery Charging
System.
Sentry™
Switch
(Indicator
Light)
_
Battery
Optional
Ammeter
+
SolenoidStarter
Diodes
Auto
Choke
Fuel
Solenoid
CV16 Electric Start Engines 15 amp Battery Charging System
NOTE: Zero ohmmeters on each scale to ensure accurate readings. Voltage test s should be made with engine
running at 3600 RPM - no load. The battery must be fully charged.
ProblemTestConclusion
1. If voltage is 13.8-14.7 and charge rate
increases when load is applied, the charging
system is OK and battery was fully charged.
If voltage is less than 13.8 or charge rate does
not increase when load is applied, test stator
(Tests 2 and 3).
2. If voltage is 28 volts or more, stator is OK.
Rectifier-regulator is faulty. Replace the
rectifier-regulator.
If voltage is less than 28 volts, stator is
probably faulty and should be replaced. Test
stator further using an ohmmeter (Test 3).
3a. If resistance is 0.1/0.2 ohms, the stator is OK.
If the resistance is infinity ohms, stator is
open. Replace stator.
No
Charge
to
Battery
1. Trace B+ lead from rectifier-regulator to key
switch, or other accessible connection.
Disconnect it from switch or connection.
Connect an ammeter from loose end of B+
lead to positive terminal of battery. Connect
DC voltmeter from loose end of B+ lead to
negative terminal of battery. See Figure 8-9.
With engine running at 3600 RPM, read
voltage on voltmeter.
If voltage is 13.8 volts or more, place a
minimum load of 5 amps* on battery to
reduce voltage. Observe ammeter.
*NOTE: Turn on lights, if 60 watts or more.
Or place a 2.5 ohm, 100 watt
resistor across battery terminals.
2. Remove connector from rectifier-regulator.
With engine running at 3600 RPM, measure
AC voltage across stator leads using an AC
voltmeter.
3a. With engine stopped, measure the resistance
across stator leads using an ohmmeter.
Battery
Continuously
Charges at
High Rate
8.16
3b. With the engine stopped, measure the
resistance from each stator lead to ground
using an ohmmeter.
1. Perform same test as step 1 above.
3b. If the resistance is infinity ohms (no
continuity), the stator is OK (not shorted to
ground).
If resistance (or continuity) is measured, the
stator leads are shorted to ground. Replace
stator.
1. If the voltage is 14.7 volts or less the charging
system is OK. The battery is unable to hold a
charge. Service battery or replace as
necessary.
If voltage is more than 14.7 volts, the
rectifier-regulator is faulty. Replace
rectifier-regulator.
Section 8
Electrical System and Components
Electric Starters
Some engines in this series use inertia drive starting
motors while others use solenoid shift type. The inertia
drive types are covered first and the solenoid shift type
is covered starting on page 8.23.
Starting Motor Precautions
NOTE: Do not crank the engine continuously for
more than 10 seconds at a time. If the engine
does not start, allow a 60-second cool-down
period between starting attempts. Failure to
follow these guidelines can burn out the
starter motor .
NOTE: If the engine develops sufficient speed to
disengage the inertia drive starter but does
not keep running (a false start), the engine
rotation must be allowed to come to a
complete stop before attempting to restart the
engine. If the starter is engaged while the
flywheel is rotating, the starter pinion and
flywheel ring gear may clash, resulting in
damage to the starter .
NOTE: If the starter does not crank the engine, shut
off the starter immediately. Do not make
further attempts to start the engine until the
condition is corrected.
NOTE: Do not drop the starter or strike the starter
frame. Doing so can damage the starter .
Starter Removal and Installation
Refer to the "Disassembly" and "Reassembly"
Sections for starter removal and installation
procedures.
Inertia Drive Electric Starters
This subsection covers the operation, troubleshooting,
and repair of the inertia drive, permanent magnet
electric starters.
Troubleshooting Guide - Starting Difficulties
Problem
Starter
Does Not
Energize
Starter
Energizes
But Turns
Slowly
Possible FaultCorrection
Battery
Wiring
Starter Switch
or Solenoid
Battery
Brushes
Transmission
or
Engine
1. Check the specific gravity of battery . If low, recharge or replace
battery as necessary .
1. Clean corroded connections and tighten loose connections.
2. Replace wires in poor condition and with frayed or broken
insulation.
1. Bypass the switch or solenoid with a jumper wire. If starter cranks
normally , replace the faulty components.
1. Check the specific gravity of battery . If low, recharge or replace
battery as necessary .
2. Battery too small, must be at least 250 cold-cranking amps.
1. Check for excessively dirty or worn brushes and commutator.
Clean using a coarse cloth (not emery cloth).
2. Replace brushes if excessively or unevenly worn.
1. Make sure the clutch or transmission is disengaged or placed in
neutral. This is especially important on equipment with
hydrostatic drive. The transmission must be exactly in neutral to
prevent resistance which could keep the engine from starting.
2. Check for seized engine components such as the bearings,
connecting rod, and piston.
8
8.17
Section 8
Electrical System and Components
Operation - Inertia Drive Starters
When power is applied to the starter , the armature
rotates. As the armature rot ates, the drive pinion
moves out on the splined drive shaft and into mesh
with the flywheel ring gear. When the pinion reaches
the end of the drive shaft, it rotates the flywheel and
“cranks” the engine.
When the engine starts, the flywheel rotates faster
than the starter armature and drive pinion. This moves
the drive pinion out of mesh with the ring gear and into
the retracted position. When power is removed from
the starter , the armature stops rot ating and the drive
pinion is held in the retracted position by the anti-drift
spring.
Starter Drive Service
Every 500 hours of operation (or annually , whichever
occurs first), clean and lubricate the splines on the
starter drive shaft. If the drive pinion is worn, or has
chipped or broken teeth, it must be replaced. See
Figure 8-16.
It is not necessary to completely disassemble the
starter to service the drive components.
7. Install the drive pinion, dust cover spacer , anti-drif t
spring, stop gear spacer , and stop nut. Torque the
stop nut to 17.0-19.2 N·m (150-170 in. lb.).
Reinstall the dust cover .
Style "A"
Dust Cover
Stop Nut
Stop Gear Spacer
Anti-Drift Spring
Dust Cover Spacer
Drive Pinion
Dust Cover
Retaining Ring
Spring Retainer
Anti-Drift Spring
Dust Cover Spacer
Drive Pinion
Drive Nut (Collar)
Style "B"
Style "A" Drive Service
1. Remove the starter from the engine and remove
the dust cover.
2. Hold the drive pinion in a vice with soft jaws when
removing and installing the stop nut. The
armature will rotate with the nut until the drive
pinion stops against internal spacers.
NOTE: Do not overtighten the vise as this can
distort the drive pinion.
3. Remove the stop nut, stop gear spacers, anti-drift
spring, dust cover spacer, and drive pinion.
4. Clean the splines on drive shaft thoroughly with
solvent. Dry the splines thoroughly .
5. Apply a small amount of Kohler electric starter
drive lubricant, Part No. 52 357 01-S, to the
splines. The use of other lubricants may cause
the drive pinion to stick or bend.
6. Apply a small amount of Loctite® No. 271 to the
stop nut threads.
Style "A"Style "B"
8.18
Figure 8-16. Inertia Drive Electric Starter.
Style "B" Drive Service
1. The rubber dust cover has a molded lip on the
inside that snaps into a groove in the dust cover
spacer (see Figure 8-17). T urn the drive pinion
clockwise until it reaches the fully extended
position. While holding it in the extended position,
grasp the tip of the dust cover with a pliers or vise
grip and pull it free from the spacer .
Dust Cover
Spring
Retainer
Retaining
Ring
Anti-Drift
Spring
Dust Cover Spacer
Section 8
Electrical System and Components
Figure 8-18. Assembling Inner Half of Tool Around
Armature Shaft and Ret aining Ring.
5. Thread the center screw into the removal tool until
you feel resistance. Use a wrench (1 1/8" or
adjustable) to hold the base of the removal tool.
Use another wrench or socket (1/2" or 13 mm) to
turn the center screw clockwise (see Figure 8-19).
The resistance against the center screw will tell
you when the retaining ring has popped out of the
groove in the armature shaft.
3. Again referring to Figure 8-17, grasp the spring
retainer and push it toward the starter ,
compressing the anti-drift spring and exposing
the retaining ring.
4. Holding the spring retainer in the retracted
position, assemble the inner halves of the
removal tool around the armature shaft with
the retaining ring in the inner groove (see
Figure 8-18). Slide the collar over the inner
halves to hold them in position.
8
Figure 8-19. Holding T ool and Turning Center
Screw (Clockwise) to Remove Retaining Ring.
6. Remove the drive components from the armature
shaft, paying attention to the sequence. If the
splines are dirty, clean them with solvent.
7. The splines should have a light film of lubricant.
Relubricate as necessary with Kohler bendix
starter lubricant (Part No. 52 357 01-S). Reinstall
or replace the drive components, assembling
them in the same sequence as they were
removed.
8.19
Section 8
Electrical System and Components
Retaining Ring Installation
1. Position the retaining ring in the groove in one of
the inner halves. Assemble the other half over the
top and slide on the outer collar.
2. Be certain the drive components are installed in
correct sequence onto the armature shaft.
3. Slip the tool over the end of the armature shaft, so
the retaining ring inside is resting on the end of
the shaft. Hold the tool with one hand, exerting
slight pressure toward the starter . Tap the top of
the tool with a hammer until you feel the retaining
ring snap into the groove. Disassemble and
remove the tool.
4. Squeeze the retaining ring with a pliers to
compress it into the groove.
5. Assemble the inner halves, with the larger cavity ,
around the spring retainer (see Figure 8-20). Slide
the collar over them and thread the center screw
in until resistance is felt.
2. Locate the small raised line on the edge of the
drive end cap. On starters with S tyle "A"
commutator end caps, it will be aligned with a
premarked line on the starter frame. The frame is
not premarked on starters with S tyle "B" end cap s.
Place a piece of masking tape on the frame and
mark a line on the tape in line with the raised line
on the end cap. See Figure 8-23.
3. Remove the thru bolts.
4. Remove the commutator end cap with brushes
and brush springs (Style "A"). Style "B" end caps
remove as a separate piece with the brushes and
carrier remaining in the frame.
5. Remove the drive end cap.
6. Remove the armature and thrust washer (if so
equipped) from inside the starter frame.
7. Remove the brush/carrier assembly from the
frame (Style "B" end cap st arters).
Style "A" End Cap Brush Replacement
1. Remove the brush springs from the pockets in
brush holder. See Figure 8-21.
Figure 8-20. Assembling Larger Inner Half Around
Spring Retainer .
6. Hold the base of the tool with a 1 1/8" wrench
and turn the center screw clockwise with a 1/2"
or 13 mm wrench to draw the spring retainer up
around the retaining ring. Stop turning when
resistance increases. Disassemble and remove
the tool.
7. Reinstall the dust cover.
Starter Disassembly
1. Remove the drive components following the
instructions for servicing the drive.
2. Remove the self-tapping screws, negative (-)
brushes, and plastic brush holder.
3. Remove the hex. flange nut and fiber washer
from the stud terminal.
Remove the stud terminal with positive (+)
brushes and plastic insulating bushing from the
end cap.
4. Reinstall the insulating bushing to the new stud
terminal with the positive brushes. Install the stud
terminal with bushing into the commutator end
cap. Secure the stud with the fiber washer and
hex. flange screw.
5. Install the brush holder, new negative brushes,
and self-tapping screws.
6. Install the brush springs and brushes into the
pockets in brush holder . Make sure the
chamfered sides of brushes are away from the
brush springs.
8.20
Section 8
Electrical System and Components
NOTE: Use a brush holder tool to keep the
brushes in the pockets. A brush holder
tool can easily be made from thin sheet
metal See Figure 8-22.
Stud Terminal with Positive (+) Brushes
Negative (-) Brush
Self-Tapping
Screw
Negative
(-) Brush
Figure 8-21. Style "A" Commutator End Cap with
Brushes.
Brush Holder T ool Inst alled
Over Brushes and End Cap
2 1/2"
1"
1 3/4"
1/2"
Brush Holder
Self-Tapping
Screw
Brush Springs
(Under Brushes)
Starter Reassembly
1. Place the thrust washer (if so equipped) over the
drive shaft of armature.
2. Insert the armature into the starter frame. Make
sure the magnets are closer to the drive shaft end
of armature. The magnets will hold the armature
inside the frame.
3. Install the drive end cap over the drive shaft.
Make sure the match marks on the end cap and
starter frame are aligned. See Figure 8-23.
Match Marks
Figure 8-23. Starter Assembly Match Marks.
For Style "A" Commutator End Cap s:
4. Install the brush holder tool to keep the brushes in
the pockets of the commutator end cap.
8
Sheet Metal Brush
Holder T ool
Figure 8-22. Brush Holder T ool (S tyle "A" End Cap).
Style "B" End Cap Brush Replacement
St arters with Style "B" end caps have the brushes in a
plastic carrier housing, separate from the end cap.
Replacement brushes come preassembled in the
carrier housing, retained with two carton staples.
Commutator Service
Clean the commutator with a coarse, lint free cloth. Do
not use emery cloth.
If the commutator is badly worn or grooved, turn it down
on a lathe or replace the armature.
5. Align the match marks on the commutator end
cap and starter frame. Hold the drive end and
commutator end caps firmly to the starter frame.
Remove the brush holder tool.
For Style "B" Commutator End Cap s:
4a. If the brush assembly is not being replaced,
position the brushes in their pockets in the carrier,
move them to the retracted position, and install
carton staples to retain them. See Figure 8-24.
5a. Align the terminal stud block with the notch in the
starter frame and slide the brush/carrier assembly
into the frame. The commutator will push the
carton staples out as the brush assembly is
inserted. Position the end cap over the brush
assembly , so the holes for the thru bolt s are
aligned with those in the brush carrier.
8.21
Section 8
Electrical System and Components
6. Install the thru bolts and tighten securely .
7. Lubricate the drive shaft with Kohler bendix starter
drive lubricant (Part No. 52 357 01-S). Install the
drive components following the instructions for
servicing the drive.
Figure 8-24. Style "B" Commutator End Cap with
Brushes.
110 Volt AC Starter
Some engines, on floor care equipment, are equipped with 1 10 volt, UL approved starters. See Figure 8-25. These
starters have no serviceable components. If the starter is damaged, worn, or faulty, the entire starter motor must
be replaced.
Push Button
Switch "Push" on
Figure 8-25. 110 Volt UL Approved Electric Starter.
To
Starter
T o 110 Volt AC Source
8.22
Section 8
Electrical System and Components
Solenoid Shift Electric Starters
The following subsection covers the solenoid shift electric starters. Much of the information in the preceding
subsection relates to these starters, therefore it is not repeated here. Refer to Figure 8-26 for disassembly and
assembly procedure of the UTE solenoid shift starter . The Nippendenso solenoid shift starter is covered starting
on page 8.24. The Delco solenoid shift starter start s on p age 8.28.
Hex. Flange
Screws (2)
Starter Assembly
Plunger
Spring
Solenoid
Frame (includes
Permanent Magnets)
Clip
Commutator End Cap
Brushes
and
Brush
Springs
Hex. Cap Screw (2)
Dust
Cover
Thru
Bolts
(2)
Armature
Drive End
Cap
Thrust Washer
Retainer
Seal
Drive Pinion
Drive Lever
8
Figure 8-26. UTE Solenoid Shift Electric St arter.
8.23
Section 8
Electrical System and Components
Operation (Solenoid Shift Starters)
When power is applied to the starter the electric
solenoid moves the drive pinion out onto the drive
shaft and into mesh with the flywheel ring gear. When
the pinion reaches the end of the drive shaft it rotates
the flywheel and cranks the engine.
When the engine starts and the start switch is released
the starter solenoid is deactivated, the drive lever
moves back, and the drive pinion moves out of mesh
with the ring gear into the retracted position.
Starter Removal and Installation
Refer to the "Disassembly" and "Reassembly" sections
for starter removal and installation procedures.
UTE Starter Disassembly
1. Remove clip.
2. Remove cap screws and solenoid. Scribe
alignment marks on caps and frame to aid
assembly.
3. Remove the thru bolts, drive end cap, commutator
end cap, and frame.
3. Place lever in position on drive shaft.
4. Place solenoid plunger on drive lever and position
drive end cap over drive shaft (be sure the rubber
dust cover is in place at the drive lever).
5. Fasten the end caps with the thru bolts.
6. Place the spring in the solenoid and fasten
solenoid to drive end cap using hex. cap screws.
7. Replace the clip.
Nippendenso Solenoid Shift Starter
Some specifications call for the Nippendenso solenoid
shift starter. Operation of this starter is identical to that
previously discussed. There are, however , some
differences in servicing the unit. Refer to Figure 8-27
for exploded view of the starter .
Starter Disassembly
1. Disconnect the wire from the solenoid.
2. Remove the hex. nuts securing the solenoid, and
remove the solenoid from the starter assembly.
4. Remove drive lever.
5. Remove thrust washer and retainer to remove
drive pinion from shaft.
UTE Brush Replacement
Replacing brushes in the solenoid shift starters is
exactly the same procedure as explained for the UTE
starter in the previous subsection.
UTE Starter Service
Clean drive lever and armature shaft. Apply Kohler
electric starter drive lubricant (52 357 02-S) to lever
and shaft.
UTE Starter Reassembly
1. Slide frame over armature and place commutator
end cap in position. Hold in position temporarily
with tape.
NOTE: Be sure alignment marks on caps and
frame are in proper position.
2. Place drive pinion (with seal), thrust washer and
retainer on drive shaft.
3. Remove the two thru bolts.
4. Remove the commutator end cap.
5. Remove the insulator and brush springs from the
brush spring holder.
6. Remove the armature from the frame.
7. Remove the drive lever and armature from the
drive end cap.
NOTE: When removing the lever and armature
be careful not to lose the thrust washer.
8. The stop collar consists of two similar pieces held
in place by being snapped over a retainer . The
retainer is held in place by a groove in the
armature shaft. To remove the stop collar the two
pieces must be pried off the retainer.
8.24
Nut
Section 8
Electrical System and Components
Drive
End
Cap
Frame
Starter
Assembly
Drive
Lever
Dust
Cover
Solenoid
Nut
Armature
Front Stop
Collar
Retainer
Rear Stop
Collar
Drive
Pinion
Wire
Brushes
Brush
Holder
Brush Spring
Insulator
Commutator
End Cap
Thru
Bolt
8
Figure 8-27. Nippendenso Solenoid Shift St arter .
9. When the stop collars are removed, the retainer
can be removed from the armature shaft. Electric
starter service kit KO3226 (see Section 2)
includes a special pliers for removing the retainer.
Do not reuse the retainer .
Brush Replacement
The brushes in the starter are part of the starter frame.
Brush kit Part No. 52 221 01-S contains four
replacement brushes and springs. If replacement is
necessary , all four brushes should be replaced.
1. Remove brushes from brush holder, and remove
brush holder from frame.
2. Cut the brush lead wire at the edge of the post
with a pair of nippers.
3. File off burrs on the post.
4. The replacement brushes have a solid portion on
them which should be crimped on the post.
5. Solder the crimped portion to the post.
6. Replace the brush holder in the frame and place
the brushes in the brush holder. Reinstall the
springs. Snap the insulator into the brush holder
to keep the springs from popping out.
Starter Service
Clean drive lever and armature shaft. Apply Kohler
electric starter drive lubricant (52 357 02-S) to lever
and shaft.
8.25
Section 8
Electrical System and Components
Starter Reassembly
1. Install the drive pinion onto the armature shaft.
2. Slide the stop collar onto the armature shaft
below the retaining ring groove. Make sure the
recessed side of the stop collar is ‘‘up’’.
3. Position a new retainer in the groove of the
armature shaft, and carefully tighten with a pliers
to secure.
NOTE: Always use a new retainer . Do not nick
or damage armature shaft.
4. Use an open end wrench and slide the stop collar
up, until the recessed section encases the
retaining ring and locks the collar into position.
See Figure 8-28.
Figure 8-28. Lock Collar around Retaining Ring.
5. Install the thrust washer onto the armature shaft
and lightly lubricate the end of the shaft with drive
lubricant.
Figure 8-29. Installing Armature.
7. Mount the brush holder to rear of starter frame.
Install the four brushes into the corresponding
slots. Then carefully work (set) each of the four
brush springs into position behind the brushes.
Slide the rubber insulating grommet onto the
small corresponding plastic tab on frame. See
Figure 8-30.
Figure 8-30. Mounting Brush Holder to Frame.
6. Position the lubricated drive lever around the drive
pinion assembly and insert the assembly into the
drive end cap. Seat the ‘‘pivot’’ section of drive
lever into the corresponding section within the
housing. See Figure 8-29.
8.26
8. Position the insulator over the brushes and
springs. Hold it firmly in place so the springs do
not come out. See Figure 8-31.
Figure 8-31. Holding Insulator in Place.
9. St and the armature/drive end cap assembly on
end so the commutator end is ‘‘up’’. Place brush/
armature installation tool over the end of the
armature shaft until it rests against the
commutator . See Figure 8-32.
Section 8
Electrical System and Components
Figure 8-33. Installing Frame with Brush Plate
Assembly .
11. Remove the tool and install the commutator end
cap, aligning the cutout with the insulating
grommet. See Figure 8-34.
Figure 8-32. T ool on end of Armature.
10. Carefully slide the frame, with the brush plate
assembly , down over the tool and onto armature
and drive end cap, aligning the cutout with lever
section (on top). The rubber insulating grommet
should also be ‘‘up’’. See Figure 8-33.
NOTE: Maintain pressure on the insulator while
installing so the springs do not come out.
8
Figure 8-34. Installing End Cap.
12. Inst all and tighten the two thru bolts.
13. Make sure the dust cover is in place on the
solenoid. Install solenoid, engaging the plunger
end with the yoke of the drive lever. Check by
pulling solenoid towards the rear. Mount the
solenoid to the starter using the two hex. flange
nuts. T ighten securely. See Figure 8-35.
8.27
Section 8
Electrical System and Components
Figure 8-35. Installing Thru Bolts.
14. Connect the braided (brush) lead to lower main
solenoid terminal and secure with the hex. flange
nut. See Figure 8-36.
Starter Disassembly
1. Remove the hex. nut and disconnect the positive
brush lead/bracket from the solenoid terminal.
2. Remove the three screws securing the solenoid to
the starter . Remove the solenoid and plunger
spring from the drive end cap. See Figures 8-38
and 8-39.
Some solenoids are
fastened with external
T orx head screws.
Figure 8-36. Connecting Brush Lead.
Delco-Remy Starters
Figure 8-38. Removing Solenoid Screws.
Figure 8-39. Solenoid Removed From Starter.
Figure 8-37.
8.28
3. Lift and unhook the plunger assembly from the
drive lever. Remove the gasket from the recess in
the housing. See Figure 8-40.
Section 8
Electrical System and Components
Figure 8-42. Removing Commutator End Plate
Assembly .
Figure 8-40. Removing Plunger.
4. Remove the two thru (larger) bolts. See Figure
8-41.
Figure 8-41. Removing Thru Bolts.
5. Remove the commutator end plate assembly ,
containing the brush holder, brushes, springs, and
locking caps. Remove the thrust washer from
inside the commutator end. See Figure 8-42.
6. Remove the frame from the armature and drive
end cap. See Figure 8-43.
8
Figure 8-43. Starter Frame Removed.
7. Remove the drive lever pivot bushing and backing
plate from the end cap. See Figure 8-44.
Figure 8-44.
8.29
Section 8
Electrical System and Components
8. Take out the drive lever and pull the armature out
from the drive end cap. See Figure 8-45.
9. Remove the thrust washer from the armature
shaft. See Figure 8-45.
Figure 8-47. Removing Retaining Ring.
12. Remove the drive pinion assembly from the
armature.
Figure 8-45. Armature and Lever Removed.
10. Push the stop collar down to expose the retaining
ring. See Figure 8-46.
Figure 8-46. Retaining Ring Detail.
11. Remove the retainer from the armature shaft.
Save the stop collar.
NOTE: Do not reuse the old retainer .
13. Clean the p arts as required.
NOTE: Do not soak the armature or use solvent
when cleaning. Wash and dry/clean
using a soft cloth, or compressed air.
8.30
Collar
Section 8
Electrical System and Components
Screw
Ring
Stop
Drive
Armature
Washer
Tube
Plunger
Spring
Lever
Plate
Plug
Solenoid
Frame & Field
Brush Holder
Nut
CE Frame ASM
Screw
8
Figure 8-48. Delco-Remy Solenoid Shift St arter .
Inspection
Drive Pinion
Check and inspect the following areas:
a. The pinion teeth for abnormal wear or
damage.
b. The O.D. surface between the pinion and the
clutch mechanism for nicks or burrs which
could cause seal damage.
c. Check the drive clutch by holding the clutch
housing and rotating the pinion. Pinion should
rotate in one direction only .
Bolt
Brushes and Springs
Inspect both the springs and brushes for wear, fatigue,
or damage. Measure the length of each brush. The
minimum length for each brush is 7.6 mm (.300 in.).
See Figure 8-49. Replace the brushes if they are
worn undersize, or their condition is questionable.
Wear limit length:
7.6 mm (.300 in.)
Figure 8-49. Checking Brushes.
8.31
Section 8
Electrical System and Components
Armature
1. Clean and inspect the commutator (outer
surface). The mica insulation of the commutator
must be lower than the O.D surface (undercut) to
ensure proper operation of the commutator . See
Figure 8-50.
Commutator O.D.
Mica Insulation
Figure 8-50. Commutator Mica Inspection.
2. Use an ohmmeter set to the Rx1 scale. Touch the
probes between two different segments of the
commutator , and check for continuity. See Figure
8-51. Test all the segments. Continuity must exist
between all or the armature is bad.
Brush Replacement
The brushes and springs are serviced as a set (4). Use
Brush and Spring Kit, Kohler Part No. 25 221 01-S, if
replacement is necessary .
1. Perform steps 1-5 in “St arter Disassembly.”
2. Remove the two screws securing the brush holder
assembly to the end cap (plate). Note the
orientation for reassembly later . See Figure 8-52.
Discard the old brush holder assembly .
Figure 8-52. Removing Brush Holder.
Insulation Check
Armature
Coil
Figure 8-51. Checking Armature.
3. Check for continuity between the armature coil
segments and the commutator segments. See
Figure 8-51. There should be no continuity. If
continuity exists between any two, the armature is
bad.
4. Check the armature windings/insulation for
shorting.
Continuity Check
Shift Fork
Check that the shift fork is complete, and the pivot and
contact areas are not excessively worn, cracked or
broken.
3. Clean the component parts as required.
4. The new brushes and springs come
preassembled in a brush holder with a protective
sleeve that will also serve as an installation tool.
See Figure 8-53.
Figure 8-53. Service Brush Kit.
5. Perform Steps 10-13 in the “Starter Reassembly”
sequence. (Installation must be done after the
armature, drive lever and frame are installed, if
the starter has been disassembled.)
8.32
Starter Service
Clean the drive lever and armature shaft. Apply Kohler
electric starter drive lubricant, Part No. 52 357 02-S
(Versilube G322L or Mobil Temp SHC 32), to the lever
and shaft. Clean and check the other starter parts for
wear or damage as required.
Starter Reassembly
1. Apply new drive lubricant (Kohler Part No.
52 357 02-S) to the armature shaft splines. Install
the drive pinion onto the armature shaft.
2. Install and assemble the stop collar/retainer
assembly.
Section 8
Electrical System and Components
Figure 8-55. Installing Thrust Washer.
a. Install the stop collar down onto the armature
shaft with the counter bore (recess) up.
b. Install a new retainer in the larger (rear)
groove of the armature shaft. Squeeze with a
pliers to compress it in the groove.
c. Slide the stop collar up and lock it into place,
so the recess surrounds the retainer in the
groove. If necessary , rotate the pinion outward
on the armature splines, against the retainer,
to help seat the collar around the retainer .
4. Apply a small amount of oil to the bearing in the
drive end cap, and install the armature with the
drive pinion.
5. Lubricate the fork end and center pivot of the
drive lever with drive lubricant (Kohler Part No.
52 357 02-S). Position the fork end into the space
between the captured washer and the rear of the
pinion.
6. Slide the armature into the drive end cap, and at
the same time seat the drive lever into the
housing.
NOTE: Correctly installed, the center pivot
section of the drive lever will be flush or
below the machined surface of the
housing which receives the backup
washer. See Figure 8-56.
8
Figure 8-54. Installing Stop Collar and Ret ainer.
NOTE: Always use a new retainer . Do not reuse
old retainers.
3. Install the offset thrust (stop) washer so the
smaller “offset” of washer faces the retainer/collar.
See Figure 8-55.
Figure 8-56. Installing Armature and Pivot Lever.
8.33
Section 8
Electrical System and Components
7. Install the backup washer , followed by the rubber
grommet, into the matching recess of the drive
end cap. The molded recesses in the grommet
should be “out”, matching and aligned with those
in the end cap. See Figure 8-57.
Figure 8-59. Installing Thrust Washer.
10. Starter reassembly when replacing the Brushes/
Brush Holder Assembly:
Figure 8-57. Installing Backup Washer and
Grommet.
8. Install the frame, with the small notch forward,
onto the armature and drive end cap. Align the
notch with the corresponding section in the rubber
grommet. Install the drain tube in rear cutout, if it
was removed previously. See Figure 8-58.
Figure 8-58. Installing Frame and Drain Tube.
a. Hold the starter assembly vertically on the end
housing, and carefully position the assembled
brush holder assembly , with the supplied
protective tube, against the end of the
commutator/ armature. The mounting screw
holes in the metal clips must be “up/out.” Slide
the brush holder assembly down into place
around the commutator , and install the positive
brush lead grommet in the cutout of the frame.
See Figure 8-60. Save the protective tube, it
may be used for future servicing.
9. Install the flat thrust washer onto the commutator
end of the armature shaft. See Figure 8-59.
8.34
Figure 8-60. Installing Brush Holder Assembly With
Supplied T ube.
St arter reassembly when not replacing the Brushes/
Brush Holder Assembly:
a. Carefully unhook the retaining caps from over
each of the brush assemblies. Do not lose the
springs.
Section 8
Electrical System and Components
Figure 8-61. Removing Retaining Caps.
b. Position each of the brushes back in their slots so
they are flush with the I.D. of the brush holder
assembly . Insert Brush Inst allation Tool No.
KO3226-1 (w/extension), or use the tube
described above from a prior brush installation,
through the brush holder assembly , so the holes
in the metal mounting clips are “up/out.”
c. Install the brush springs and snap on the four
retainer caps. See Figure 8-62.
Figure 8-63. Installing Brush Holder Assembly
Using T ool with Extension.
1 1. Install the end cap onto armature and frame,
aligning the thin raised rib in the end cap with the
corresponding slot in the grommet of the positive
brush lead.
12. Install the two thru bolts, and the two brush holder
mounting screws. Torque the thru bolts to
5.6-9.0 N·m (49-79 in. lb.). Torque the brush
holder mounting screws to 2.5-3.3 N·m
(22-29 in. lb.). See Figures 8-64 and 8-65.
8
Figure 8-62. Brush Installation Tool with Extension.
d. Hold the starter assembly vertically on the end
housing, and carefully place the tool (w/extension)
and assembled original brush holder assembly
onto the end of the armature shaft. Slide the
brush holder assembly down into place around
the commutator , install the positive brush lead
grommet in the cutout of the frame. See Figure
8-63.
Figure 8-64. T orquing Thru Bolts.
8.35
Section 8
Electrical System and Components
Figure 8-65. T orquing Brush Holder Screws.
13. Hook the plunger behind the upper end of the
drive lever, and inst all the spring into the solenoid.
Insert the three mounting screws through the
holes in the drive end cap. Use these to hold the
solenoid gasket in position, then mount the
solenoid. Torque the screws to 4.0-6.0 N·m
(35-53 in. lb.). See Figure 8-66.
Figure 8-66. Installing Solenoid Screws.
Figure 8-67. Positive Brush Lead Connection.
Completed Starter Photo
Figure 8-68. Delco-Remy Solenoid Shift St arter.
14. Connect the positive brush lead/bracket to the
solenoid and secure with the hex. nut. Torque the
nut to 6-9 N·m (53-79 in. lb.), do not overtighten.
See Figure 8-67.
8.36
CV11-16
Go Back
Section 9
CV460-465, CV490-495
Disassembly
Section 9
Disassembly
WARNING: Accident al Starts!
Disabling engine. Accidental starting can cause severe injury or death. Before working on the engine or
equipment, disable the engine as follows: 1) Disconnect the spark plug lead(s). 2) Disconnect negative (-) battery
cable from battery .
The following sequence is suggested for complete
engine disassembly . This procedure can be varied to
accommodate options or special equipment.
Clean all parts thoroughly as the engine is
disassembled. Only clean parts can be accurately
inspected and gauged for wear or damage. There are
many commercially available cleaners that will quickly
remove grease, oil, and grime from engine parts.
When such a cleaner is used, follow the
manufacturer’s instructions and safety precautions
carefully.
Make sure all traces of the cleaner are removed
before the engine is reassembled and placed into
operation. Even small amounts of these cleaners can
quickly break down the lubricating properties of engine
oil.
Typical Disassembly Sequence
1. Disconnect spark plug lead.
2. Drain oil from crankcase and remove oil filter.
3. Remove Oil Sentry™ pressure switch.*
4. Remove muffler.
5. Remove retractable starter .
6. Remove electric starter .
7. Remove air cleaner.
8. Remove external governor components and
carburetor.
27. Remove governor cross shaft and governor gear.
Disconnect Spark Plug Lead
9
Drain Oil from Crankcase and
Remove Oil Filter
1. Remove the oil drain plug and oil fill cap/dipstick.
See Figure 9-1.
2. Remove the oil filter drain plug located at the base of
the oil filter adapter on some models.
3. Allow ample time for the oil to drain from the
crankcase and oil filter.
4. Remove and discard the oil filter.
Remove Oil Sentry™ Pressure Switch
(on models so equipped)
1. Disconnect the leads from the pressure switch.
2. Unthread and remove the pressure switch from the
oil filter adapter. See Figure 9-1.
*If so equipped.
9.1
Section 9
Disassembly
Spark Plug
Lead
Oil Filter
Oil Drain
Optional Oil Sentry™ Switch or
Oil Filter Drain Plug
Figure 9-1. Removing Spark Plug Lead, Oil Drains,
Oil Filter, and Oil Sentry™ Switch (oil filter drain
plug not on all models).
Remove Muffler
1. Remove the hex. flange nuts from exhaust studs
and hex. flange screws from muffler bracket. See
Figures 9-2 and 9-3.
2. Remove the muffler and gasket from exhaust outlet
flange. Some engines may have an additional heat
deflector insert tube in the exhaust port, behind the
muffler flange. If present, remove it also.
Muffler
Figure 9-3. Removing Muffler.
Hex. Flange Nuts
Gasket
Remove Retractable Starter
1. Remove the five hex. flange screws and retractable
starter . See Figure 9-4.
Hex. Flange Screws (5)
Retractable
Starter
Muffler
Figure 9-2. Removing Muffler.
9.2
Hex. Flange
Screws
Muffler Bracket
Figure 9-4. Removing Retractable Starter.
Remove Electric Starter
Electric Starter (Bendix Drive or Solenoid Shift)
1. Disconnect the lead from the stud terminal on the
electric starter . See Figure 9-5. Disconnect both
leads on Solenoid Shift S tarter .
2. Remove the two hex. flange screws and starter
assembly . Some bendix drive starters have
additional spacers between the mounting flange
and crankcase or under the head of the mounting
bolt. Af ter noting their placement, remove and
retain the spacers.
Section 9
Disassembly
Hex. Flange
Screws
Electric
Starter
Stud Terminal
Figure 9-5. Removing Bendix Drive Starter.
Remove Air Cleaner
1. Loosen the knob and remove the air cleaner cover.
See Figure 9-6.
2. Remove the wing nut, air cleaner element, and
precleaner (if so equipped).
3. Loosen the hose clamps and disconnect the
breather hose from the air cleaner base and valve
cover. See Figure 9-7.
4. Remove the hex. flange nuts from the intake studs.
Remove air cleaner base and gasket from studs.
Breather
Hose
Hose
Clamps
Valve Cover
Gasket
Figure 9-7. Removing Air Cleaner Base.
Hex. Flange Nuts
Air Cleaner
Base
Remove External Governor Components
and Carburetor
WARNING: Explosive Fuel!
Gasoline is extremely flammable and its vapors can
explode if ignited. Store gasoline only in approved
containers, in well ventilated, unoccupied buildings,
away from sparks or flames. Do not fill the fuel tank
while the engine is hot or running, since spilled fuel
could ignite if it comes in contact with hot parts or
sparks from ignition. Do not start the engine near
spilled fuel. Never use gasoline as a cleaning agent.
Knob
Air Cleaner Cover
Figure 9-6. Removing Air Cleaner Cover.
1. Remove the throttle linkage from the bushing in the
governor lever. See Figure 9-8. Reattach bushing to
throttle linkage.
Remove the other end of the throttle linkage from
the bushing in the carburetor throttle lever.
Throttle Linkage
Bushing
Governor Lever
Carburetor
Throttle
Lever
Figure 9-8. Removing Throttle Linkage.
2. Disconnect the governor spring from the governor
lever and from the throttle control lever of the speed
control bracket.
Governor Spring
9
9.3
Section 9
Disassembly
3. Remove the two hex. flange screws and speed
control bracket. See Figure 9-9.
Speed Control
Choke Linkage
Choke
Control
Lever
Hex. Flange Nut
Figure 9-9. Removing Speed Control Bracket.
Bracket
Mounting
Screws
Governor Lever
Ground Lead
(some models)
Figure 9-11. Removing Baffle Screw and Washer.
8. Remove the carburetor and gasket from the intake
studs.
Baffle Screw
and Washer
4. Disconnect the choke linkage from the choke
control lever of speed control bracket.
5. Loosen the hex. flange nut and remove the
governor arm from the cross shaft.
6. Disconnect the fuel line from the inlet fitting of the
carburetor. See Figure 9-10.
Gasket
Carburetor
Inlet Fuel Line
Figure 9-10. Removing Fuel Line and Carburetor.
7. Remove the baffle screw and internal tooth washer
securing the ground lead for the fuel solenoid, if so
equipped. See Figure 9-1 1.
Remove Fuel Pump (If So Equipped)
WARNING: Explosive Fuel!
Gasoline is extremely flammable and its vapors can
explode if ignited. Store gasoline only in approved
containers, in well ventilated, unoccupied buildings,
away from sparks or flames. Do not fill the fuel tank
while the engine is hot or running, since spilled fuel
could ignite if it comes in contact with hot parts or
sparks from ignition. Do not start the engine near
spilled fuel. Never use gasoline as a cleaning agent.
1. Disconnect the fuel lines from the outlet and inlet
fittings of the fuel pump. See Figure 9-12.
2. Remove the two hex. flange screws, fuel pump,
and gasket.
Pump Outlet
Fuel Line
Hex. Flange
Screws
Gasket
Fuel Pump
9.4
Figure 9-12. Removing Fuel Pump.
Section 9
Disassembly
Remove Rectifier-Regulator (If Required)
1. Remove the connector from the rectifier-regulator .
See Figure 9-13.
2. Remove the two screws securing the rectifierregulator and individual ground lead (if used).
Hex. Flange Screws
RectifierRegulator
Ground Lead
Connector
Figure 9-13. Removing Rectifier-Regulator (not on
all models).
Remove Extended Oil Fill T ube
1. Remove the hex. flange screw securing the oil fill
tube to the blower housing/crankcase. See Figure
9-14.
2. Pull the oil fill tube out of the crankcase flange.
Blower
Housing
Mounting Screws
Cylinder Baffle
Mounting Screw
Figure 9-15. Removing Blower Housing and Baffles.
Mounting Screws
Figure 9-16. Removing Blower Housing and Baffles.
Cylinder
Baffle
Oil Fill Tube
Hex. Flange Screw
Figure 9-14. Removing Oil Fill Tube.
Remove Blower Housing and Baffles
1. See Figure 9-15, 9-16, and 9-17. Remove the six
screws securing the blower housing and any
commonly mounted clamps/brackets. Remove the
blower housing.
Muffler
Bracket
Valve Cover
Screws
Figure 9-17. Removing Blower Housing and Baffles.
2. Remove the hex. flange valve cover screws and any
loose spacers (stamped steel valve covers) which
also attach the muffler and/or lift bracket. Note the
assembly orientation for proper reassembly later .
Hex. Flange
Screws
Cylinder Head
Baffle
9
9.5
Section 9
Disassembly
3. Remove the hex. flange nut on stud securing the
carburetor side baffle,* if not removed previously
during carburetor removal. Remove the screws
attaching the cylinder head baffle. See Figure 9-18.
* If so equipped.
Cylinder
Head Baffle
Figure 9-18. Removing Blower Housing and Baffles.
Hex. Flange
Nut or Screw
Cylinder Baffle
(Carburetor Side)
Hex. Flange
Screws
Blower Housing
Back Plate
Figure 9-20. Removing Back Plate.
Remove Ignition Module
1. Disconnect the kill lead from the ignition module.
See Figure 9-21.
4. Carefully loosen and remove the heat deflector and
gasket from intake studs. The heat deflector is
made from a plastic that is quite brittle. Do not pry
on the corners, or you risk cracking/breaking the
deflector. If prying is necessary to loosen the
deflector, pry near the int ake studs. See
Figure 9-19.
Gasket
Heat Deflector
Figure 9-19. Removing Heat Deflector.
5. Remove the two hex. flange screws and starter
side cylinder barrel baffle.
Intake Stud
Ignition
Module
Figure 9-21. Removing Ignition Module.
2. Rotate flywheel magnet away from ignition module.
3. Remove the two hex. flange screws and ignition
module.
Hex. Flange Screws
Kill Lead
Remove Fuel Line
1. Remove the hex. flange screw , clip, fuel line and
rubber grommet. See Figure 9-22.
6. Remove the two hex. flange screws and blower
housing back plate. See Figure 9-20.
9.6
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.